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Abstract—This work considers a binomial noise channel.
The paper can be roughly divided into two parts. The first
part is concerned with the properties of the capacity-achieving
distribution. In particular, for the binomial channel, it is not
known if the capacity-achieving distribution is unique since the
output space is finite (i.e., supported on integers 0, . . . , n) and
the input space is infinite (i.e., supported on the interval [0, 1]),
and there are multiple distributions that induce the same output
distribution. This paper shows that the capacity-achieving input
distribution is unique by appealing to the total positivity property
of the binomial kernel. In addition, we provide upper and lower
bounds on the cardinality of the support of the capacity-achieving
distribution. Specifically, an upper bound of order n

2
is shown,

which improves on the previous upper bound of order n due to
Witsenhausen. Moreover, a lower bound of order

√
n is shown.

Finally, additional results about the locations and probability
values of the support points are established.

The second part of the paper focuses on deriving upper
and lower bounds on capacity. In particular, firm bounds are
established for all n that show that the capacity scales as 1

2
log(n).

I. INTRODUCTION

We consider a channel for which the relationship between
the input X ∈ [0, 1] and the output Y ∈ {0, . . . , n} is
described by the binomial distribution:

PY |X(y|x) =
(
n

y

)
xy(1− x)n−y. (1)

In this work, we are interested in studying the capacity of
this channel as a function of the number of trials n, that is

C(n) = max
PX :X∈[0,1]

I(X;Y ). (2)

In addition to studying capacity, we are also interested in
studying properties of an optimal capacity-achieving distribu-
tion distribution denoted by PX⋆ .

A. Literature Review

The binomial channel naturally arises in molecular commu-
nications and the interested reader is referred to [1]–[4] and
references therein. The channel is also useful in the study of
the deletion channel [5], [6].

The capacity of the binomial channel was first considered
in [7] where the authors used minimax redundancy theorem in
[8] to argue that asymptotically the capacity scales as 1

2 log n.
The exact capacity for n = 1 case was computed in [1]
where binary distribution supported on {0, 1} was shown to

be capacity achieving. To the best of our knowledge, there are
no firm bounds on the capacity of the binomial channel.

Properties of the capacity-achieving distribution have also
been looked at. For example, the authors of [1] have de-
signed an algorithm for computing capacity and a capacity-
achieving distribution by using a dual representation of the
maximization problem. It is also known that, by using the
Witsenhausen technique [9], there exists a capacity-achieving
distribution with at most n+1 mass points. We note, however,
that the Witsenhausen technique does not guarantee that the
optimal input distribution is unique. In fact, for the binomial
channel, uniqueness has not been shown; note that uniqueness
is important not just for theoretical purposes, but also for
algorithmic purposes. A conventional way to show that the
capacity-achieving distribution is unique is by establishing that
the mutual information is a strictly concave function of the
input distribution. However, as will be shown by an example,
for the binomial channel, the mutual information is not strictly
concave. Other properties, such as location of the support
points, are also not well understood. The main goal of this
work is to close some of these gaps.

In this work, we also rely on estimation theoretic quantities
such as the conditional expectation. For the estimation theo-
retic treatments of the binomial channel, the interested reader
is referred to [10], [11]. Recently, deterministic identification
capacity for the binomial channel has been studied in [12].

B. Outline and Contributions

The paper outline and contributions are as follows. The
remaining part of Sec. I is dedicated to notation. Sec. II
presents the required preliminary and ancillary results. In
particular, Sec. II-A presents the Karush-Kuhn-Tucker (KKT)
conditions and some important consequences of these con-
ditions, and Sec. II-B establishes properties of estimation
theoretic quantities, such as the conditional mean, that will be
needed in our analysis. Sec. III constitutes the first part of our
main results and focuses on properties of capacity-achieving
distributions. In particular, in Sec. III-A it is shown that all
capacity-achieving distributions are discrete; in Sec. III-B, the
discreetness is used to argue strong concavity of the mutual
information, which implies uniqueness of PX⋆ ; in Sec. III-C it
is shown that all capacity-achieving distributions are symmet-
ric around 1

2 ; Sec. III-D provides additional information about
the location of the support points; Sec. III-E provides bounds



on the probability values; Sec. III-F improves the upper bound
n+1 on cardinality of the support, due to Witsenhausen, to the
bound of order n

2 , and provides a lower bound of order
√
n.

Sec. IV constitutes the second part of our main results and
focuses on bounds on the capacity. In particular, firm lower
and upper bounds of order 1

2 log(n) are derived.
Finally, some of the proofs and additional results are dele-

gated to the extended version of the paper [13].

C. Notation

All logarithms are to the base e. Deterministic scalar quan-
tities are denoted by lower-case letters and random variables
are denoted by uppercase letters. For a random variable X and
every measurable subset A ⊆ R the probability distribution is
written as PX(A) = P[X ∈ A]. The support set of PX is

supp(PX) = {x : PX(D) > 0 for every open set D ∋ x }.
(3)

When X is discrete, we write PX(x) for PX({x}), i.e., PX

is a probability mass function (pmf). The relative entropy of
the distributions P and Q is D (P ∥Q).

Given a function f : R → R and a set B ⊆ R, the number
of zeros of f in B is given by

N (B; f) = |{x : f(x) = 0} ∩ B| , (4)

where | · | denotes the cardinality.
The set of the first n positive integers is denoted by [n].

The entry in position (i, j) of matrix A is denoted by [A]i,j .

II. PRELIMINARIES

We now presents some of the tools needed in our analysis.

A. KKT Conditions

The next result provides KKT conditions for the optimiza-
tion problem in (2), allowing the study of the support proper-
ties of an optimal input distribution (see for example [14]).

Lemma 1. PX⋆ is a capacity-achieving input distribution if
and only if the following conditions hold:

i(x;PY ⋆) ≤ C(n), x ∈ [0, 1], (5)
i(x;PY ⋆) = C(n), x ∈ supp(PX⋆) (6)

where PX⋆ → PY |X → PY ⋆ (i.e., the optimal output
distribution) and

i(x;PY ⋆) = D
(
PY |X(·|x)

∥∥PY ⋆

)
. (7)

We also define the following set, which will be useful in
our study of the uniqueness of PX⋆ :

An = {x ∈ [0, 1] : i(x;PY ⋆)− C(n) = 0}. (8)

The importance of An is demonstrated in the following lemma.

Lemma 2. For a given n

• An is unique; and
• supp(PX⋆) ⊆ An for every PX⋆ .

Proof. Note that, for a given n, both PY ⋆ and C(n) are unique
(even if PX⋆ is not unique) [15], and since An only depends
on these quantities, the uniqueness follows.

The second part follows from the KKT conditions in
Lemma 1, because x ∈ supp(PX⋆) implies x ∈ An.

B. Estimation Theoretic Preliminaries

Estimation theoretic quantities will play an impor-
tant role in our analysis. In what follows, the quantity
En−1 [f(Y ) | X = x] denotes expectation with respect to a
binomial distribution with n− 1 trials and success probability
x per trial, and

ℓb(x, x̂) = x log

(
x(1− x̂)

(1− x)x̂

)
− x− x̂

1− x̂
, (x, x̂) ∈ (0, 1)2

(9)
represents the Bregman divergence for the binomial channel.

We now summarize some of these preliminary results.

Proposition 1. For n ≥ 2 and x ∈ (0, 1), we have

i′(x;PY ) =
n

x
En−1

[
ℓb(x,En−1 [X | Y ])

∣∣ X = x
]

+
n

x
En−1

[
x− En−1 [X | Y ]

1− En−1 [X | Y ]

∣∣∣∣ X = x

]
(10)

and
i′′(x;PY ) =

n

x(1− x)
+

1

(1− x)2
G(x) (11)

where G(x) is defined in (12) (at the top of next page).

The Bregman divergence in (10) appeared previously in a
different but related result. Specifically, in [10, Prop. 2] it was
shown that for a ∈ (0, 1)

∂

∂a
I(X;Bn(aX)) =

n

a
E [ℓb (aX,E[aX|Bn−1(aX

′)])] (13)

where Y = Bn(aX) denotes the transformation of input aX
through a binomial channel with n trials.

Finally, we also need to show the monotonicity of the
conditional mean.

Lemma 3. The function y 7→ E [X | Y = y] is non-
decreasing.

III. PROPERTIES OF THE CAPACITY-ACHIEVING
DISTRIBUTIONS

In this section we study properties of capacity-achieving
distributions.

A. Discreteness

As already mentioned in Sec. I-A, from the Witsenhausen
approach we only know that there exists a discrete distribution
with at most n+1 mass points. This, however, does not rule out
the existence of other capacity-achieving distributions (e.g.,
continuous capacity-achieving distributions).

We now show that all capacity-achieving distributions are
discrete and provide a preliminary bound on the support.

Proposition 2. |supp(PX⋆)| ≤ |An| ≤ n+ 1.

This bound will be improved in Section III-F.



G(x) = E
[
(n− Y )(n− Y − 1) log

E [X | Y = Y ]

E [1−X | Y = Y + 1]

E [1−X | Y = Y + 2]

E [X | Y = Y + 1]

∣∣∣∣ X = x

]
(12)

B. Uniqueness of the Input Distribution

In this section, we show and discuss uniqueness of the
capacity-achieving input distribution. To aid our discussion,
it is useful to parameterize the mutual information in terms of
distributions instead of random variables, that is

I(PX ;PY |X) = I(X;Y ). (14)

We also let PX be the set of all distributions over the set X .
In particular, the optimization in (2) can be written as

max
PX∈P[0,1]

I(PX ;PY |X). (15)

A typical way to show that there is a unique maximizer is to
show that the mapping PX 7→ I(PX ;PY |X) over the set P[0,1]

is strictly concave [16]. However, since the output space of the
binomial channel is finite and the input space is uncountable,
the mutual information is not strictly concave over P[0,1]. For
example, when n = 1 any distribution symmetric around x =
1
2 will induce

PY (0) = PY (1) =
1

2
(16)

which is the capacity-achieving output distribution for n = 1.
Therefore, to show uniqueness of the capacity-achieving input
distribution a new or slightly different argument is needed.

We begin by showing the following result.

Proposition 3. Consider an arbitrary sequence 0 ≤ x1 <
. . . < xn+1 ≤ 1 and define the matrix A ∈ R(n+1)×(n+1) as

[A]i,k = PY |X(i− 1|xk), i ∈ [n+ 1], k ∈ [n+ 1]. (17)

Then, A is full rank.

Proof. First of all, we argue that considering x1 = 0 and
xn+1 = 1 comes without loosing generality. In fact, in
this case the first and last columns of A are e1 and en+1,
respectively, where ei is a zero vector with a 1 in the i-th
position. As a consequence, we have det(A) = det(Ã), where

[Ã]i,k = [A]i+1,k+1, i ∈ [n− 1], k ∈ [n− 1]. (18)

Next, note that we can rewrite the binomial law as

PY |X(y|x) =
(
n

y

)
(1 + et)−nety (19)

where x = et

1+et . The matrix B with [B]y,k = etky and y ∈
[n− 1] is a Vandermonde matrix, which is full rank since the
tk’s are all distinct [17]. Thanks to the multilinear property of
the determinant, we can write that

det(Ã) = det(B)
n−1∏
y=1

(
n

y

) n∏
k=2

(1 + etk)−n > 0 (20)

where the last step is due to det(B) > 0 and to the positivity
of the products. As a consequence, A is a full rank matrix.

With the aid of Proposition 3, we show the following result.

Theorem 1. Let X ⊂ [0, 1] be a discrete set of cardinality
n+1. Then, PX 7→ I(PX ;PY |X) is strictly concave over PX .

Proof. Let PX , QX ∈ PX , and let P ϵ
X = (1−ϵ)PX+ϵQX for

ϵ ∈ (0, 1), which is also in PX . Moreover, let PX → PY |X →
PY , QX → PY |X → QY and P ϵ

X → PY |X → P ϵ
Y . Then, first

note that

I(P ϵ
X ;PY |X)

− (1− ϵ)I(PX ;PY |X)− ϵI(QX ;PY |X) (21)
= D(PY |X∥P ϵ

Y |P ϵ
X)

− (1− ϵ)D(PY |X∥PY |PX)− ϵD(PY |X∥QY |QX) (22)
= (1− ϵ)D(PY ∥P ϵ

Y ) + ϵD(QY ∥P ϵ
Y ). (23)

We now show that every PX ∈ PX induces a distinct output
distribution (i.e., PX → PY |X → PY is an injective mapping),
which implies that (23) is strictly positive and, therefore, the
mutual information is strictly concave. Define the following:

pX = [PX(x1), . . . , PX(xn+1)], xk ∈ X , (24)
pY = [PY (0), . . . , PY (n)]. (25)

Then, the mapping PX → PY |X → PY can be written as the
following system of linear equations:

ApX = pY (26)

where the matrix A ∈ R(n+1)×(n+1) is such that

[A]i,k = PY |X(i− 1|xk), i ∈ [n+ 1], xk ∈ X . (27)

From Proposition 3, we know that A is full rank for any X
of cardinality n + 1. Therefore, from standard linear algebra
result, it follows that the mapping in (26) is injective (i.e.,
every pX induces a distinct pY ). Therefore, we conclude that
(23) is positive and mutual information is strictly concave.

Note that since by Proposition 2, An has cardinality of at
most n+1, from Theorem 1 we have the following corollary.

Corollary 1. PX 7→ I(PX ;PY |X) is strictly concave over
PAn . Consequently, PX∗ is unique.

C. Symmetry

The binomial channel exhibits the following symmetry

PY |X(y|x) = PY |X(n− y|1− x), x ∈ [0, 1], y ∈ {0} ∪ [n],
(28)

which immediately leads to the following result.

Proposition 4. If X⋆ is capacity-achieving, then X⋆ d
= 1 −

X⋆.1

1Here d
= denotes equality in distribution.



D. On the Location of Support Points

Following the same lines of [18, Sec. V] we have that.

Proposition 5. Let PX⋆ be a capacity-achieving input distri-
bution. Then, {0, 1} ∈ supp(PX⋆).

An important consequence of Proposition 5 is given next.

Corollary 2. The channel capacity is equal to

C(n) = log
1

PY ⋆(0)
= log

1

PY ⋆(n)
. (29)

Proof. Thanks to Proposition 5, we know that 0 ∈ supp(PX⋆).
By using the KKT condition (6), we can write

C(n) = i(0;PY ⋆) =

n∑
y=0

(
n

y

)
0y log

(
n
y

)
0y

PY ⋆(y)
= log

1

PY ⋆(0)
.

By symmetry, we can argue that PY ⋆(0) = PY ⋆(n).

We next show that there is at most one support point in
the interval

(
0, 1

n

]
and, by symmetry, at most one point in[

1− 1
n , 1

)
. The proof technique we use was developed in [19]

in the context of Poisson noise channel.

Proposition 6. For all n ≥ 1, we have∣∣∣∣supp(PX⋆) ∩
(
0,

1

n

]∣∣∣∣ ≤ 1, (30)∣∣∣∣supp(PX⋆) ∩
[
1− 1

n
, 1

)∣∣∣∣ ≤ 1. (31)

E. Bounds on the Probabilities

We begin by recalling that for PX → PY |X → PY and
QX → PY |X → QY , we have that

D (PX ∥QX) = D (PY ∥QY ) +D(PX|Y ∥QX|Y |PY ), (32)

where the conditional relative entropy is defined as

D(PX|Y ∥QX|Y |PY ) =

n∑
y=0

PY (y)D
(
PX|Y (·|y)

∥∥QX|Y (·|y)
)
.

(33)
The key to finding bounds on the probabilities is the

following lemma.

Lemma 4. For x⋆ ∈ supp(PX⋆)

PX⋆(x⋆) = e−C(n)−D(x⋆), (34)

where
D(x⋆) = D

(
δx⋆∥PX⋆|Y |PY |X(·|x⋆)

)
. (35)

Proof. Using the equality condition in the KKT (6), we have
that for x⋆ ∈ supp(PX⋆)

C(n) = D
(
PY |X(·|x⋆)

∥∥PY ⋆

)
(36)

= D (PYx⋆ ∥PY ⋆) (37)
= D (δx⋆ ∥PX⋆)−D(δx⋆∥PX⋆|Y |PYx⋆ ) (38)

= log
1

PX⋆(x⋆)
−D(δx⋆∥PX⋆|Y |PYx⋆ ), (39)

where (37) follows by defining δx⋆ → PY |X → PYx∗ ; and
(38) follows by using (32).

By rearranging (39), and recognizing that PYx∗ (·) =
PY |X(·|x⋆), we arrive at: for x⋆ ∈ supp(PX⋆)

PX⋆(x⋆) = e−C(n)−D(δx⋆∥PX⋆|Y |PY |X(·|x⋆)). (40)

The term D(x⋆) measures how on average the PX⋆|Y is
close to a point measure. We refer to D(x⋆) as the crest-
factor.2

From Lemma 4, by using D(x⋆) ≥ 0, which follows from
the non-negativity of the relative-entropy, we immediately
arrive at the following bound:

PX⋆(x⋆) ≤ e−C(n), x⋆ ∈ supp(PX⋆). (41)

The bound in (41) might appear ineffective due to the fact that
the capacity is unknown. However, note that for any X̃ , from
the definition of the capacity we have that

PX⋆(x⋆) ≤ e−I(X̃;Ỹ ), x⋆ ∈ supp(PX⋆), (42)

which implies that any good guess results in an upper bound.
Tighter lower bounds on D(x) than D(x) ≥ 0 are shown in

the extended version in [13]. The upper bounds on D(x) so
far have been elusive.

F. Bounds on the Cardinality

We now provide upper and lower bounds on the cardinality
of the support of PX⋆ . We start with the following exact
formula for the number of support points.

Proposition 7. For n ≥ 1

|supp(PX⋆)| = eC(n)

E
[
e−D(U∗)

] , (43)

where U∗ is uniformly distributed on supp(PX⋆).

Proof. Starting with Lemma 4 and summing over x⋆ ∈
supp(PX⋆), we arrive at

1 = e−C(n)
∑

x⋆∈supp(PX⋆ )

e−D(x⋆). (44)

Dividing both sides of (44) by |supp(PX⋆)| and rearranging,
we arrive at the desired result.

From Proposition 7 and non-negativity of D, we arrive at

|supp(PX⋆)| ≥ eC(n) = Θ(
√
n) (45)

where the order of the lower bound follows from the fact
that C(n) scales as 1

2 log(n) as will be shown in Theorem 3
(Section IV-B below).

We now move on to showing upper bounds. We already
have demonstrated a bound of order n + 1 in Proposition 2.
We now improve this upper bound by a factor of two.

2In signal processing, the crest factor measures how peaky the waveform
is. Specifically, it compares the peak amplitude of a waveform relative to its
average value.



n C(n) X ≡ supp(PX⋆) {PX⋆(x), x ∈ X} {PY ⋆(y), y ∈ {0} ∪ [n]}
1 log(2) {0, 1}

{
1
2 ,

1
2

} {
1
2 ,

1
2

}
2 log

(
17
8

) {
0, 1

2 , 1
} {

15
34 ,

2
17 ,

15
34

} {
8
17 ,

1
17 ,

8
17

}
3 log

(
19
8

) {
0, 1

2 , 1
} {

15
38 ,

4
19 ,

15
38

} {
8
19 ,

3
38 ,

3
38 ,

8
19

}
TABLE I: Capacity and capacity-achieving distributions.

Theorem 2. For n ≥ 1

|supp(PX⋆)| ≤ 2 +

⌊
1

2
N ((0, 1); i′′(x;PY ⋆))

⌋
(46)

≤ 2 +
⌊n
2

⌋
. (47)

Proof. First of all, note that by Proposition 5 and the KKT
conditions we know that the function i(·;PY ⋆) starts with
a local maximum at x⋆ = 0, and from Proposition 1 we
know that i′′(x;PY ⋆) > 0 for x → 0. Now, by continuity
of i(·;PY ⋆), if i(·;PY ⋆) changes concavity k times, then it
has at most 2 +

⌊
k
2

⌋
local maxima. Moreover, from the KKT

conditions we know that all the zeros of i(·;PY ⋆)−C(n) are
local maxima.

Then, we can write

|supp(PX⋆)| ≤ N ( [0, 1]; i(·;PY ⋆)− C(n) ) (48)

≤ 2 +

⌊
1

2
N ((0, 1); i′′(·;PY ⋆))

⌋
(49)

≤ 2 +
⌊n
2

⌋
, (50)

where (50) follows from the fact that x 7→ x(x−1)i′′(x;PY ⋆)
is a polynomial of degree n (see Proposition 1).

A few remarks are now in order:

• The proof of Theorem 2 does not rely on the uniqueness
of PX∗ . Therefore, it improves on the Witsenhausen bound
by a factor of two. Furthermore, the key part of the proof
leading to (46) is independent of the fact that the channel
is binomial: Indeed, this fact is only used in (47). Conse-
quently, we posit that this bound may prove more beneficial
for channels where it is feasible to establish bounds on the
number of zeros in i′′(x;PX⋆).

• The lower bound in (45) and the upper bound in (47) do not
match in their respective orders. This lack of alignment is
perhaps unsurprising, considering the inherent difficulty in
establishing tight bounds on the cardinality of the support.
For further exploration of this challenging problem, the
interested reader is directed to [20]–[22]. We suspect that
neither the upper nor the lower bounds are tight.

IV. CAPACITY AND BOUNDS ON THE CAPACITY

In this section, we provide exact values of the capacity for
n ≤ 3. For the remaining regime we provide upper and lower
bounds on capacity.

A. Exact Capacity for n ≤ 3

The exact capacity can be computed by first making a
guess of the capacity-achieving distribution according to the
properties outlined in Section III. Then, this guess can be
checked against the sufficient and necessary KKT conditions
in Lemma 1. These somewhat tedious computations are per-
formed in [13], and the results are displayed in Table I.

B. Bounds on the Capacity

We now provide bounds on the capacity. The upper bound
relies on the dual representation of the capacity as:

C(n) = inf
q

max
x∈[0,1]

D
(
PY |X(·|x)

∥∥ q) , (51)

which, by properly choosing an auxiliary output distribution
q, often leads to order-tight bounds. The reader is referred to
[23]–[25] for applications to other channels. It will also be
convenient to work with continuous output, and we will use
the following channel output: Ỹ = Y +U , where U ∼ U(0, 1).
Note that, because the distance between original Y points is
one, the additive noise U can be completely filtered out, and
we have I(X;Y ) = I(X;Y + U) for all X . This trick has
been used before in the context of the Poisson channel in [23].

The lower bound on the capacity will follow from choos-
ing a convenient input distribution. The exact computation,
however, will not be possible, and some further bounds on the
entropy of the binomial distribution will be needed. Therefore,
in [13], we also provide a new upper bound on the entropy of
a binomial distribution. Bounds on the entropy of a binomial
distribution have been considered before in [26], [27].

Theorem 3. For n ≥ 1, the channel capacity is bounded
below by

C(n) ≥ max

{
log(2), log(πn)− 1

2
log

(
2πe

(
n

8
+

1

12

))

+
1√

π
(
n+ 1

4

) log( 1

16n2

)
− log(4)− 1

 (52)

and bounded above by

C(n)

≤ min

{
log

(
3 +

⌊
(n− 1)

2

⌋)
, log(π(n+ 1))− 1

2
log(n)

+
3

2
+

1

2n+1
log (n) +

1

2
log

(
3

2

(
1 +

1

n

))}
. (53)



REFERENCES

[1] N. Farsad, W. Chuang, A. Goldsmith, C. Komninakis, M. Médard,
C. Rose, L. Vandenberghe, E. E. Wesel, and R. D. Wesel, “Capacities
and optimal input distributions for particle-intensity channels,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 6, no. 3, pp. 220–232, 2020.

[2] A. Einolghozati, M. Sardari, and F. Fekri, “Design and analysis of
wireless communication systems using diffusion-based molecular com-
munication among bacteria,” IEEE Transactions on Wireless Communi-
cations, vol. 12, no. 12, pp. 6096–6105, 2013.

[3] N. Farsad, C. Rose, M. Médard, and A. Goldsmith, “Capacity of molecu-
lar channels with imperfect particle-intensity modulation and detection,”
in 2017 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2017, pp. 2468–2472.

[4] V. Jamali, A. Ahmadzadeh, W. Wicke, A. Noel, and R. Schober,
“Channel modeling for diffusive molecular communication—A tutorial
review,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1256–1301, 2019.

[5] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet Physics Doklady, vol. 10, no. 8. Soviet
Union, 1966, pp. 707–710.

[6] M. Cheraghchi, “Capacity upper bounds for deletion-type channels,”
Journal of the ACM (JACM), vol. 66, no. 2, pp. 1–79, 2019.

[7] C. Komninakis, L. Vandenberghe, and R. D. Wesel, “Capacity of the
binomial channel, or minimax redundancy for memoryless sources,” in
IEEE International Symposium on Information Theory, 2001, pp. 127–
127.

[8] Q. Xie and A. R. Barron, “Minimax redundancy for the class of
memoryless sources,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 646–
657, 1997.

[9] H. Witsenhausen, “Some aspects of convexity useful in information
theory,” IEEE Trans. Inf. Theory, vol. 26, no. 3, pp. 265–271, 1980.

[10] C. G. Taborda, D. Guo, and F. Perez-Cruz, “Information-estimation
relationships over binomial and negative binomial models,” IEEE Trans.
Inf. Theory, vol. 60, no. 5, pp. 2630–2646, 2014.

[11] A. Dytso, M. Fauß, and H. V. Poor, “Bayesian risk with Bregman loss: A
Cramér–Rao type bound and linear estimation,” IEEE Trans. Inf. Theory,
vol. 68, no. 3, pp. 1985–2000, 2022.

[12] M. J. Salariseddigh, V. Jamali, H. Boche, C. Deppe, and R. Schober,
“Deterministic identification for MC binomial channel,” in IEEE Intern.
Symp. Inf. Theory (ISIT). IEEE, 2023, pp. 448–453.

[13] I. Zieder, A. Favano, L. Barletta, and A. Dytso, “Binomial channel: On
the capacity-achieving distribution and bounds on the capacity,” arXiv
preprint arXiv:2401.12818, 2024.

[14] A. Dytso, M. Goldenbaum, H. V. Poor, and S. S. Shitz, “When are
discrete channel inputs optimal? — optimization techniques and some
new results,” in 2018 52nd Annual Conference on Information Sciences
and Systems (CISS), 2018, pp. 1–6.

[15] J. Kemperman, “On the Shannon capacity of an arbitrary channel,”
in Indagationes Mathematicae (Proceedings), vol. 77, no. 2. North-
Holland, 1974, pp. 101–115.

[16] J. G. Smith, “The information capacity of amplitude-and variance-
constrained scalar Gaussian channels,” Information and Control, vol. 18,
no. 3, pp. 203–219, 1971.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations. JHU press,
2013.

[18] I. C. Abou-Faycal, M. D. Trott, and S. Shamai, “The capacity of discrete-
time memoryless Rayleigh-fading channels,” IEEE Trans. Inf. Theory,
vol. 47, no. 4, pp. 1290–1301, 2001.

[19] R. McEliece, E. Rodemich, and A. Rubin, “The practical limits of
photon communication,” Jet Propulsion Laboratory Deep Space Network
Progress Reports, vol. 42, pp. 63–67, 1979.

[20] A. Dytso, S. Yagli, H. V. Poor, and S. S. Shitz, “The capacity achieving
distribution for the amplitude constrained additive Gaussian channel: An
upper bound on the number of mass points,” IEEE Trans. Inf. Theory,
vol. 66, no. 4, pp. 2006–2022, 2019.

[21] A. Dytso, L. Barletta, and S. Shamai Shitz, “Properties of the support of
the capacity-achieving distribution of the amplitude-constrained Poisson
noise channel,” IEEE Trans. Inf. Theory, vol. 67, no. 11, pp. 7050–7066,
2021.

[22] N. Kashyap and M. Krishnapur, “How many modes can a constrained
Gaussian mixture have,” arXiv preprint arXiv:2005.01580, 2020.

[23] A. Lapidoth and S. M. Moser, “On the capacity of the discrete-time
Poisson channel,” IEEE Trans. Inf. Theory, vol. 55, no. 1, pp. 303–322,
2008.

[24] A. L. McKellips, “Simple tight bounds on capacity for the peak-
limited discrete-time channel,” in Proceedings International Symposium
on Information Theory (ISIT). IEEE, 2004, pp. 348–348.

[25] A. Thangaraj, G. Kramer, and G. Böcherer, “Capacity bounds for
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