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a b s t r a c t

Post-processing methods are widely used to address the issues caused by surface imper-

fections and bulk defects in additive manufactured materials. In our previous studies, we

analysed the effects of different peening-based treatments of shot peening (SP), severe

vibratory peening (SVP) and laser shock peening (LSP) on fatigue performance of V-notched

laser powder bed fusion AlSi1Mg samples. Herein, the fracture surfaces of failed samples

were further analyzed and obtained experimental data were further elaborated by machine

learning (ML)-based approach to identify the correlation between residual stress, hardness

and surface roughness (all affected by the applied post-treatments) with the depth of crack

initiation site and fatigue life of the post-treated samples. ML-based model was developed

via a six layer deep neural network (DNN) as well as using stacked auto-encoder (SAE) for

pre-training of the used data set. Taking the advantages of SAE, the accuracies of more

than 0.96 were obtained for the predicted results. Correlations were obtained by per-

forming parametric analyses and the importance of each input factor was assessed

through sensitivity analyses. The obtained results revealed that by enhancing surface

hardening and inducing higher compressive residual stresses as well as more efficient

surface roughness reduction, deeper crack initiation site and superior fatigue life can be

obtained. In addition, it was found that the depth of sub-surface crack initiation had direct

relation with fatigue life improvement in the samples.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and high surface roughness [6e10]. These defects affect the

1. Introduction

As-built additive manufactured (AM) materials exhibit inho-

mogeneous microstructures [1], multiple forms of porosity

[2,3], tensile residual stresses (TRS) [4,5], surface imperfections
it (S. Bagherifard).
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performance of LPBF materials, especially in terms of fatigue

behavior [11e13]. Many impact-based surface treatments

have been suggested for addressing surface imperfections as

non-subtractive post-treatments for AM materials, such as

shot peening (SP) [14,15], ultrasonic shot peening (USP) [16],
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severe vibratory peening (SVP) [17], cavitation peening (CP)

[18,19], ultrasonic peening (UP) [20], laser shock peening (LSP)

[21e24] and ultrasonic nanocrystal surface modification

(UNSM) [25e27]. These have been proved to efficiently remove

the surface irregularities and homogenize the surface

morphology of AM materials. Moreover, these treatments

have a high potential in inducing surface layer grain refine-

ment, surface hardening and generating high compressive

residual stresses (CRS) leading to notable fatigue behavior

improvement [28e31]. In addition, it should be noted that

other category of post-processing methods such as heat

treatments (HT) have been be applied on AM materials for

improved fatigue behavior [32e34]. HT can homogenize the

microstructure and release the unfavourable tensile residual

stresses of the as-built condition caused by the complex

thermal history during melting and solidification stages [35].

On the other hand, machine learning (ML) methods such as

neural networks (NNs) have gained considerable attention

recently, due to their efficiency in comprehensive modelling of

complex phenomena in various fields of science and engineer-

ing [36e41]. As one of the latest generations of NNs, deep neural

networks (DNNs)withmultiple layers exhibit high performance

in modelling of non-linear systems. Taking advantage of deep

learning methods such as restricted Boltzmannmachine (RBM)

and deep belief network (DBN) [42,43], it is feasible to develop

DNN using greedy layer-wised methods with pre-training even

with a small experimental data set. Also, specific techniques for

pre-training of DNN such as stacked auto-encoder (SAE) are

presented to make the development of DNN possible with even

smaller data set but high accuracy [44e47].

ML-based approaches have been used in the filed of AM, in

particular, for fatigue behavior prediction of laser powder bed

fusion (LBPF) materials [48e52].

In this study, first, the experimental data fromour previous

studies were gathered to compare the effects of different

peening-based treatments of shot peening [53], severe
Fig. 1 e Schematic illustration of (a) the manufacturing process

corresponding internal and surface defects.
vibratory peening [17] and laser shock peening [54] on crack

initiation and fatigue behavior of V-notched LPBF AlSi1Mg

samples. These experimental results were used for developing

a ML-based model with deep learning approach. The ML-

based approaches were used for the determination of the

correlation between mechanical and physical parameters

with the depth of crack initiation site and fatigue life of post-

processed samples. Microhardness and residual stresses were

continuously mapped on the fracture surface to obtain the

corresponding values at crack initiation site. The distribution

of applied stresses on the notch root section was estimated by

an elastic finite element model.

Then different NNs including shallow neural networks

(SNNs), which have 1 or 2 hidden layers and deep neural

networks (DNNs), which have more than 2 hidden layers, as

well as SAE assigned DNN (SADNN) were developed. In the

first model, superimposed stresses through the notch section,

hardening index and surface roughness were considered as

inputs and the depth of crack initiation site, the relative height

of fracture plane and fatigue life were gathered as output

parameters. Another model was developed to analyze the ef-

fect of depth of crack initiation site and the relative height of

fracture plane on fatigue life. SAE was used for pre-taring of

the data fed to the two DNN models. The experimental data

were fed to the constructed models for obtaining the corre-

lation between residual stress, hardness and surface rough-

ness with the depth of crack initiation site and fatigue

behavior of V-notched LPBF AlSi10Mg samples subjected to

different peening treatments.
2. Experimental procedures

Fig. 1a shows a schematic representation of themanufacturing

process for the V-notched LPBF samples with three distinct

regions of upward face, notch root and downward face; the
of V-notched LPBF AlSi10Mg samples and (b) the
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internal and surface defects corresponding to these three

zones are shown in Fig. 1b. In our previous study, we applied

three different post-processingmethods of SP [53], SVP [17] and

LSP [54] on thenotched sampleswith parametersmentioned in

Table 1. Each surface treatment was applied considering two

(low and high) levels of kinetic energy.

To be able to compare the influence of the surface treat-

ments, the kinetic energy levels were kept comparable be-

tween the treatments using Almen intensity that is a standard

index widely employed in the field of SP. All post-processing

methods were applied on Almen strip A and the induced

curvature, typically referred to as arc height, were measured

to be comparable between the three treatments; the two in-

tensities of 4e6 A and 10e12 A [0.001 inch] were set for the

processes with low and high energy, respectively. Schematic

illustration of the applied treatments is presented in Fig. 2aec

and the measured arc heights at different exposure times for

each treatment is shown in Fig. 2d.

Considering all of the applied post-treatments, 7 different

sets of samples including as-built (AB) as control sample and 6

treated sets of AB þ SP1, AB þ SP2, AB þ SVP1, AB þ SVP2,

AB þ ULSP1 and AB þ LSP2 samples were considered.

Fig. 3a depicts the shape and size of the fatigue samples

with notch root dimeter of R ¼ 1 mm manufactured using gas

atomized AlSi10Mg powders with mean diameter of 46.65 mm.

The details of the experiments for roughness, microhardness

and residual stress measurements are presented in our pre-

vious study [53]. In addition, fatigue life of all sets of samples

was assessed performing rotating bending fatigue test (stress

ratio of R ¼ �1) at a fixed nominal stress amplitude of 110 MPa

considering run-out limit of 6 � 106 cycles and a rotational

speed of 2500 rpm. Fig. 3b shows a schematic of the fatigue

test set-up. Five samples were tested for each condition and

the average fatigue lives are reported. Fractography analysis

was performed on the broken samples using Zeiss EVO50

scanning electron microscope. The corresponding stress dis-

tribution in the minimum cross-section (diameter of 8 mm) of

the as-designed geometry was obtained by finite element (FE)

simulation considering the load applied in the experiments, as

represented in Fig. 3c. A linear elastic FEmodel was developed

by commercial software of Abaqus/Explicit 2019 using C38DR

elements (8-node linear brick) considering a cylindrical ge-

ometry with the diameter and notch geometry of the real

sample, to obtain the stress distribution through the mini-

mum cross-section. The FE results demonstrate the classic

distribution of axial stresses under bending with the highest

stress concentration occurring at the notch root, as expected.

Based on the performed measurements, the diameter of the

minimum cross-section did not significantly vary between the

as-designed, as-built and surface-treated samples (about

maximum 0.1 mm), the distribution of the axial stresses ob-

tained from the FE analysis was considered valid in all cases.
3. Implementation of machine learning

ML was used for analyzing the correlation between residual

stress, hardness and surface roughness with crack initiation

site and fatigue life of the post-treated notched LPBF AlSi10Mg

samples. Firstly, a ML-based model using SNN was developed

https://doi.org/10.1016/j.jmrt.2023.03.193
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Fig. 2 e Schematic illustration of the applied post-processing methods of (a) SP, (b) SVP and (c) LSP; (d) the measured arc

heights at different exposure times for all the considered post-treatments resulting in two ranges of Almen intensity of 4e6

A and 10e12 A [0.001 inch].

Fig. 3 e (a) Geometry of the cylindrical V-notched fatigue sample with notch root dimeter of R ¼ 1 mm (b) schematic

illustration of the test set-up for rotating bending fatigue test (c) FE stress contour and distribution of axial stresses in the

sample's cross section under the applied load.
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for continuous mapping of the experimental results of hard-

ness and residual stresses along the minimum cross-section.

Afterwards, two different network architectures were con-

structed for analyzing the correlation between various pa-

rameters. All ML-based models were developed using

MATLAB R2021a software.

Fig. 4a schematically presents the induced CRS after

applying a peening treatment. By careful controlling of the

effective parameters, peening treatments can induce a uniform

distribution of CRS on the treated surface [55]. Corresponding

homogenous distribution of induced CRS is shown in Fig. 4b in

a 2D contour. Fig. 4c indicates symmetrical cross-sectional

mapping of the CRS distribution on the cylindrical part.

Generally, in the samples subjected to peening-based

treatments, the crack initiation site is displaced from the sur-

face to the sub-surface layers, mainly due to the generation of

deep CRS and surface work hardening [56,57]. To evaluate the

effect of the applied treatments in inducing sub-surface crack

initiation rather than surface cracks, the corresponding hard-

ness and residual stress values induced by each treatment

were mapped continuously on the fracture surfaces of the

failed samples. For instance, Fig. 5a depicts the scanning elec-

tron microscopy (SEM) micrograph of fracture surface of

AB þ LSP2 sample at different magnifications of�50, � 100

and � 250 from left to the right, respectively. The sub-surface

crack initiation site can be clearly identified at the highest

used magnification. The same magnification was also used for

identifying the sub-surface initiation site in the samples

treated by SP and SVP, as shown in the result's section.

On the fracture surface with magnification of � 250, an area

with maximumwidth of 480 mm in the central bottom part and

length of 800 mm was considered (see Fig. 5b). This area was

meshed using radial coordinate (r, q). To obtain a continuous 2D

contour that can cover thewhole considered area, a SNNwith a

structure of 2 þ 10þ5 þ 1, rate of training of 0.195, and hidden

and output layer transfer functions of Logsig was developed.

The r, q coordinates of each measurement point in the meshed

area were considered as the inputs of the network and the

corresponding hardness and residual stresses values were

regarded as the output parameters. The measured values of

hardness and residual stresses were firstly assigned to point

with q ¼ 0� at different corresponding r values (considering

their distance from the surface) and then assigned to the rest of
Fig. 4 e Schematic illustration of (a) the induced CRS after applyi

distributionofCRS ina2Dcontourand (c) cross-sectional symmetr
the points with q ranging from �90 to 90�. Then, continuous
distributions were predicted at different depths, where exper-

imental measurements were not performed to cover the whole

meshed area. For example, Fig. 5c presents the mapped CRS

distribution of AB þ LSP2 sample in the considered area. It

should be noted similar SNN (with a structure of 2 þ 10þ5 þ 1,

rate of training of 0.195, and hidden and output layer transfer

functions of Logsig) was used for prediction of residual stresses

and microhardness distributions of all sets of samples for

continuous mapping on the corresponding fracture surface

planes. Comparison of the predicted and experimental values

of residual stresses and microhardness obtained by the devel-

oped SNNs is shown in Fig. A (in Appendix A).

To describe the parameters considered for developing the

ML-based models, the fracture surface of all sets of samples

and the related surface and mechanical properties were

analyzed carefully. As an example, the distance of the crack

initiation site from the free surface is measured for AB þ LSP2

sample to be around 155 mm (Fig. 6a). The schematic illustra-

tion of the considered area that describes the analyzed pa-

rameters of crack initiation depth (d), corresponding values of

hardness (Hd), the corresponding residual stress (Sd) values at

crack initiation site as well as the applied stress during fatigue

test at that point (Sf), is presented in Fig. 6b. Each sample was

also characterized with its individual surface roughness (Ra),

number of fatigue life cycles before failure (Nf) and core

hardness (Hc). Hd and Sd values were extracted from the

continuous mapping of hardness and residual stress by ML,

whereas Ra, Nf and Hc parameters were directly obtained from

the experiments. In addition, the values of Sf at different

depths from surface were estimated by FE simulation (see

Fig. 3d). The total stress at the crack initiation site was esti-

mated by superimposing the corresponding residual stress

and the applied stress at that depth i.e (Sd þ Sf).

As confirmed in our previous studies on fatigue assess-

ment of notched LPBF parts [53,58], despite the high stress

concentration at the notch root (as shown in Fig. 3c), the fa-

tigue fracture in these parts did not necessarily occur on the

notch root plane. Interestingly, in most cases the fracture

initiated in an offset plane with respect to the notch root

plane, in the downward face area; this was mainly attributed

to the considerably higher surface roughness in the downface

area (as illustrated in Fig. 1b) [59]. As shown in Fig. 6c, relative
ng a peening treatment (b) the corresponding homogenous

icmapping of theCRSdistributiononsample's cross section.

https://doi.org/10.1016/j.jmrt.2023.03.193
https://doi.org/10.1016/j.jmrt.2023.03.193


Fig. 5 e (a) SEM micrographs of fracture surface for AB þ LSP2 sample with different magnifications (b) considered area with

a maximum width of 480 mm in the centre and a length of 800 mm meshed using radial coordinate (r, q). (c) continuous

mapping of the corresponding CRS distribution (before fatigue loading) in AB þ LSP2 sample in the considered area.
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height of fracture plane parameter (h/h0), which is defined as

the ratio of the distance of the fracture plane (h) to the total

notch opening distance (h0) was used to describe the fracture

plane displacement from the notch root section.

Considering all the aforementioned parameters, in this

study two different ML-based models based on deep learning

approach were developed. In Model A, as shown in Fig. 7a, the

parameters of Sd þ Sf, Hd/Hc (used as an index of hardening)

and Ra were considered as inputs and parameters of d, h/h0
and Nf were regarded as outputs. In this way, the correlation

between hardness, residual and amplitude stresses as well as
Fig. 6 e (a) Measuring the depth of sub-surface crack initiation

considered area on the fracture plane with the analyzed parame

value (Hd), residual stress (Sd) and applied stress (Sf) with indivi

hardness (Hc) for the specimen (c) schematic description of rela
surface roughness was estimated with crack initiation sites.

This model can also analyze the effects of hardening and CRS

as well as roughness variation caused by the peening-based

treatments on fatigue behavior of the notched LPBF

AlSi10Mg samples. On the other hand, in Model B, as pre-

sented in Fig. 7b, the parameters of d and h/h0were considered

as inputs and Nf was gathered as output parameter to specify

the effects of crack initiation site on fatigue life of the treated

samples. Different NN approaches including SNN, DNN and

SADNN were developed to find the optimum structure with

the best performance for each model. In all the developed
site for AB þ LSP2 sample (b) schematic illustration of the

ters of crack initiation depth (d), its corresponding hardness

dual surface roughness (Ra), fatigue life cycle (Nf) and core

tive height (h/h0) of fracture plane.

https://doi.org/10.1016/j.jmrt.2023.03.193
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Fig. 7 e The considered input and output parameters in the developed ML-based networks of (a) Model A and (b) Model B (c)

schematic illustration of a SADNN with 6 layers and structure of 3þ(18 þ 12þ9 þ 6)þ3 used for Model A.
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networks, random data selection strategy was followed for

training and testing processes and the data used for training

was not employed in testing step. The performance of the

developed networks was examined in terms of accuracy using

correlation coefficient (R2) calculated as follows [60]:

R2 ¼
Pn
i¼1

�
fEXP;i � FEXP

��
fANN;i � FANN

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

��
fEXP;i � FEXP

�2�
fANN;i � FANN

�2
�s (1)

where, n is the number of the fed data to the network, and fEXP
and fANN represent the experimental and predicted values,

respectively, determined as follows:

FEXP ¼ 1
n

Xn

i¼1

fEXP;i (2.a)

FANN ¼ 1
n

Xn

i¼1

fANN;i (2.b)
Fig. 7c depicts the schematic illustration of a 6 layer DNN

(with 4 hidden layers) and the assigned SAE with an archi-

tecture of 3þ(18 þ 12þ9 þ 6)þ3 layers used for Model A. SAE

was assigned in between the layers of DNN for pre-training of

the fed experimental data. Based on the size of the dataset and

also the complexity of the modeled phenomena, a DNN

should be developed with or without pre-training [61]. As the

used dataset for feeding is relatively small in this work, we

took advantage of the potentials of SAEs. Generally, for con-

structing a fully inter-connected SADNN with y layers, y-1

SAEs are required. In the developed SADNN with 6 layers

consisting of input layer þ4 hidden layers þ output layer, 5

SAEs were used considering the same number of neurons in

each SAE with the corresponding DNN layer. Hence with

respect to the number of layers and neurons, in the 6 layers

SADNN, SAEs with 3þ(18)þ3, 18þ(12)þ18, 12þ(9)þ12, 9þ(6)þ9,

6þ(3)þ6 architectures were assigned. Detailed description of

SAE development and performance were reported in different

studies [62e64].

https://doi.org/10.1016/j.jmrt.2023.03.193
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After performance assessment of the developed NNs for

specifying the optimum structures with the highest accuracy,

themodel function of the selectedNNwas generated for further

parametric and sensitivity analyses. The corresponding model

function of the developed SADNN can be obtained as follows:

a1 ¼ f 1
�
w1 iþ b1

�
(3)

a2¼f 2ðw2
i1þb2Þ (4)

a3 ¼ f 3
�
w3i2 þb3

�
(5)

a4 ¼ f 4
�
w4i3 þb4

�
(6)

a5 ¼ f 5
�
w5i4 þb5

�
(7)
a6 ¼Mðmð1Þ;mð2Þ;mð3ÞÞ¼ f6
�
w6i5 þb6

�
¼ f 6

�
w6f 5

�
w5f 4

�
w4f 3

�
w3f 2

�
w2f 1

�
w1iþ b1

�
þb2 þ b3

�
þb4

�
þ b5

�
þb6

�
(8)
where a1, a2, a3, a4 and a5 are the outputs of the first to fifth

layers, respectively and the function M assigns the values of

the considered 3 inputs of Sd þ Sf, Hd/Hc and Ra to the outputs

of d, h/h0 and Nf with m(1), m(2) and m(3), respectively. More-

over, a sensitivity analysis was carried out to specify the

importance of each input parameter on the variations of

outputs considering the weight matrix of the developed

SADNN and Garson equation, as follows [65]:

PNh

m¼1

0
BB@
0
BB@

���Wih
jm

���PNi

k¼1

jWih
kmj

1
CCA� ��Who

mn

��
1
CCA

PNi

k¼1

8>><
>>:

PNh

m¼1

0
BB@ jWih

kmjPNi

k¼1

jWih
kmj

1
CCA� ��Who

mn

��
9>>=
>>;

(9)
Fig. 8 e (a) Confocal microscopy observations of the notch root

samples (b) measured values of surface roughness in terms of
where Ij is the importance of the jth input parameter relevant

to the output parameter, Ni and Nh are the numbers of input

and hidden neurons, respectively, and W is the connection

weight; the superscripts i, h, and o, in turn, refer to input,

hidden and output neurons.
4. Results and discussions

4.1. Experimental results

Fig. 8a represents the confocal top-surface morphological

observations in the notch root area of the AB and surface

treated samples. The surface irregularities of the as-built state

such as spatters and partially and unmelted powders were

mostly removed after applying peening-based treatments of

SP, SVP and LSP. The formation of dimples and overlaps in the
peened samples with shots (SP and SVP) due to multiple im-

pacts and surface-to-surface contacts with the peeningmedia

can be seen. However, in the LSP treated sample, lower sur-

face roughness scatter was observed with very few local sur-

face imperfections. Surface roughness measured in terms of

arithmetic mean, Ra is presented in Fig. 8b. The results indi-

cate that SVP had the highest effects on roughness reduction

followed by LSP, while SP slightly increased the surface

roughness.

Different mechanical properties including hardness and

residual stresses as well as fatigue life of all sets of samples

were analyzed. Microhardness measurement were performed

on the longitudinal cross section (YZ plane) of the samples

along notch root direction to assess the local influence of

peening-based post-treatments as depicted in Fig. 9a up to the

depth of 480 mm (as described in Fig. 5 according to considered
surface of the AB, AB þ SP2, AB þ SVP2 and AB þ LSP2

Ra.
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Fig. 9 e (a) Microhardness profiles in the notch root section of samples and (b) residual stress distributions in all sets of

samples measured from top surface through the depth (c) number of cycles to failure for rotating bending fatigue tests

considering a fixed amplitude stress of 110 MPa.
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area in fracrture surface). The microhardness in the surface

layer of the peened samples gradualy decreased through

interior. The applied processes with higher energy had more

efficiency for in-depth hardening of the notch root. Surface

hardness improvements of 19, 15, 69, 78, 14 and 28% were

obtained for AB þ SP1, AB þ SP2, AB þ SVP1, AB þ SVP2,

AB þ LSP1 and AB þ LSP2 samples, respectively.

Residual stresses distributions from top surface were

measured for all sets of samples using XRD as depicted in

Fig. 9b. AB sample showed tensile residual stresses, while the

peened samples exhibited significant CRSs. Surface CRSs of

�83, �65, �160, �170, �145 and �178 MPa were achieved for

AB þ SP1, AB þ SP2, AB þ SVP1, AB þ SVP2, AB þ LSP1 and

AB þ LSP2 samples, respectively. Considering the applied

stress distribution by fatigue loading (which obtained by FE

analysis) up to the depth of 480 mmand themeasured residual

stresses in all sets of samples, the stress superposition under

cyclic loading can be determined by calculating the sum of the
Fig. 10 e (a) Crack initiation depths and (b) the measured relativ

displacement of the fracture planes in the AB þ SP2, AB þ SVP
stresses as presented in Fig. B(in Appendix B). In addition, 2D

contours of superposed stresses in all sets considering ho-

mogeneous distribution of stresses are presented in Fig. C(in

Appendix C).

Fatigue lives of all sets of V-notched LPBF AlSi10Mg

samples under a stress amplitude of 110 MPa were obtained

as represented in Fig. 9c. The results revealed remarkable

fatigue life improvement after applying peening-based post-

treatments. Fatigue life of AB sample with 1.26 � 104 cycles

was increased up to 1.19 � 106, 1.75 � 106, 2.12 � 106,

2.83 � 106, 1.92 � 106 and 2.53 � 106 cycles in the AB þ SP1,

AB þ SP2, AB þ SVP1, AB þ SVP2, AB þ LSP1 and AB þ LSP2

samples, respectively. Fracture surface of the samples were

analyzed, and the location of the crack initiation sites were

identified. Fig. 10a, reveals the depths of crack initiation sites

for all sets of samples measured for 5 samples per each set.

The cracks were initiated from the surface in the case of AB

samples; however, in all the peened samples sub-surface
e heights of fracture plane for all sets of samples (c) the

2 and AB þ LSP2 samples compared to the AB sample.
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Fig. 11 e Crack initiation sites in all sets of samples with mapped residual stress (corresponding to the XRD measurements

made before fatigue loading) and hardness on the area around it on the fracture surface.
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Table 2 e The obtained values related to input and output parameters considering the samples presented in Fig. 11

Sample Sd (MPa) Sf (MPa) Sd þ Sf (MPa) Hd (Hv) Hd/Hc Ra (mm) d (mm) h/h0 Nf (Cycles)

AB �11 183.9 172.9 108 1.02 4.34 0 0.5431 12,690

AB þ SP1 �136 167.5 31.5 118 1.11 4.52 105 0.5291 1,196,470

AB þ SP2 �171 165.2 �5.8 115 1.09 4.83 115 0.5182 2,119,660

AB þ SVP1 �183 163.1 �19.9 176 1.66 2.79 130 0.5132 2,121,670

AB þ SVP2 �191 156.8 �34.2 184 1.74 2.42 150 0.5098 2,832,250

AB þ LSP1 �149 164.9 15.9 118 1.11 4.11 125 0.5352 1,921,670

AB þ LSP2 �175 153.8 �21.2 131 1.24 3.98 165 0.5243 2,530,250

Table 3 e The accuracy of the selected SADNNS in both
training and testing processes for Model A and Model B.

Model SADNN structure Output R2

Training Testing

A 3þ(18 þ 12þ9 þ 6)þ3 d 0.961 0.950

h/h0 0.974 0.968

Nf 0.965 0.957

B 2þ(18 þ 12þ9 þ 6)þ1 Nf 0.985 0.972
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crack initiations were observed. In addition, considering

the fracture planes of the broken samples, the relative

heights of fracture site were calculated as shown in Fig. 10b.

The results indicated that all the applied surface post-

treatments had considerable effects on reduction of rela-

tive height of fracture plane and relocating the fracture

planes closer to the notch root section. Fig. 10c illustrates the

displacement of the fracture planes in the AB þ SP2,

AB þ SVP2 and AB þ LSP2 samples, respectively compared to

the AB sample.

4.2. Modelling results

Fig. 11 presents the fracture surfaces of all sets of samples

specifying the crack initiation sites and mapping of the re-

sidual stresses and hardness on the corresponding fracture

plane. Sub-surface crack initiation can be observed clearly for

all peened samples (shown with yellow circle).
Fig. 12 e (a,c) The effects of number of neurons in each layer of

estimated fatigue life for models A and B. (b,d) Comparison of t

DNNs and SADNNs for models A and B.
For correlating the mechanical properties with fatigue

crack initiation site and fatigue life, for instance for the sam-

ples presented in Fig. 11, the considered input and output

parameters (mentioned in Fig. 7a) are summarized in Table 2.

It should be mentioned that Hc of 105.5, which was obtained

from the average of the measured microhardnesses for AB

sample was considered for the determination of Hd/Hc. The
SNNs with 1 and 2 hidden layers on the accuracy of the

he accuracy of the estimated fatigue life obtained by SNNs,
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same procedure was followed for the other 4 samples

analyzed for the same set and finally a data set with 35 data

points were obtained and used for the training process.

The average values of each input parameter were used for

testing the developed networks. Different NNs including

SNN, DNN and SADNN were developed and their efficiencies

in terms of prediction accuracy were compared as presented

in Fig. 12. It should be mentioned that these results are pre-

sented in terms of accuracy of output parameter of fatigue

life in both Model A and Model B. In all the constructed NNs,

network parameters of 0.165 for training rate and the

Logarithmic-Sigmod (logsig) transfer functions in hidden and

output layers were used. Dealing with the developed SNNs

with 1 and 2 hidden layers, by raising the number of neurons

in each layer as well as increasing the number of layers, the

accuracy of the predicted results increased as well (see

Fig. 12a and c). In the developed SNNs, the networks with

(50 þ 50) hidden layers with accuracy of 0.91 and 0.92 (for

training) had the best performance for Model A and Model B,

respectively.

Comparison of the accuracy of the predicted fatigue life

obtained by SNNs, DNNs and SADNNs in Model A andModel B

is shown in Fig. 12a and b. The results indicate that SADNNs
Fig. 13 e Comparative diagrams of the predicted and ex
with a structures of 3þ(18 þ 12þ9 þ 6)þ3 and 2þ(18 þ 12

þ9 þ 6)þ1 exhibited the highest efficiencies in terms of ac-

curacy compared to all the developed NNs with accuracies of

0.965 and 0.985 for Model A and Model B, respectively. After

pre-training of the data via SAE, the performance of NNs was

enhanced reaching to acceptable R2. For example, considering

the DNN developed with 4 hidden layers in Model A, the ac-

curacy of the predicted results increased form 0.94 up to 0.965

after implementing pre-training by SAE. The performance

assessment of the selected SADNNs, which had the highest

accuracy in both training and testing processes, is shown in

Table 3. All the selected SADNNs had accuracies higher than

0.95 for both training and testing processes. Fig. 13 shows the

comparative diagrams of predicted values versus experi-

mentallymeasured data for the considered output parameters

in Models A and B.

To obtain the correlation between residual stress, hardness

and surface roughness with crack initiation site and fatigue

life of notched LPBF AlSi10Mg samples subjected to different

peening treatments, parametric analyses were carried out.

The corresponding model functions to the selected SADNNs

were generated and the intervals of experimnetal data for all

input parameters were used to achieve continious 2D
perimental results in terms of (a) d, (b) h/h0 (c,d) Nf.
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contours. Fig. 14 illustrates the results of paramertric analyses

of Model A in terms of d, h/h0 and Nf.

As shown in Figs. 14aec it can be seen that by decreasing

Sdþ Sf and Rawhile increasingHd/Hc (which can be obtained by

applying peening treatments) the depth of crack initiation site
Fig. 14 e 2D contours presenting the parametric analyses results

Ra and (c) Ra and Hd/Hc versus d (d) Sd þ Sf and Hd/Hc, (e) Sd þ Sf an

Sd þ Sf and Ra and (i) Ra and Hd/Hc versus Nf.
d increased. Dealing with the relative height of fracture plane,

as presented in Fig. 14def, reducing Sd þ Sf and Ra and

increasingHd/Hc, led to reduction in h/h0 values. In addition, as

illustrated in Fig. 14gei, fatigue life Nf, improved by reducing

Sd þ Sf and Ra and increasing Hd/Hc. Overall, the results
for Model A in terms of (a) Sd;þ Sf and Hd/Hc, (b) Sd;þ Sf and

d Ra and (f) Ra and Hd/Hc versus h/h0; (g) Sd þ Sf and Hd/Hc, (h)
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Fig. 15 e 2D contour presenting the parametric analysis result for Model B in terms of d and h/h0 versus Nf.

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 3 ; 2 4 : 3 2 6 5e3 2 8 33278
indicate that by increasing the hardening, inducing higher

CRSs and more surface roughness reduction, higher crack

initiation depth, lower relative height of fracture plane and

higher fatigue life can be expected.

The results of parametric analysis for Model B are pre-

sented in Fig. 15. A direct relation was observed for the depth

of sub-surface crack initiation site with fatigue life improve-

ment. d was considerably increased by inducing higher CRSs,

hardening and roughness reduction as results of peening

treatments, thus leading to longer fatigue life. In addition, by

displacing the relative height of fracture plane from down-

wards face of the notch with poor surface quality closer to the

notch root section (that theoretically has the highest stress

consternation) and therefore reduction of h/h0 by applying

post-treatments, fatigue life can be significantly improved.

Hence, all the parametric analyses confirmed the beneficial
Fig. 16 e Sensitivity analyses results
effects of the peening-based post-processing methods for fa-

tigue life improvement.

To specify the effects of each considered input data on the

variations of output parameters, sensitivity analyses were

performed. Fig. 16a and b presents the results of sensitivity

analyses forModels A and B, respectively. ConsideringModel A,

the results indicate that parameter of Sd þ Sf, incorporating the

effects of both induced residual and applied stresses, had the

highest effect on the variations of output parameters including

d, h/h0 and Nf followed by surface roughness Ra and hardening

index of Hd/Hc. The considered input parameters exhibited

different levels of importance with respect to different outputs.

For instance, Ra had an importance of 21% on the variation of

output parameter of d, while in the case of output parameter of

h/h0 higher importance of 39% was estimated. Dealing with

Model B, which had only one output parameter, crack initiation
for (a) Model A and (b) Model B.
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depth d had higher effects on fatigue life improvement

compared to the relative height of fracture plane.
5. Conclusions

In this study, experimental data, numerical models and deep

learning approaches were implemented to correlate residual

stress, hardness and surface roughness with the depth of

crack initiation site and fatigue behavior of V-notched LPBF

AlSi10Mg samples subjected to different peening treatments.

According to the results the following conclusions can be

drawn.

� All the applied peening-based surface treatments

including SP, SVP and LSP induced considerable CRSs,

surface layer hardening, surface morphology modification

and roughness reduction. The combined effect of the

affected properties resulted in significant fatigue life

improvement.

� Considering post-treatments with higher energy, SVP had

the highest effects on fatigue life improvement with 223

times higher fatigue life compared to the as-built set, fol-

lowed by LSP ( � 199 times) and SP ( � 94 times).

� Fractography analysis of the failed samples after rotating

bending fatigue tests revealed sub-surface crack initiation

in all samples but at different depths. However, in the as-

built state, the poor surface quality led to surface crack

initiation. In addition, the surface post-treatments

considerably reduced the relative height of fracture

plane, shifting it towards the notch root plane.

� Performance evaluation of the developed neural network

models showed that by pre-training of the small dataset, it
Fig. A e Comparison of the predicted and experimental values

developed SNNs.
is possible to get acceptable accuracies in the predictions

up to more than 0.96 (out of 1 as maximum R2).

� Correlations between residual stress, hardness, and sur-

face roughness with the depth of crack initiation site and

fatigue life, obtained via parametric analyses revealed that

by increasing surface layer hardening and inducing higher

CRSs, besides surface roughness reduction, deeper crack

initiation site, lower relative height of fracture plane and

superior fatigue life can be obtained.

� As one of themajor findings of this study, it was found that

the depth of sub-surface crack initiation had direct relation

with fatigue life improvement. Likewise, by displacing the

relative height of the fracture plane closer to the notch root

section by applying surface post-treatments, higher fatigue

lives were obtained.

� The results of sensitivity analyses indicated that the com-

bination of residual and applied stresses had the highest

effect on the variation of crack initiation depth, the relative

height of the fracture plane and fatigue life followed by

surface roughness and hardening index, respectively.
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of residual stresses and microhardness obtained by the
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Appendix B
Fig. B e Distributions of (a) residual stresses before fatigue loading, (b) applied stress by fatigue loading and (c) superposed

stresses after fatigue loading.
Appendix C
Fig. C e 2D contours of superposed stresses in all sets considering homogeneous distribution of stresses and the crack

initiation depths.

https://doi.org/10.1016/j.jmrt.2023.03.193
https://doi.org/10.1016/j.jmrt.2023.03.193


j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 3 ; 2 4 : 3 2 6 5e3 2 8 3 3281
r e f e r e n c e s

[1] Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive
manufacturing of metals. Acta Mater 2016;117:371e92.
https://doi.org/10.1016/j.actamat.2016.07.019.

[2] Ferro P, Fabrizi A, Berto F, Savio G, Meneghello R, Rosso S.
Defects as a root cause of fatigue weakening of additively
manufactured AlSi10Mg components. Theor Appl Fract Mech
2020;108:102611. https://doi.org/10.1016/j.tafmec.2020.102611.

[3] Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. Reducing
porosity in AlSi10Mg parts processed by selective laser
melting. Addit Manuf 2014;1:77e86. https://doi.org/10.1016/
j.addma.2014.08.001.

[4] Mfusi BJ, Mathe NR, Tshabalala LC, Popoola PAI. The effect of
stress relief on the mechanical and fatigue properties of
additively manufactured AlSi10Mg parts. Metals 2019;9.
https://doi.org/10.3390/met9111216.

[5] Mukherjee T, Zhang W, DebRoy T. An improved prediction of
residual stresses and distortion in additive manufacturing.
Comput Mater Sci 2017;126:360e72. https://doi.org/10.1016/
j.commatsci.2016.10.003.

[6] Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The
metallurgy and processing science of metal additive
manufacturing. Int Mater Rev 2016;61:315e60. https://
doi.org/10.1080/09506608.2015.1116649.

[7] Zhang Z, Sun C, Xu X, Liu L. Surface quality and forming
characteristics of thin-wall aluminium alloy parts
manufactured by laser assisted MIG arc additive
manufacturing. Int J Light Mater Manuf 2018;1:89e95. https://
doi.org/10.1016/j.ijlmm.2018.03.005.

[8] Li R, Liu J, Shi Y, Wang L, Jiang W. Balling behavior of
stainless steel and nickel powder during selective laser
melting process. Int J Adv Manuf Technol 2012;59:1025e35.
https://doi.org/10.1007/s00170-011-3566-1.

[9] Maleki E, Bagherifard S, Bandini M, Guagliano M. Surface
post-treatments for metal additive manufacturing: progress,
challenges, and opportunities. Addit Manuf 2021;37:101619.
https://doi.org/10.1016/j.addma.2020.101619.

[10] Nasab MH, Gastaldi D, Lecis NF, Vedani M. On morphological
surface features of the parts printed by selective laser
melting (SLM). Addit Manuf 2018;24:373e7. https://doi.org/
10.1016/j.addma.2018.10.011.

[11] Xu Z, Liu A, Wang X. Fatigue performance and crack
propagation behavior of selective laser melted AlSi10Mg in
0�, 15�, 45� and 90� building directions. Mater Sci Eng, A
2021;812. https://doi.org/10.1016/j.msea.2021.141141.

[12] Beretta S, Gargourimotlagh M, Foletti S, du Plessis A,
Riccio M. Fatigue strength assessment of “as built” AlSi10Mg
manufactured by SLM with different build orientations. Int J
Fatig 2020;139. https://doi.org/10.1016/j.ijfatigue.2020.105737.

[13] Maleki E, Bagherifard S, Unal O, Sabouri F, Bandini M,
Guagliano M. Effects of different mechanical and chemical
surface post-treatments on mechanical and surface
properties of as-built laser powder bed fusion AlSi10Mg. Surf
Coating Technol 2022;439:128391. https://doi.org/10.1016/
j.surfcoat.2022.128391.

[14] Salvati E, Lunt AJG, Ying S, Sui T, Zhang HJ, Heason C, et al.
Eigenstrain reconstruction of residual strains in an additively
manufactured and shot peened nickel superalloy
compressor blade. Comput Methods Appl Mech Eng
2017;320:335e51. https://doi.org/10.1016/j.cma.2017.03.005.

[15] Lesyk DA, Dzhemelinskyi VV, Martinez S, Mordyuk BN,
Lamikiz A. Surface shot peening post-processing of inconel
718 alloy parts printed by laser powder bed fusion additive
manufacturing. J Mater Eng Perform 2021;30:6982e95.
https://doi.org/10.1007/s11665-021-06103-6.
[16] Alharbi N. Corrosion resistance of 3D printed SS316L post-
processed by ultrasonic shot peening at optimum energy
level. 2022. https://doi.org/10.1177/09544054221112164.

[17] Maleki E, Bagherifard S, Unal O, Bandini M, Guagliano M. The
effects of microstructural and chemical surface gradients on
fatigue performance of laser powder bed fusion AlSi10Mg.
Mater Sci Eng, A 2022;840:142962. https://doi.org/10.1016/
j.msea.2022.142962.

[18] Soyama H, Okura Y. The use of various peening methods to
improve the fatigue strength of titanium alloy Ti6Al4V
manufactured by electron beam melting. AIMS Mater Sci
2018;5:1000e15. https://doi.org/10.3934/
MATERSCI.2018.5.1000.

[19] Sato M, Takakuwa O, Nakai M, Niinomi M, Takeo F,
Soyama H. Using cavitation peening to improve the fatigue
life of titanium alloy Ti-6Al-4V manufactured by electron
beam melting. Mater Sci Appl 2016;7:181e91. https://doi.org/
10.4236/msa.2016.74018.

[20] Xing X, Duan X, Jiang T, Wang J, Jiang F. Ultrasonic peening
treatment used to improve stress corrosion resistance of
AlSi10Mg components fabricated using selective laser
melting. Metals 2019;9. https://doi.org/10.3390/met
9010103.

[21] Du Plessis A, Glaser D, Moller H, Mathe N, Tshabalala L,
Mfusi B, et al. Pore closure effect of laser shock peening of
additively manufactured AlSi10Mg. 3D Print Addit Manuf
2019;6:245e52. https://doi.org/10.1089/3dp.2019.0064.

[22] Jinoop AN, Subbu SK, Paul CP, Palani IA. Post-processing of
laser additive manufactured inconel 718 using laser shock
peening. Int J Precis Eng Manuf 2019;20:1621e8. https://
doi.org/10.1007/s12541-019-00147-4.

[23] Yeo I, BaeS,AmanovA, JeongS. Effectof laser shockpeeningon
properties of heat-treated Tie6Ale4Vmanufactured by laser
powder bed fusion. Int J Precis Eng Manuf - Green Technol
2021;8:1137e50. https://doi.org/10.1007/s40684-020-00234-2.

[24] Jiang Q, Li S, Zhou C, Zhang B, Zhang Y. Effects of laser shock
peening on the ultra-high cycle fatigue performance of
additively manufactured Ti6Al4V alloy. Opt Laser Technol
2021;144. https://doi.org/10.1016/j.optlastec.2021.107391.

[25] Lesyk DA, Martinez S, Mordyuk BN, Pedash OO,
Dzhemelinskyi VV, Lamikiz А. Ultrasonic surface post-
processing of hot isostatic pressed and heat treated
superalloy parts manufactured by laser powder bed fusion.
Addit Manuf Lett 2022;3:100063. https://doi.org/10.1016/
j.addlet.2022.100063.

[26] Zhang H, Zhao J, Liu J, Qin H, Ren Z, Doll GL, et al. The effects
of electrically-assisted ultrasonic nanocrystal surface
modification on 3D-printed Ti-6Al-4V alloy. Addit Manuf
2018. https://doi.org/10.1016/j.addma.2018.04.035.

[27] Maleki E, Unal O, Bandini M, Guagliano M, Bagherifard S.
Individual and synergistic effects of thermal and mechanical
surface post-treatments on wear and corrosion behavior of
laser powder bed fusion AlSi10Mg. J Mater Process Technol
2022;302:117479. https://doi.org/10.1016/j.jmatprotec.
2021.117479.

[28] Efe Y, Karademir I, Husem F, Maleki E, Karimbaev R,
Amanov A, et al. Enhancement in microstructural and
mechanical performance of AA7075 aluminum alloy via
severe shot peening and ultrasonic nanocrystal surface
modification. Appl Surf Sci 2020;528. https://doi.org/10.1016/
j.apsusc.2020.146922.

[29] Donoghue J, Antonysamy AA, Martina F, Colegrove PA,
Williams SW, Prangnell PB. The effectiveness of combining
rolling deformation with Wire-Arc Additive Manufacture on
b-grain refinement and texture modification in Ti-6Al-4V.
Mater Char 2016;114:103e14. https://doi.org/10.1016/
j.matchar.2016.02.001.

https://doi.org/10.1016/j.actamat.2016.07.019
https://doi.org/10.1016/j.tafmec.2020.102611
https://doi.org/10.1016/j.addma.2014.08.001
https://doi.org/10.1016/j.addma.2014.08.001
https://doi.org/10.3390/met9111216
https://doi.org/10.1016/j.commatsci.2016.10.003
https://doi.org/10.1016/j.commatsci.2016.10.003
https://doi.org/10.1080/09506608.2015.1116649
https://doi.org/10.1080/09506608.2015.1116649
https://doi.org/10.1016/j.ijlmm.2018.03.005
https://doi.org/10.1016/j.ijlmm.2018.03.005
https://doi.org/10.1007/s00170-011-3566-1
https://doi.org/10.1016/j.addma.2020.101619
https://doi.org/10.1016/j.addma.2018.10.011
https://doi.org/10.1016/j.addma.2018.10.011
https://doi.org/10.1016/j.msea.2021.141141
https://doi.org/10.1016/j.ijfatigue.2020.105737
https://doi.org/10.1016/j.surfcoat.2022.128391
https://doi.org/10.1016/j.surfcoat.2022.128391
https://doi.org/10.1016/j.cma.2017.03.005
https://doi.org/10.1007/s11665-021-06103-6
https://doi.org/10.1177/09544054221112164
https://doi.org/10.1016/j.msea.2022.142962
https://doi.org/10.1016/j.msea.2022.142962
https://doi.org/10.3934/MATERSCI.2018.5.1000
https://doi.org/10.3934/MATERSCI.2018.5.1000
https://doi.org/10.4236/msa.2016.74018
https://doi.org/10.4236/msa.2016.74018
https://doi.org/10.3390/met9010103
https://doi.org/10.3390/met9010103
https://doi.org/10.1089/3dp.2019.0064
https://doi.org/10.1007/s12541-019-00147-4
https://doi.org/10.1007/s12541-019-00147-4
https://doi.org/10.1007/s40684-020-00234-2
https://doi.org/10.1016/j.optlastec.2021.107391
https://doi.org/10.1016/j.addlet.2022.100063
https://doi.org/10.1016/j.addlet.2022.100063
https://doi.org/10.1016/j.addma.2018.04.035
https://doi.org/10.1016/j.jmatprotec.2021.117479
https://doi.org/10.1016/j.jmatprotec.2021.117479
https://doi.org/10.1016/j.apsusc.2020.146922
https://doi.org/10.1016/j.apsusc.2020.146922
https://doi.org/10.1016/j.matchar.2016.02.001
https://doi.org/10.1016/j.matchar.2016.02.001
https://doi.org/10.1016/j.jmrt.2023.03.193
https://doi.org/10.1016/j.jmrt.2023.03.193


j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 3 ; 2 4 : 3 2 6 5e3 2 8 33282
[30] Amanov A. Effect of local treatment temperature of
ultrasonic nanocrystalline surface modification on
tribological behavior and corrosion resistance of stainless
steel 316L produced by selective laser melting. Surf Coating
Technol 2020;398. https://doi.org/10.1016/
j.surfcoat.2020.126080.

[31] Maleki E, Bagherifard S, Sabouri F, Guagliano M. Effects of
hybrid post-treatments on fatigue behaviour of notched LPBF
AlSi10Mg: experimental and deep learning approaches.
Procedia Struct Integr 2021;34:141e53. https://doi.org/
10.1016/j.prostr.2021.12.021.

[32] Baek MS, Kreethi R, Park TH, Sohn Y, Lee KA. Influence of
heat treatment on the high-cycle fatigue properties and
fatigue damage mechanism of selective laser melted
AlSi10Mg alloy. Mater Sci Eng, A 2021. https://doi.org/
10.1016/j.msea.2021.141486.

[33] Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM.
Improving the fatigue behaviour of a selectively laser melted
aluminium alloy: influence of heat treatment and surface
quality. Mater Des 2016. https://doi.org/10.1016/
j.matdes.2016.05.041.

[34] Raja A, Cheethirala SR, Gupta P, Vasa NJ, Jayaganthan R,
Clement CD, et al. A review on the fatigue behaviour of
AlSi10Mg alloy fabricated using laser powder bed fusion
technique. J Manuf Mater Process 2022;106568:6. https://
doi.org/10.1016/j.jmrt.2022.01.028.

[35] Clement CD, Masson J, Kabir AS. Effects of heat treatment on
microstructure and mechanical properties of AlSi10Mg
fabricated by selective laser melting process. J Manuf Mater
Process 2022;6. https://doi.org/10.3390/jmmp6030052.

[36] Maleki E, Unal O. Shot peening process effects on
metallurgical and mechanical properties of 316 L steel via:
experimental and neural network modeling. Met Mater Int
2021;27:262e76. https://doi.org/10.1007/s12540-019-00448-3.

[37] Maleki E, Unal O, Reza Kashyzadeh K. Fatigue behavior
prediction and analysis of shot peened mild carbon steels.
Int J Fatigue 2018;116:48e67. https://doi.org/10.1016/
j.ijfatigue.2018.06.004.

[38] Khatir S, Tiachacht S, Le Thanh C, Ghandourah E, Mirjalili S,
Abdel Wahab M. An improved Artificial Neural Network
using Arithmetic Optimization Algorithm for damage
assessment in FGM composite plates. Compos Struct 2021.
https://doi.org/10.1016/j.compstruct.2021.114287.

[39] Wang S, Wang H, Zhou Y, Liu J, Dai P, Du X, et al. Automatic
laser profile recognition and fast tracking for structured light
measurement using deep learning and template matching.
Meas J Int Meas Confed 2021. https://doi.org/10.1016/
j.measurement.2020.108362.

[40] Ho LV, Trinh TT, De Roeck G, Bui-Tien T, Nguyen-Ngoc L,
Abdel Wahab M. An efficient stochastic-based coupled model
for damage identification in plate structures. Eng Fail Anal
2022. https://doi.org/10.1016/j.engfailanal.2021.105866.

[41] Ho LV, Nguyen DH, Mousavi M, De Roeck G, Bui-Tien T,
Gandomi AH, et al. A hybrid computational intelligence
approach for structural damage detection using marine
predator algorithm and feedforward neural networks.
Comput Struct 2021. https://doi.org/10.1016/
j.compstruc.2021.106568.

[42] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for
deep belief nets. Neural Comput 2006;18:1527e54. https://
doi.org/10.1162/neco.2006.18.7.1527.

[43] Hinton GE, Salakhutdinov RR. Reducing the dimensionality
of data with neural networks. 80- Science 2006;313:504e7.
https://doi.org/10.1126/science.1127647.

[44] Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-
wise training of deep networks. Adv Neural Inf Process Syst
2007:153e60. https://doi.org/10.7551/mitpress/
7503.003.0024.
[45] Feng S, Zhou H, Dong H. Using deep neural network with
small dataset to predict material defects. Mater Des
2019;162:300e10. https://doi.org/10.1016/
j.matdes.2018.11.060.

[46] Liu G, Bao H, Han B. A stacked autoencoder-based deep
neural network for achieving gearbox fault diagnosis. Math
Probl Eng 2018;2018. https://doi.org/10.1155/2018/5105709.

[47] Wang Y Bin, You ZH, Li X, Jiang TH, Chen X, Zhou X, et al.
Predicting protein-protein interactions from protein
sequences by a stacked sparse autoencoder deep neural
network. Mol Biosyst 2017;13:1336e44. https://doi.org/
10.1039/c7mb00188f.

[48] Maleki E, Bagherifard S, Razavi SMJ, Bandini M, du Plessis A,
Berto F, et al. On the efficiency of machine learning for
fatigue assessment of post-processed additively
manufactured AlSi10Mg. Int J Fatigue 2022;160:106841.
https://doi.org/10.1016/j.ijfatigue.2022.106841.

[49] Li J, Yang Z, Qian G, Berto F. Machine learning based very-
high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated
by selective laser melting. Int J Fatigue 2022. https://doi.org/
10.1016/j.ijfatigue.2022.106764.

[50] Elangeswaran C, Cutolo A, Gallas S, Dinh TD, Lammens N,
Erdelyi H, et al. Predicting fatigue life of metal LPBF
components by combining a large fatigue database for
different sample conditions with novel simulation strategies.
Addit Manuf 2022. https://doi.org/10.1016/
j.addma.2021.102570.

[51] Wang H, Li B, Xuan FZ. Fatigue-life prediction of additively
manufactured metals by continuous damage mechanics
(CDM)-informed machine learning with sensitive features.
Int J Fatigue 2022;164. https://doi.org/10.1016/
j.ijfatigue.2022.107147.

[52] Salvati E, Tognan A, Laurenti L, Pelegatti M, De Bona F. A
defect-based physics-informed machine learning framework
for fatigue finite life prediction in additive manufacturing.
Mater Des 2022;222:111089. https://doi.org/10.1016/
j.matdes.2022.111089.

[53] Maleki E, Bagherifard S, Razavi SMJ, Riccio M, Bandini M, du
Plessis A, et al. Fatigue behaviour of notched laser powder
bed fusion AlSi10Mg after thermal and mechanical surface
post-processing. Mater Sci Eng, A 2022;829:142145. https://
doi.org/10.1016/j.msea.2021.142145.

[54] Maleki E, Bagherifard S, Unal O, Bandini M, Guagliano M. On
the effects of laser shock peening on fatigue behavior of V-
notched AlSi10Mg manufactured by laser powder bed fusion.
Int J Fatigue 2022;163:107035. https://doi.org/10.1016/
j.ijfatigue.2022.107035.

[55] Maleki E, Farrahi GH, Reza Kashyzadeh K, Unal O,
Gugaliano M, Bagherifard S. Effects of conventional and
severe shot peening on residual stress and fatigue strength
of steel AISI 1060 and residual stress relaxation due to fatigue
loading: experimental and numerical simulation. Met Mater
Int 2021;27:2575e91. https://doi.org/10.1007/s12540-020-
00890-8.

[56] Benedetti M, Torresani E, Leoni M, Fontanari V, Bandini M,
Pederzolli C, et al. The effect of post-sintering treatments on
the fatigue and biological behavior of Ti-6Al-4V ELI parts
made by selective laser melting. J Mech Behav Biomed Mater
2017;71:295e306. https://doi.org/10.1016/
j.jmbbm.2017.03.024.

[57] Bagherifard S, Beretta N, Monti S, Riccio M, Bandini M,
Guagliano M. On the fatigue strength enhancement of
additive manufactured AlSi10Mg parts by mechanical and
thermal post-processing. Mater Des 2018;145:28e41. https://
doi.org/10.1016/j.matdes.2018.02.055.

[58] Maleki E, Bagherifard S, Sabouri F, Bandini M, Guagliano M.
Hybrid thermal, mechanical and chemical surface post-
treatments for improved fatigue behavior of laser powder

https://doi.org/10.1016/j.surfcoat.2020.126080
https://doi.org/10.1016/j.surfcoat.2020.126080
https://doi.org/10.1016/j.prostr.2021.12.021
https://doi.org/10.1016/j.prostr.2021.12.021
https://doi.org/10.1016/j.msea.2021.141486
https://doi.org/10.1016/j.msea.2021.141486
https://doi.org/10.1016/j.matdes.2016.05.041
https://doi.org/10.1016/j.matdes.2016.05.041
https://doi.org/10.1016/j.jmrt.2022.01.028
https://doi.org/10.1016/j.jmrt.2022.01.028
https://doi.org/10.3390/jmmp6030052
https://doi.org/10.1007/s12540-019-00448-3
https://doi.org/10.1016/j.ijfatigue.2018.06.004
https://doi.org/10.1016/j.ijfatigue.2018.06.004
https://doi.org/10.1016/j.compstruct.2021.114287
https://doi.org/10.1016/j.measurement.2020.108362
https://doi.org/10.1016/j.measurement.2020.108362
https://doi.org/10.1016/j.engfailanal.2021.105866
https://doi.org/10.1016/j.compstruc.2021.106568
https://doi.org/10.1016/j.compstruc.2021.106568
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1126/science.1127647
https://doi.org/10.7551/mitpress/7503.003.0024
https://doi.org/10.7551/mitpress/7503.003.0024
https://doi.org/10.1016/j.matdes.2018.11.060
https://doi.org/10.1016/j.matdes.2018.11.060
https://doi.org/10.1155/2018/5105709
https://doi.org/10.1039/c7mb00188f
https://doi.org/10.1039/c7mb00188f
https://doi.org/10.1016/j.ijfatigue.2022.106841
https://doi.org/10.1016/j.ijfatigue.2022.106764
https://doi.org/10.1016/j.ijfatigue.2022.106764
https://doi.org/10.1016/j.addma.2021.102570
https://doi.org/10.1016/j.addma.2021.102570
https://doi.org/10.1016/j.ijfatigue.2022.107147
https://doi.org/10.1016/j.ijfatigue.2022.107147
https://doi.org/10.1016/j.matdes.2022.111089
https://doi.org/10.1016/j.matdes.2022.111089
https://doi.org/10.1016/j.msea.2021.142145
https://doi.org/10.1016/j.msea.2021.142145
https://doi.org/10.1016/j.ijfatigue.2022.107035
https://doi.org/10.1016/j.ijfatigue.2022.107035
https://doi.org/10.1007/s12540-020-00890-8
https://doi.org/10.1007/s12540-020-00890-8
https://doi.org/10.1016/j.jmbbm.2017.03.024
https://doi.org/10.1016/j.jmbbm.2017.03.024
https://doi.org/10.1016/j.matdes.2018.02.055
https://doi.org/10.1016/j.matdes.2018.02.055
https://doi.org/10.1016/j.jmrt.2023.03.193
https://doi.org/10.1016/j.jmrt.2023.03.193


j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 3 ; 2 4 : 3 2 6 5e3 2 8 3 3283
bed fusion AlSi10Mg notched samples. Surf Coating
Technol 2022;430. https://doi.org/10.1016/
j.surfcoat.2021.127962.

[59] Solberg K, Wan D, Berto F. Fatigue assessment of as-built and
heat-treated Inconel 718 specimens produced by additive
manufacturing including notch effects. Fatig Fract Eng Mater
Struct 2020;43:2326e36. https://doi.org/10.1111/ffe.
13300.

[60] Maleki E. Artificial neural networks application for
modeling of friction stir welding effects on mechanical
properties of 7075-T6 aluminum alloy. IOP Conf Ser Mater
Sci Eng 2015;103. https://doi.org/10.1088/1757-899X/103/1/
012034.

[61] Yamanaka A, Kamijyo R, Koenuma K, Watanabe I,
Kuwabara T. Deep neural network approach to estimate
biaxial stress-strain curves of sheet metals. Mater Des
2020;195. https://doi.org/10.1016/j.matdes.2020.
108970.
[62] Maleki E, Unal O, Guagliano M, Bagherifard S. Analysing the
fatigue behaviour and residual stress relaxation of gradient
nano-structured 316L steel subjected to the shot peening via
deep learning approach. Met Mater Int 2022;28:112e31.
https://doi.org/10.1007/s12540-021-00995-8.

[63] ShaoH,XiaM,WanJ,DeSilvaCW.Modifiedstackedautoencoder
using adaptive morlet wavelet for intelligent fault diagnosis of
rotatingmachinery. IEEE/ASME Trans Mechatronics 2022.
https://doi.org/10.1109/TMECH.2021.3058061.

[64] Law A, Ghosh A. Multi-label classification using a cascade of
stacked autoencoder and extreme learning machines.
Neurocomputing 2019. https://doi.org/10.1016/
j.neucom.2019.05.051.

[65] Olden JD, Joy MK, Death RG. An accurate comparison of
methods for quantifying variable importance in artificial
neural networks using simulated data. Ecol Model
2004;178:389e97. https://doi.org/10.1016/
j.ecolmodel.2004.03.013.

https://doi.org/10.1016/j.surfcoat.2021.127962
https://doi.org/10.1016/j.surfcoat.2021.127962
https://doi.org/10.1111/ffe.13300
https://doi.org/10.1111/ffe.13300
https://doi.org/10.1088/1757-899X/103/1/012034
https://doi.org/10.1088/1757-899X/103/1/012034
https://doi.org/10.1016/j.matdes.2020.108970
https://doi.org/10.1016/j.matdes.2020.108970
https://doi.org/10.1007/s12540-021-00995-8
https://doi.org/10.1109/TMECH.2021.3058061
https://doi.org/10.1016/j.neucom.2019.05.051
https://doi.org/10.1016/j.neucom.2019.05.051
https://doi.org/10.1016/j.ecolmodel.2004.03.013
https://doi.org/10.1016/j.ecolmodel.2004.03.013
https://doi.org/10.1016/j.jmrt.2023.03.193
https://doi.org/10.1016/j.jmrt.2023.03.193

	Correlation of residual stress, hardness and surface roughness with crack initiation and fatigue strength of surface treate ...
	1. Introduction
	2. Experimental procedures
	3. Implementation of machine learning
	4. Results and discussions
	4.1. Experimental results
	4.2. Modelling results

	5. Conclusions
	Declaration of Competing Interest
	Appendix A
	Appendix B
	Appendix C
	References


