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A B S T R A C T

Within the context of the lower bound theorem of classical limit analysis, the collapse of stone
masonry arches and domes characterized by finite friction and uncertain finite compressive
strength is addressed. Self-weight is considered, along with a live point load applied at the
crown. A multi-constrained funicular approach based on the concept of force densities is
implemented to provide the maximum static load multiplier for any assigned value of the
friction coefficient and of the compressive strength. The numerical method, which takes into
full account the stereotomy of blocky stone structures, is validated by using a novel version
of the semi-analytical Durand-Claye’s stability area method. Two different types of brickwork
are considered in the investigation, addressing the compressive strength as a random variable
with prescribed log-normal distributions. Due to the limited availability of data to elaborate
probabilistic models for the angle of friction, the effect of this mechanical parameter on the
probability of failure of the blocky structures is assessed by developing a set of fragility
curves. For each discrete value in a representative range of friction coefficients, a Monte Carlo
investigation is performed by iteratively applying the funicular method considering samples of
the random variable that describes the compressive strength. The retrieved load multipliers are
processed to estimate the probability of failure for any given magnitude of live load, which
depends on the value of the friction coefficient. An insight into the collapse modes occurring
in the masonry arches and domes under examination is provided, as well.

1. Introduction

Investigating the collapse behavior of unreinforced masonry vaults, such as arches and domes, represents a topical issue due to
the complex mechanical response of masonry, a heterogeneous material characterized by a good compressive strength and a low
tensile strength.

The challenges in conducting advanced experimental tests to determine masonry properties are described, for example, in [1],
where the most relevant property in order to characterize this material is recognized to be the compressive strength in the direction
normal to the bed joints separating the blocks. Among other contributions on this topic, [2] examine and compare different formulas
to predict the compressive strength of masonry, starting from the characteristics of the elements composing the brickwork, while [3]
assess the suitability of some experimental investigations aimed at determining the compressive strength by testing bricks and
mortar, separately, or testing cylindrical cores. Some studies are focused on experimentally determining other material properties,
such as the friction coefficient. Among them [4] study dry stack stone masonry constructions, by focusing on the assessment of the
joint normal and shear stiffness along with friction parameters.
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Faced with this complexity, probabilistic analyses are commonly adopted in order to capture the mechanical properties of
asonry as well as the response of masonry structures. Without claiming completeness, some significant studies can be cited. As

n example, the research conducted by [5] shows that compressive tests of masonry specimen under vertical constant load are
ffected by time, by highlighting that vertical and horizontal deformation increases according to three phases of creep. The authors
eal with such a problem by means of a probabilistic analysis and suggest an experimental procedure capable of capturing the
aboratory creep behavior; moreover, they propose a probabilistic approach for the estimate of the residual life of the material.
n the contribution by [6], the fragility curves method is proposed as an agile tool, able to predict the evolution of deterioration
rocess for masonry structures, while [7] propose a stochastic analysis based on Monte Carlo simulation for the seismic assessment
f historical masonry structures by considering the uncertainty of masonry parameters. The analysis by [8] presents a probabilistic-
ased numerical strategy in order to study masonry structures in the inelastic range, under a seismic load, by considering a
ropagation of uncertainty through loading, material, mechanical, and geometrical parameters; moreover, a random mechanical
esponse of masonry is provided by means of a numerical homogenization procedure. As regards geometrical uncertainties, [9]
tudy the collapse of circular masonry arches in the presence of horizontal seismic actions, by considering the influence of shape
rregularities by means of a random generative model. For an overview on the failure analysis and performance of masonry and
istorical structures, by considering extreme events, degradation mechanisms, structural health monitoring techniques, and service
ife design approaches, the interested reader is addressed to [10,11].

Focusing on the behavior of masonry structures, different approaches are adopted nowadays, depending on the objectives of
he analysis. Among the variety of contributions, we can observe that, on the one hand, there are finite element methods or
iscrete element methods, which introduce contact, friction and cohesion models implemented ‘‘ad hoc’’ in order to capture a
ealistic behavior of such structures [12–14]. On the other hand, there is a need for fast analysis methods capable of evaluating the
verall stability or load-bearing capacity of masonry structures; in this context the role of optimization algorithms based on Limit
nalysis [15–17] is particularly significant.

As regards the objective of this contribution, the simplest modeling of masonry vaults in the context of classical Limit Analysis
escribes these structures as an assembly of rigid blocks, with infinite compressive strength and zero tensile strength, due to the
ow, uncertain, tensile strength of the material, assuming an infinite coefficient of friction between the blocks [18]. These are the
ypotheses on the masonry material proposed by Heyman’s pioneering work [19], which captures a fundamental characteristic,
.e. its unilateral behavior, and provides an interpretative criterion of cracking patterns. Starting from these assumptions, modern
e-visitations of graphical approaches [20] or sophisticated static methods have been developed [21–25]. With reference to the topic
f this contribution, the minimum thrust analysis of axisymmetric masonry domes performed by [26–28] can be recalled.

It should be observed, however, that in real masonry structures the compressive strength as well as the friction coefficient are
inite, so that crushing and sliding can occur. Adopting Heyman’s hypotheses, therefore, could lead to unsafe solutions. A discussion
n those contributions aimed at enriching Heyman’s hypotheses in the framework of Limit Analysis by considering the effects of a
imited compressive strength as well as of a limited friction coefficient on the collapse behavior of masonry vaults is out of the scope
f the current paper. Without pretending to be exhaustive, we can cite [16,29–32], which introduce a limited friction coefficient,
17,33,34], which focus on the influence of strength requirements on the mechanical response of masonry vaults, and the analyses
roposed by [35,36], where both strength and friction requirements are taken into account.

Given the above, the current study aims at exploring the collapse behavior of masonry arches and domes by means of an
ntegrated method based on both deterministic lower bound approach, and a probabilistic investigation in order to assess the
nfluence of a limited friction coefficient along with the uncertainty characterizing the compressive strength on the collapse behavior
f such structures.

The research is focused on symmetric masonry arches and axi-symmetric domes of revolution subjected to self-weight and a
ertical point load at the crown, assumed as a live load. This typology of structures is chosen since symmetry and geometric
haracteristics allow for finding the collapse load multiplier using procedures based on the lower bound theorem of Limit Analysis,
ven under the hypothesis of a finite friction coefficient. In this regard, it is worth remembering that, if friction is finite, the material
resents non-standard plastic behavior, since any two adjacent voussoirs can slide relative to each other by violating the normality
ule [37–41]. The case studies examined in this discussion belong to a class of problems for which the uniqueness of the solution
s guaranteed, as well as the possibility of determining safe stress states. For further insights on this topic, the reader is referred
o [39,42,43].

The analysis is developed by exploiting a funicular method based on the concept of force density [15,44,45], and a novel version
f Durand-Claye’s stability area method [17,36,46,47]. The funicular method allows one for finding the collapse load multiplier by
olving a multi-constrained maximization problem. A three-dimensional network consisting of branches subjected to axial forces is
onsidered. The nodes are situated along vertical straight lines passing through the centers of gravity of each of the blocks composing
he vault. Considering a fixed plan projection and local constraints, applied at each joint, the maximization procedure allows the
aximum static load multiplier to be obtained for a given friction coefficient and a given compressive strength. The results thus

btained are validated using the semi-analytical Durand-Claye method: in this case an iterative procedure is necessary to find – with
he desired precision – the load multiplier corresponding to the limit condition, i.e., to the vanishing of the stability area.

As is well known, deterministic limit analysis does not take adequately into account the influence of the uncertainties on the
tability of masonry structures. In this contribution, the uncertainty related to the estimation of the material compressive strength
s considered. Two different materials are examined, assuming the strength in compression as a random variable characterized by
og-normal distributions, see technical documents [48]. A realistic representation of the influence of material parameters would also
2

equire considering the friction coefficient as a random variable. However, the availability of data to elaborate probabilistic models
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for the friction coefficient is limited. In [49], an experimental characterization of dry masonry joints was performed depending on the
surface roughness of the blocks, thus defining an interval of friction coefficients that is representative of a wide range of situations.
Since the compressive strength can be effectively described as a random variable, but this is not a viable option for the friction
coefficient, the effect of the latter parameter on the probability of failure of dry blocky structures is herein addressed by resorting to
the concept of fragility curves. In the probabilistic seismic performance assessment of structures and seismic risk analysis, a collapse
fragility curve provides the probability of failure given a certain seismic intensity measure, see e.g. [50] and [7]. Following [6],
the same tool can be exploited to represent the probability of failure given a certain load intensity measure, i.e. a multiplier of the
applied load. Hence, looking at a set of fragility curves which are retrieved for different discrete values of the friction coefficient,
the impact of such mechanical parameter on the structural safety can be preliminary investigated without the need to handle the
friction angle as a random variable. A Monte Carlo analysis is performed by iteratively applying the funicular method to masonry
arches and vaults assuming samples of the compressive strength, while spanning the representative interval of friction coefficients
reported in the experimental characterization by [49]. Given a friction coefficient, the computed load multipliers are handled as a
random variable, thus allowing for an estimation of the probability of failure for any prescribed magnitude of the live load. The
achieved results are commented on, elaborating on collapse modes that occur in the examined masonry arches and domes.

The remainder of this paper is organized as follows. In Section 2 the limit analysis by means of the force density method and
athematical programming is presented. An overview of the forces, eccentricities, and constraints at the joints is given, along with
etails of the optimization problem. In Section 3 the Durand-Claye method is discussed, focusing on the procedure implemented to
ind the load multiplier for symmetric arches and domes corresponding to the limit condition, i.e., to the vanishing of the stability
rea. In Section 4 the probabilistic investigation is introduced and the achieved numerical results are presented and commented on,
ointing out the role of friction both in terms of collapse mode and expected failure probabilities for given loads. Finally, Section 5
rovides concluding remarks, along with directions for further research.

. Limit analysis using funicular networks and mathematical programming

The equilibrium of arches and domes is investigated by means of an approach of funicular analysis [51] that relies on the ‘‘force
ensity method’’ [44]. Given a Cartesian reference system 𝑂𝑥𝑦𝑧, any three-dimensional network consists of 𝑚 elements and 𝑛𝑠

nodes, whose coordinates are stored in the arrays 𝐱𝑠, 𝐲𝑠, and 𝐳𝑠. The topology of the spatial network is described by the connectivity
matrix 𝐂𝑠, being 𝐂 the subset which corresponds to the unrestrained nodes, while 𝐂𝑓 refers to the restrained ones. Accordingly,
one has 𝐮 = 𝐂𝑠𝐱𝑠, 𝐯 = 𝐂𝑠𝐲𝑠, and 𝐰 = 𝐂𝑠𝐳𝑠, where 𝐮, 𝐯, and 𝐰 collect the differences in coordinates between the ends of each
element along the 𝑥, 𝑦, and 𝑧 axes, respectively. The array gathering the length of the members of the network is denoted by 𝐥, with
𝑙𝑖 =

√

𝑢2𝑖 + 𝑣
2
𝑖 +𝑤

2
𝑖 , whereas 𝐬 collects the branch forces. Upon introduction of 𝐋 = diag(𝐥), the force density array reads 𝐪 = 𝐋−1𝐬,

which stores the force-to-length ratios of the members of the network. In this study, networks with a fixed plan projection subjected
to vertical forces only are considered, see, e.g. [52–54]. Hence, the horizontal equilibrium of the unrestrained nodes reads:

[

𝐂𝑇 diag(𝐂𝑠𝐱𝑠0)
𝐂𝑇 diag(𝐂𝑠𝐲𝑠0)

]

𝐪 =
[

𝟎
𝟎

]

, (1)

here 𝐱𝑠0 and 𝐲𝑠0 collect the prescribed 𝑥 and 𝑦 coordinates of the nodes. Eq. (1) implies that 𝑚 − 𝑟 independent force densities
xist, stored in 𝐪, being 𝑟 the rank of the coefficient matrix. The 𝑟 dependent force densities read 𝐪 = 𝐁𝐪 + 𝐝, where 𝐁 and 𝐝 are

found by performing Gauss–Jordan elimination on Eq. (1), see in particular [53]. Upon introduction of 𝐐 = diag(𝐪), the equilibrium
along the vertical axis may be written as:

𝐂𝑇𝐐𝐂𝐳 + 𝐂𝑇𝐐𝐂𝑓 𝐳𝑓 = 𝐩𝑧, with 𝐩𝑧 = 𝐩𝑧𝑑 + 𝜆𝐩𝑧𝑙 . (2)

In the above equation, 𝐳 represents the subset of 𝐳𝑠 related to the unrestrained nodes, whereas 𝐳𝑓 pertains to the restrained ones.
The load vector 𝐩𝑧 is made by the dead load 𝐩𝑧𝑑 and the live load 𝐩𝑧𝑙, being the latter scaled by the multiplier 𝜆. For any given set
of 𝐪 and 𝐳𝑓 , along with prescribed loads, Eq. (2) allows one for calculating the vertical coordinates of the unrestrained nodes of the
funicular network.

The nodes of the network are chosen so that they lie on the vertical straight lines passing through the centroids of the voussoirs,
ee Fig. 1. The members of the network intersect the planes of the joints which separate adjacent blocks, see Fig. 2. Denoting by
𝑥, 𝐞𝑦, and 𝐞𝑧 the unit vectors aligned with the 𝑥, 𝑦, and 𝑧 directions, respectively, the funicular force 𝐅𝑖 reads:

𝐅𝑖 = 𝑞𝑖
(

𝑢𝑖 𝐞𝑥 + 𝑣𝑖 𝐞𝑦 +𝑤𝑖 𝐞𝑧
)

. (3)

he line of action of 𝐅𝑖 crosses the 𝑖th joint at point 𝑃𝑖, while 𝐶𝑖 represents the centroid of the joint. Rectangular sections are used
s a simplification in this contribution. The principal axes of inertia are denoted as 𝝃𝑖 and 𝜼𝑖, whereas 𝐧𝑖 is the normal vector. The
ize of the rectangular section is 𝑙𝑖,𝜉 × 𝑙𝑖,𝜂 .

The magnitude of the normal component of 𝐅𝑖, referred to as 𝐍𝑖, can be found as 𝑁𝑖 = 𝐅𝑖 ⋅ 𝐧𝑖. Its eccentricity with respect to
𝑖 can be computed by evaluating the moment of 𝐍𝑖 about the same axis, 𝑀𝑖,𝜉 , and scaling by 𝑁𝑖. Due to the fact that the shear
omponent of 𝐅𝑖 does not provide any contribution to 𝑀𝑖,𝜉 , one has:

𝑒𝑖,𝜉 = abs
(𝑀𝑖,𝜉

)

,with
𝑀𝑖,𝜉 =

𝝃𝑖 ⋅ (𝐫𝑖 × 𝐅𝑖) , (4)
3

𝑁𝑖 𝑁𝑖 𝑁𝑖
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Fig. 1. Funicular network, with fixed plan projection, for a blocky stone structure.

Fig. 2. The 𝑖th joint between two adjacent voussoirs.

where abs(⋅) is the absolute value of the scalar argument, while 𝐫𝑖 is the vector drawn from 𝐶𝑖 to any of the vertices of the 𝑖th
member of the funicular network, both belonging to the line of action of 𝐅𝑖. Similarly, the eccentricity of 𝐍𝑖 with respect to 𝜼𝑖 is:

𝑒𝑖,𝜂 = abs
(𝑀𝑖,𝜂

𝑁𝑖

)

,with
𝑀𝑖,𝜂

𝑁𝑖
=

𝜼𝑖 ⋅ (𝐫𝑖 × 𝐅𝑖)
𝑁𝑖

. (5)

Moreover, the magnitude of the shear component of 𝐅𝑖, referred to as 𝐕𝑖, may be found as the modulus of the vector difference
𝐅𝑖 − 𝐍𝑖. This implies:

𝑉 2
𝑖 =

(

𝑞𝑖 𝑢𝑖 −𝑁𝑖 𝑛𝑖,𝑥
)2 +

(

𝑞𝑖 𝑣𝑖 −𝑁𝑖 𝑛𝑖,𝑦
)2 +

(

𝑞𝑖𝑤𝑖 −𝑁𝑖 𝑛𝑖,𝑧
)2 . (6)

In this contribution, symmetric structures that are symmetrically loaded are considered. For this reason, the twisting moment
resulting from the eccentricity of 𝐕𝑖 is disregarded.

A multi-constrained optimization problem can be formulated to maximize the load multiplier 𝜆 searching among the set
of funicular networks that fulfill equilibrium along with prescribed limit conditions at the joints. The following statement is
4
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max
𝜆>0
𝐪≤𝟎

𝐳𝑚𝑖𝑛𝑓 ≤𝐳𝑓 ≤𝐳𝑚𝑎𝑥𝑓

𝜆 (a)

s.t.
𝐪 = 𝐁𝐪 + 𝐝, (b)
𝐂𝑇𝐐𝐂𝐳 + 𝐂𝑇𝐐𝐂𝑓 𝐳𝑓 = 𝐩𝑧(𝜆), (c)
𝑞𝑘 ≤ 0, for 𝑘 = 1...𝑟, (d)

𝑁𝑖
−𝜎𝑐

(

𝑙𝑖,𝜉−2𝑒𝑖,𝜂
)(

𝑙𝑖,𝜂−2𝑒𝑖,𝜉
) ≤ 1, for 𝑖 = 1...𝑚, (e)

𝑉 2
𝑖

(𝑁𝑖 tan𝜓)2
≤ 1, for 𝑖 = 1...𝑚. (f)

(7)

he independent force densities 𝐪 and the vertical coordinates of the restrained nodes 𝐳𝑓 are the sets of unknowns that, for any given
load multiplier 𝜆, govern the funicular equilibrium, see Eq. (7b) for the horizontal directions and Eq. (7c) for the vertical one. The
arising of any positive force density is prevented because of the side enforcements on 𝐪 and the set of local constraints in Eq. (7d).

enoting by 𝜎𝑐 ≥ 0 the strength in compression, Eq. (7e) ensures that crushing is prevented at the 𝑖th no-tension joint. According
o the adopted strength criterion, a uniform distribution of compressive stresses in the area with size

(

𝑙𝑖,𝜉 − 2𝑒𝑖,𝜂
)

×
(

𝑙𝑖,𝜂 − 2𝑒𝑖,𝜉
)

is
assumed to withstand the eccentric axial force 𝑁𝑖, see in particular [33,46]. Upon introduction of the friction angle 𝜓 , Eq. (7f)
revents sliding at the 𝑖th joint, by imposing that the ratio 𝑉𝑖 to 𝑁𝑖 obeys the Coulomb’s law [55]. In case the torsional capacity

of the frictional interfaces has to be dealt with, Eq. (7) can be endowed with some relevant constraints, see in particular [56].
Alternatively, Eqs. (7e) and (7f) can be replaced by limit functions that account for interactions of the torsional strength with
shear forces and bending moments, see e.g. [57]. In the presented numerical study it is assumed that failure may occur due to
the attainment of limit conditions that involve the joints only, meaning that no additional enforcement is implemented for the
voussoirs. Indeed, the constraints implemented in [45] to control the vertical coordinates of the nodes of the funicular network are
herein disregarded.

As discussed in [15], problems in the form of Eq. (7) can be handled by sequential convex programming, exploiting gradient-
based methods that were originally conceived for solving optimization problems for elastic structures, see also [58]. Compared to
the minimum thrust problems solved in [15,45], sensitivities with respect to the load multiplier are also needed to handle Eq. (7).
Looking at Eq. (2), the derivative of 𝐳 with respect to 𝜆 may be straightforwardly computed as:

𝜕𝐳
𝜕𝜆

= (𝐂𝑇𝐐𝐂)−1 𝐩𝑧𝑙 . (8)

or the numerical investigation presented in Section 4, the Method of Moving Asymptotes (MMA) [59] was employed. A validation of
he implemented framework was preliminary performed by comparing results of benchmark simulations against the semi-analytical
urand-Claye’s method [60,61] that is presented next.

. Limit analysis using a novel version of the stability area method

In this section, another approach based on the lower bound theorem of limit analysis is described, namely a modern version of the
urand-Claye method [60,61], also known as the stability area method. This procedure, which can be defined as semi-analytical, is
dopted here both to validate the results obtained through the funicular numerical method and to easily derive numerical outcomes
hen some parameters are fixed, while others are variable. Reference will be made to the revised version of this method developed
y [17,36,46,47], with the aim of determining the maximum value of the static load multiplier, 𝜆. The object of investigation are
ymmetric masonry arches and domes of revolution subjected to vertical loads, i.e., their self-weight and the weight of a crown
oint load acting downwards. The latter corresponds to 𝜆𝐩𝑧𝑙 in Eq. (2).

This method consists in imposing the equilibrium conditions for a portion of structure between the ideal vertical crown joint
nd any joint 𝑖 (see Fig. 3). For a masonry arch, a constant out of plane thickness, 𝑡, is assumed; for an axi-symmetric dome, the
ethod is similarly applied to a ‘lune’ of amplitude equal to 𝛥𝜙, which behaves as an independent half-arch with a variable width

ccording to the so-called ‘slicing technique’ (see for example [62,63]). An absolute Cartesian coordinate system 𝑂𝑥𝑦𝑧 is adopted,
ccording to which the (𝑥, 𝑧) plane coincides with the vertical plane of symmetry containing the curved profile (with 𝑂 belonging
o the vertical symmetry axis, 𝑧, for the arch, to the axis of revolution, 𝑧, for the dome, see Fig. 3). Any joint 𝑖, defined by its
o-latitude 𝜃𝑖 with respect to the 𝑧 axis, is modeled as a rectangle, 𝑙𝑖,𝜂 × 𝑡 for the arch, 𝑙𝑖,𝜂 × 𝑥𝐶𝑖𝛥𝜙 for the ‘lune’, where 𝐶𝑖 is the
idpoint of segment 𝐷𝑖𝐸𝑖. The analyses related to masonry domes carried out in this paper by means of the Durand-Claye method,
nless otherwise specified, are performed assuming this modeling for the joint. The vertical point load acting at the crown is set
qual to 𝜆∕𝑛 × 1 kN, where 𝑛 = 2 for the (half) arch and 𝑛 = 2𝜋∕𝛥𝜙 for the dome’s ‘lune’ (Fig. 3). By symmetry, a horizontal thrust,
, acts at the ideal vertical section. The center of pressure, 𝑃0, see Fig. 3, identifies a positive eccentricity of 𝑓 , denoted as 𝑒0, with
espect to the centroid 𝐶0 of this section.

With reference to Fig. 4(left), the stability area 𝐴 is the black region plotted in the (𝑓, 𝑒0) plane, which identifies the complete
et of statically admissible solutions compatible with both equilibrium conditions and strength requirements at any joint 𝑖. Since
5
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Fig. 3. Scheme of a masonry half arch (or dome’s ‘lune’) subjected to its self-weight and to a vertical point load 𝜆∕𝑛 × 1 kN at the crown (left); simplified
geometry of the cross section (joint 𝑖) (right).

Fig. 4. The stability area related to an arch (left). Scheme of an arch (or ‘lune’) profile and of the triangles of forces defined by the friction angle (right).

a limited compressive strength, 𝜎𝑐 , is assumed as well as a limited friction coefficient, tan𝜓 , the stability area 𝐴 is obtained by
intersecting the rotational domain, 𝐴𝑟𝑜𝑡, with the sliding domain, 𝐴𝑠𝑙, as will be better clarified later.

As already described in previous works [36,45], the graphical procedure can be re-interpreted in terms of internal forces. For
the peculiar load conditions, 𝑀𝑖,𝜂 is nil at any joint 𝑖, while the formal expressions of bending moment, 𝑀𝑖,𝜉 , and normal force, 𝑁𝑖,
can be obtained by imposing the equilibrium conditions of the portion of structure under examination (see Fig. 3). For any joint 𝑖,
the following holds:

𝑀𝑖,𝜉 =𝑀𝑖,𝜉 (𝑓, 𝑒0, 𝜃𝑖, 𝜆) and 𝑁𝑖 = 𝑁𝑖(𝑓, 𝜃𝑖, 𝜆). (9)

By considering the constraint imposed by Eq. (7e), 𝑀 𝑙𝑖𝑚
𝑖,𝜉 depends on the normal force, 𝑁𝑖, as well as the limited masonry compressive

strength, 𝜎𝑐 :

𝑀 𝑙𝑖𝑚
𝑖,𝜉 = −

𝑁𝑖
(

𝑁𝑖 + 𝑙𝑖,𝜉 𝑙𝑖,𝜂 𝜎𝑐
)

2 𝑙𝑖,𝜉 𝜎𝑐
. (10)

In the (𝑓, 𝑒0) plane, the red and blue curves correspond to the attainment of +𝑀 𝑙𝑖𝑚
𝑖,𝜉 and −𝑀 𝑙𝑖𝑚

𝑖,𝜉 at any 𝑖th joint, respectively. For
each joint 𝑖, the area 𝐴𝑟𝑜𝑡𝑖 (see the light yellow region in Fig. 4, left) is implicitly defined by the inequalities

−𝑀 𝑙𝑖𝑚
𝑖,𝜉 ≤𝑀𝑖,𝜉 ≤ +𝑀 𝑙𝑖𝑚

𝑖,𝜉 . (11)

By repeating this procedure for all the joints 𝑖, and intersecting all the areas 𝐴𝑟𝑜𝑡𝑖 just defined, the rotational domain, 𝐴𝑟𝑜𝑡, is
obtained (see the solid yellow region identified by 𝑎 ≤ 𝑓 ≤ 𝑏 in Fig. 4, left).
6
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Fig. 5. Geometry and stereotomy of the considered arch (left) and dome (right).

Furthermore, in order to take into account the presence of an internal friction, the limit values of the crown thrust, 𝑓 𝑠𝑙±𝑖 , related to
any joint 𝑖, are determined by considering the equilibrium of the structure’s portion comprised between the crown section and such
a joint. The corresponding self-weight is denoted as 𝑊𝑖. Now, let us draw the triangles of forces 𝑐𝑑𝑒, 𝑐𝑑ℎ, by assuming the assigned
friction angle, 𝜓 , and the resultant of the vertical loads, 𝑄𝑖 (corresponding to segment 𝑐𝑑 in the triangles of forces), obtained by
summing the weight 𝑊𝑖 and the crown point load (𝜆∕𝑛 × 1 kN). The following relations are obtained for 𝑓 𝑠𝑙±𝑖 (see the segments 𝑑𝑒,
𝑑ℎ):

𝑓 𝑠𝑙±𝑖 = 𝑄𝑖 tan
(

𝜋∕2 − 𝜃𝑖 ± 𝜓
)

. (12)

The sliding domain related to any joint 𝑖, 𝐴𝑠𝑙𝑖 , is defined by the conditions 𝑓 𝑠𝑙−𝑖 ≤ 𝑓𝑖 ≤ 𝑓 𝑠𝑙+𝑖 . If the procedure is repeated for all
the joints, the sliding domain, 𝐴𝑠𝑙, is obtained, see the grey region in Fig. 4(left) bounded by two vertical straight lines. The area
of stability 𝐴 (see the black region) is the intersection between the rotational and sliding domains, 𝐴𝑟𝑜𝑡 and 𝐴𝑠𝑙.

The modern version of the Durand-Claye method allows the collapse load multiplier to be determined with the desired precision
using an iterative procedure. By incrementally increasing the value of 𝜆, the stability area progressively decreases, until it disappears:
this is the condition corresponding to the collapse. It is interesting to note that simply by observing the shape of the stability area
and examining whether it is reduced to a single point or to a segment, the collapse mechanism that originates in the arch (or ‘lune’)
is identified.

The examination of some case studies will provide additional details on this procedure.

4. Numerical investigations

A symmetric masonry arch and a dome acted upon by self-weight (dead load) and a vertical point force at the crown (live load)
are considered. A material with a unit weight of 𝛾𝑚 = 15 kN/m3 is assumed. The point load is specified as 𝜆×1 kN, acting downwards.

The geometry and the stereotomy of the considered arch are represented in Fig. 5(left). The intrados lies along a circle centered
at 𝐶 = (0, 0, 0)m, of radius 𝑟𝑖𝑛 = 3.50m. The extrados lies along a circle centered at the same point, of radius 𝑟𝑒𝑥 = 3.85m. Half
the angle of embracement, 𝛼, is 50◦. The out-of-plane thickness of the arch is 𝑡 = 0.50m. The arch is made of thirteen voussoirs of
amplitude 7.69◦, whose stereotomy is defined by radial lines originating from point 𝐶.

The reference section of the dome of revolution is the same as the arch represented in Fig. 5(left). Here too, the arrangement of the
voussoirs is defined by radial lines originating from the point 𝐶. Each of the thirty ‘lunes’ (with 𝛥𝜙 = 12◦ along the hoop direction)
consists of six voussoirs (excluding the one at the top) with an amplitude of 7.69◦ along the meridian direction. In Fig. 5(right),
the stereotomy of the dome is given, along with a sketch concerning the modeling of staggered voussoirs, see [45]. Each one of
the voussoir is split into two sub-blocks, thus defining a pair of nodes of the funicular network. This allows for considering both
meridian and hoop forces.

The strength in compression 𝜎𝑐 is given as a continuous random variable. Two different materials are considered, namely ashlars
of soft stone (material A) and stone square blocks (material B). In both cases, log-normal distributions are assumed as suggested
by [48], with parameters 𝜇 and 𝑠. The mean and the standard deviation of logarithmic values are assumed as 𝜇𝐴 = 0.0528MPa and
𝑠𝐴 = 0.0027MPa, when dealing with ashlars of soft stone, while 𝜇𝐵 = 0.0656MPa and 𝑠𝐵 = 0.0014MPa when addressing stone square
blocks. The relevant probability density functions (PDFs) are plotted in Fig. 6.

In the experimental characterization of the Coulomb’s failure criterion for dry masonry joints reported by [49] the friction
coefficient, before sliding occurs, ranges in the interval 0.2 ≤ tan𝜓 ≤ 0.6, depending on the surface roughness. The lowest value
was found to apply to a set of blocks with polished surface (using sandpaper), whereas the largest one was measured for blocks
sawn mechanically. The latter case was characterized by a friction coefficient slightly larger than that derived for blocks with an
artificially rough surface (created by a mechanically random spike).

To assess the effect of the variability of the friction angle when combined with the uncertainty on the strength in compression,
the optimization approach presented in Section 2 is iteratively applied to one set of random values 𝜎 for each of the two log-normal
7
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Fig. 6. Probability density functions adopted in the numerical studies for material A (ashlars of soft stone) and B (stone square blocks).

Fig. 7. Arch (material A). Normalized histogram and estimate of the probability density of the load multiplier for different values of the friction coefficient:
tan𝜓 = 0.45 (left), tan𝜓 = 0.38 (center), and tan𝜓 = 0.3 (right).

density functions in Fig. 6. The interval 0.2 ≤ tan𝜓 ≤ 0.6 is spanned by means of increments equal to 0.0025, for the arch, and
equal to 0.005, for the dome. For each value of tan𝜓 , the set of random values of the compressive strength has size 1000 for the
arch, whereas 100 for the dome.

The probabilistic investigation will be presented in the next sections. Both for the arch and the dome, the output random variable
will be analyzed to assess the behavior of the curved structures and estimate the probability of failure for any given value of the
point loads. The optimization approach will be validated using the stability area method, see Section 3. While the funicular method
is based on the resolution of an optimization problem aimed at maximizing the statically admissible load multiplier, an iterative
application of Durand-Claye’s method is needed to find 𝜆: the load multiplier is progressively increased in order to identify the limit
condition, which corresponds to the reduction of the stability area to a single point or to a segment, depending on the collapse
mode thus identified.

The numerical analyses have been performed by means of appositely developed algorithms implemented in MATLAB [64]
(funicular method) and in Mathematica [65] (Durand-Claye’s method).

4.1. Arch

At first, material A is considered. In Fig. 7, normalized histograms are reported for three different values of the friction coefficient.
In all the pictures, each bin provides the relative occurrence that a computed load multiplier falls within the range given by the bin
width. The adopted estimate of the probability density function (PDF) is represented, as well.

For large values of the friction coefficient, say tan𝜓 ≥ 0.4, a log-normal density function, further referred to as 𝑔(𝜆), is found to
provide a reasonable estimation for the PDF of the continuous random variable 𝜆, independently on tan𝜓 . The relevant cumulative
distribution function (CDF) will be denoted as 𝐺(𝜆). To give an example, the case tan𝜓 = 0.45 is illustrated in Fig. 7(left).

For intermediate values of the friction coefficient, say 0.3 < tan𝜓 < 0.4, histograms of the type represented in Fig. 7(center) are
8
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Fig. 8. Arch. Probability of failure vs. load multiplier for prescribed values of the friction coefficient: material A (left) and material B (right). The probability
range is [0, 1] on top, whereas [10−6, 1] below.

a mixed random variable to elaborate on the achieved results. An estimate of the relevant (generalized) PDF may be preliminary
approximated by combining a truncated version of the log-normal density already used in the range tan𝜓 > 0.4 and the Delta
function 𝛿(𝜆 − 𝜆𝑘). More in details, the function:

𝑓 (𝜆) =
{

𝑔(𝜆)
𝑏𝑘𝛿(𝜆 − 𝜆𝑘)

if 𝜆 < 𝜆𝑘,
otherwise, (13)

is used, provided that the scaling factor 𝑏𝑘 enforces 𝑃 (𝜆 ≤ 𝜆𝑘) = 1, i.e. 𝑏𝑘 = 1 − 𝐺(𝜆𝑘). The closer 𝑏𝑘 to 𝑎𝑘, the higher is the
affordability of the provided estimation. For the case depicted in Fig. 7(center), one has that 𝜆𝑘 = 69.99, with relative occurrence
𝑎𝑘 = 325∕1000 = 0.325, whereas 𝑏𝑘 = 0.304.

Finally, for small values of the friction angle, that means tan𝜓 ≤ 0.3, the numerical investigation retrieves only one load multiplier
per coefficient. This means that the load multiplier behaves as a discrete random variable. To preserve consistency with the model
adopted above, Eq. (13) is used as the generalized PDF, implementing the same strategy to compute the scaling factor 𝑏𝑘. For
instance, in the case tan𝜓 = 0.3 of Fig. 7(right), the whole set of simulations provides the value 𝜆𝑘 = 19.29. The relative occurrence
𝑎𝑘 = 1, whereas the adopted scaling factor is 𝑏𝑘 ∼ 1.

The probability of failure for a certain value of the load multiplier 𝜆𝑚, incremented by any extremely small quantity, reads
𝑃 (𝜆 ≤ 𝜆𝑚). Hence, given tan𝜓 , when the PDF (either the generalized PDF) of the random variable 𝜆 is known, the probability of
failure for a certain value of the (incremented) load multiplier 𝜆𝑚 is nothing but the CDF evaluated at 𝜆𝑚. Diagrams reporting the
probability of failure vs. the load multiplier can be conveniently built by constructing and evaluating CDFs for different values of
tan𝜓 . In Fig. 8, a few curves are provided both in the standard range [0, 1] (on top), and in the interval of interest for some
engineering applications [10−6, 1] (below). With reference to material A, see Fig. 8(left), for tan𝜓 ≥ 0.4, the diagram of the
probability of failure is not affected in an appreciable manner by the value of the friction coefficient. In this range of tan𝜓 , histograms
are all equal to that shown in Fig. 7(left), meaning that 𝑔(𝜆) applies. Hence, the cumulative distribution function of the load multiplier
is the same, i.e. 𝐺(𝜆). When the coefficient of friction is too small, there exists a certain value of 𝜆, depending on tan𝜓 , below which
the structure is practically safe. Conversely, when the load multiplier exceeds such a value, failure is a sure event. For instance,
when tan𝜓 = 0.3, no equilibrium can be found for 𝜆 > 19.29, whereas below the structure may be considered safe. In between, the
diagrams describing the probability of failure consist of a portion of the curve found for tan𝜓 ≥ 0.4, undergoing an abrupt change
at a location that depends on tan𝜓 . This is the case of tan𝜓 = 0.38, for which failure becomes a sure event at 𝜆 > 69.99.
9
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Fig. 9. Arch (material A). Funicular polygons at incipient collapse for tan𝜓 = 0.45 and: 𝜎𝑐𝐴,0.05 (𝜆 = 44.30) (left) and 𝜎𝑐𝐴,0.95 (𝜆 = 90.07) (right). Forces are in kN.

Fig. 10. Arch (material A). Funicular polygon at incipient collapse for tan𝜓 = 0.3 and 𝜎𝑐𝐴,0.05 (𝜆 = 19.29). Forces are in kN.

Fig. 11. Arch (material A). Funicular polygons at incipient collapse for tan𝜓 = 0.38 and: 𝜎𝑐𝐴,0.05 (𝜆 = 44.30) (top), 𝜎𝑐𝐴,0.69 (𝜆 = 69.70) (bottom left), and 𝜎𝑐𝐴,0.95
(𝜆 = 69.99) (bottom right). Forces are in kN.

To provide mechanical insight into the results presented in Fig. 7, load multipliers and relevant funicular polygons are addressed
for the three cases of friction referenced above, considering two different values of the strength in compression each. These
investigations are performed for 𝜎𝑐𝐴,0.05 = 1.26 MPa and 𝜎𝑐𝐴,0.95 = 3.07 MPa, which correspond to the fractile 5% and 95%,
respectively, of the probability density function represented in Fig. 6 for material A.
10
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In the pictures concerning funicular polygons/networks retrieved by Eq. (7), the symbols ◦ and + indicate joint sections where
rossing members activate a strength constraint according to Eq. (7e), due to the assumptions of zero tensile strength and a limited
ompressive strength. The former symbol is used when the branch intersects the cross-section of the joint below the centroid, while
he latter is used otherwise. The symbol × refers to any joint section whose crossing branch activates a friction constraint, according
o Eq. (7f).

Funicular polygons at incipient collapse for tan𝜓 = 0.45 are represented in Fig. 9. Coulomb’s friction constraints are fulfilled
ll over the structure. Conversely, crossing members activate a strength constraint at three joints sections. Independently on the
alue of 𝜎𝑐 , the same critical joints are responsible for the incipient activation of a failure mechanism. The represented funicular
olygons share the geometry, but different values of the collapse load multiplier are reported. The achieved results explain why,
or large values of tan𝜓 , the same distribution is observed for the continuous random variable 𝜆, see Fig. 7(left). When tan𝜓 = 0.3,
he solution retrieved for 𝜎𝑐𝐴,0.05 coincides with that found for 𝜎𝑐𝐴,0.95, see Fig. 10. Strength constraints are fulfilled in all the joints.
he activation of friction constraints both at the crown and at the imposts is responsible for the incipient activation of a purely
liding mechanism. For every small value of tan𝜓 , only one load multiplier may be retrieved, see the description of 𝜆 as a discrete
andom variable when commenting on Fig. 7(right). The last set of investigations refers to the case tan𝜓 = 0.38, see Fig. 11. For
𝜎𝑐𝐴,0.05, the same funicular polygon and load multiplier already found for tan𝜓 = 0.45 are retrieved, see Fig. 9(left). For 𝜎𝑐𝐴,0.95, a
funicular polygon of the type already found for tan𝜓 = 0.3 (but larger value of the load multiplier) is reported, see Fig. 10. Indeed,
the description of 𝜆 concerning results in Fig. 7(center) is that of a mixed random variable: the discrete part accounts for the cases
in which the purely frictional collapse mode occurs, whereas the continuous one addresses failure modes that involve the activation
of strength constraints. Since the same mode is observed for 𝜎𝑐𝐴,0.05 independently on tan𝜓 , the truncated version of the PDF 𝑔(𝜆)
seems a reasonable model to preliminary address the continuous part of the mixed random variable. However, it must be pointed
out that mixed strength/frictional modes may arise as well, see e.g. the result for 𝜎𝑐𝐴,0.69 = 2.25, MPa reported in Fig. 11.

In light of the above findings, an additional remark may be formulated with respect to the diagrams plotted in Fig. 8(left). The
abscissa at which the abrupt change occurs, if any, is the load corresponding to the activation of a purely frictional collapse mode
(for the relevant tan𝜓), that is 𝜆𝑘 of Eq. (13). For instance, looking at a probability of failure equal to 10−2, a coefficient of friction
that is slightly larger than 0.35 is needed to safely support 𝜆 = 39.50. For smaller values of tan𝜓 , the probability of failure associated
to the same load multiplier blows up due to the arising of a purely frictional collapse.

The numerical investigation presented above has been performed also for material B. In Fig. 8(right), diagrams giving the
probability of failure vs. the load multiplier are constructed for different values of tan𝜓 (within the same ranges of probability
already considered in the case of material A). As expected, for small values of tan𝜓 , the load bearing capacity is the same, see
e.g. the curve for tan𝜓 = 0.2 in both pictures, crossing the 𝜆 axis at equal abscissa. In general, the compressive strength of material
B allows for bearing larger loads, considering similar probabilities of failure, provided that the friction coefficient is such as to avoid
the occurrence of a purely friction collapse.

In Fig. 12, curves representing 𝜆𝑘, along with the maximum load multiplier computed for infinite 𝜎𝐶 , 𝑣𝑒𝑟𝑠𝑢𝑠 tan𝜓 are reported.
t may be checked that the load multiplier 𝜆𝑘, at which the abrupt change occurs in the fragility curves of Fig. 8, is the same as the
aximum load multiplier computed for the relevant friction coefficient when assuming infinite compressive strength. This result,

long with the finding that the continuous part of the probability density function in Eq. (13) is negligibly affected by the value of
an𝜓 , suggests a simpler procedure to retrieve a set of fragility curves. A single Monte Carlo simulation, with no-sliding assumption,
an be performed to recover the continuous part of the CDFs, whereas the computation of the collapse load multipliers for the
onsidered friction coefficients, assuming infinite masonry compressive strength, provides the relevant values of 𝜆𝑘, if any.

To validate the above results, a few comparisons are performed against the stability area method. In Fig. 9(left) an arch is plotted
long with the funicular polygons at incipient collapse for tan𝜓 = 0.45 and 𝜎𝑐𝐴,0.05. As observed before, the collapse load multiplier

provided by the funicular method is 𝜆 = 44.30 . In Fig. 13, the same arch is examined by means of Durand-Claye’s method. In this
ase, the stability area reduces to a single point for a collapse load multiplier 𝜆𝐷𝐶 = 44.37; more precisely, the stability area 𝐴 (the

black point in Fig. 13, left) corresponds to the intersection between the three curves +𝑀 𝑙𝑖𝑚
1,𝜉 , +𝑀 𝑙𝑖𝑚

7,𝜉 (red curves), and −𝑀 𝑙𝑖𝑚
4,𝜉 (blue

curve), which highlights that a limit positive bending moment is reached at joints 𝑖 = 1 and 𝑖 = 7, while a limit negative bending
alue occurs at joint 𝑖 = 4. It is interesting to observe that the stability area 𝐴 is entirely contained in the sliding domain, see the

region comprised between the two vertical straight lines colored light blue/light red in the (𝑓, 𝑒0) plane: in this case, collapse is due
to the attainment of a limit condition linked only to the compressive and tensile strength requirements, according to the expression
of the limit bending moment, given by Eq. (10), i.e., to the activation of strength constraints. The centers of pressure at these critical
joints are marked with the same symbols adopted for the funicular method, i.e., the symbols + and ◦ indicate the attainment of
positive/negative limit bending moment (Fig. 13, right).

Another comparison is performed in order to validate the results related to a purely sliding collapse mode. The same arch plotted
in Fig. 10 is considered (tan𝜓 = 0.3 and 𝜎𝑐𝐴,0.05; 𝜆 = 19.29). By means of Durand-Claye’s method, it is observed that the stability area
reduces to a vertical segment for 𝜆𝐷𝐶 = 19.35, which corresponds to a limit condition related only to friction (see the black segment
in Fig. 14, left), i.e., to the activation of friction constraints. Differently from the previous case study, an infinite set of thrust lines
(Fig. 14, right) is identified, corresponding to a unique value of the crown thrust. The critical joints are indicated with the symbol ×.
By considering the direction of the internal force at the critical joints with reference to the friction cone (Fig. 4, right), it is possible
to capture the incipient collapse mechanism: at joint 𝑖 = 1 (see the blue joint), downward sliding occurs, while at joint 𝑖 = 7 (see
the red joint) sliding is outwards.

In the examples just considered, the agreement with the results obtained via the funicular method is very good, both in terms
11
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Fig. 12. Arch (materials A and B). Value of 𝜆𝑘, along with the maximum load multiplier 𝜆 computed for infinite 𝜎𝐶 , 𝑣𝑒𝑟𝑠𝑢𝑠 friction coefficient tan𝜓 .

Fig. 13. Arch (material A). The stability area 𝐴 reduces to a single point for tan𝜓 = 0.45 and 𝜎𝑐𝐴,0.05 (𝜆𝐷𝐶 = 44.37) (left); the corresponding thrust line, with
the location of the critical joints (right).

Fig. 14. Arch (material A). The stability area 𝐴 reduces to a segment for tan𝜓 = 0.3 and 𝜎𝑐𝐴,0.05 (𝜆𝐷𝐶 = 19.35) (left); the corresponding set of thrust lines, with
the location of the critical joints (right).
12
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Fig. 15. Arch (material A). Maximum load multiplier, 𝜆𝐷𝐶 𝑣𝑒𝑟𝑠𝑢𝑠 friction coefficient, tan𝜓 , for assigned values of the compressive strength (left); compressive
trength corresponding to an incipient collapse condition, 𝜎𝑐 , 𝑣𝑒𝑟𝑠𝑢𝑠 friction coefficient, tan𝜓 , for assigned values of 𝜆𝐷𝐶 (right).

Given its semi-analytical formulation, the novel version of Durand-Claye’s method is here exploited for performing deterministic
nalyses, which help clarify some results obtained through probabilistic investigation as well as the differences between a
eterministic and probabilistic approach in Limit Analysis.

The first investigation consists in determining the collapse load multiplier, 𝜆𝐷𝐶 , by varying the friction coefficient, while fixing
he value of the compressive strength. In Fig. 15(left), a focus is provided on material A: three curves are plotted by assuming
𝑐 = 𝜎𝑐𝐴,0.05 = 1.26 MPa, 𝜎𝑐 = 𝜎𝑐𝐴,0.95 = 3.07 MPa, and infinite compressive strength. From the results, it emerges that the compressive
trength affects the collapse modes arising in the arch by varying the friction coefficient. When 𝜎𝑐 = 𝜎𝑐𝐴,0.05 = 1.26 MPa, for low values

of the friction coefficient, 0.2 ≤ tan𝜓 ≤ 0.358, collapse occurs only due to the activation of friction constraints, which corresponds
to the vanishing of the sliding domain. In this portion of the graph, the value of 𝜆𝐷𝐶 dramatically increases with friction. A mixed
collapse behavior, involving both friction and strength constraints, is found for 0.358 ≤ tan𝜓 ≤ 0.359. This range is very narrow and
is not visible in the graph, due to the scaling factor adopted. For 0.359 ≤ tan𝜓 ≤ 0.6 the incipient collapse condition corresponds
to the activation of only strength constraints, i.e., to the vanishing of the rotational domain. In this case, the value of the collapse
load multiplier is constant while varying the friction coefficient, as testified by the horizontal trend. When 𝜎𝑐 = 𝜎𝑐𝐴,0.95 = 3.07 MPa,
a purely sliding collapse behavior occurs for 0.2 ≤ tan𝜓 ≤ 0.389. A mixed collapse behavior arises for a very narrow range of tan𝜓 ,
i.e., for 0.389 ≤ tan𝜓 ≤ 0.390. A collapse related only to the activation of strength constraints emerges for 0.390 ≤ tan𝜓 ≤ 0.6.

ote that the first portion of the graph (i.e., for 0.2 ≤ tan𝜓 ≤ 0.358) coincides with that obtained for 𝜎𝑐𝐴,0.05. Furthermore, for low
alues of the friction coefficient both of the graphs lie along the curve addressing the pure sliding modes that are found at infinite
ompressive strength.

Fig. 15(right) shows the results of a second investigation, i.e., by fixing the collapse load multiplier (𝜆𝐷𝐶 = 40 and 𝜆𝐷𝐶 = 50)
nd varying the friction coefficient, tan𝜓 , the compressive strength corresponding to a collapse condition is determined. Also in this
ase the transition from a sliding collapse mode to a rotational collapse mode is rather abrupt. In both graphs, the vertical portion,
dentified by tan𝜓 = 0.3522 for 𝜆𝐷𝐶 = 40, tan𝜓 = 0.3645 for 𝜆𝐷𝐶 = 50, corresponds to a collapse mode due to the activation of
riction constraints; a mixed collapse behavior occurs for 0.3522 ≤ tan𝜓 ≤ 0.3528 and 0.3645 ≤ tan𝜓 ≤ 0.3652, respectively (see the

sloped segment); a collapse mode involving only strength constraints is identified for 0.3528 ≤ tan𝜓 ≤ 0.6 and 0.3652 ≤ tan𝜓 ≤ 0.6,
respectively (see the horizontal segment).

4.2. Dome

The funicular approach already used in two dimensions to investigate the structural behavior of the arch, is here applied, with no
modification, to the dome. Both material A and material B are considered. Only the number of investigations per set of analyses that
refer to the same value of tan𝜓 is reduced, to contain the computational burden and assess the validity of the proposed approach
in achieving reasonable results with fewer tests.

In Fig. 16 normalized histograms are given for three different values of the friction coefficient, along with the adopted estimate
of the probability density function. For large values of the friction coefficient, say tan𝜓 ≥ 0.4, the same log-normal density function
may be used as an estimate of the PDF of the continuous random variable 𝜆, see e.g. the case tan𝜓 = 0.45 in Fig. 16(left). As
it was for the reference log-normal distribution introduced in Section 4.1 to handle the random variable at large values of tan𝜓 ,
this PDF will be further referred to as 𝑔(𝜆), being 𝐺(𝜆) the relevant CDF. For intermediate values of the friction coefficient, say
0.21 < tan𝜓 < 0.4, histograms of the type shown in Fig. 16(center) are found, which are bounded from above by a load multiplier
𝜆𝑘 that has relative occurrence equal to 𝑎𝑘. Eq. (13) is still adopted as a preliminary approximation of the (generalized) PDF of
the mixed random variable in the intermediate range of the coefficient of friction. For the case depicted in Fig. 16(center), one has
13
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Fig. 16. Dome (material A). Normalized histogram and estimate of the probability density of the load multiplier for different values of the friction coefficient:
an𝜓 = 0.45 (left), tan𝜓 = 0.35 (center), and tan𝜓 = 0.2 (right).

Fig. 17. Dome. Probability of failure vs. load multiplier for prescribed values of the friction coefficient: material A (left) and material B (right). The probability
ange is [0, 1] on top, whereas [10−6, 1] below.

𝜆𝑘 = 407.24 and 𝑎𝑘 = 17∕100, with a scaling parameter 𝑏𝑘 = 0.206. For small values of the friction coefficient, that means tan𝜓 ≤ 0.21,
one load multiplier per coefficient is found. Again, Eq. (13) is used as the generalized PDF, which turns out to consist in the Dirac
delta function 𝛿(𝜆− 𝜆𝑘). Indeed, in the case tan𝜓 = 0.2 of Fig. 16(right), the whole set of simulations provides the value 𝜆𝑘 = 79.33.
The relative occurrence 𝑎𝑘 = 1, whereas the adopted scaling factor is 𝑏𝑘 ∼ 1.

Due to similarity of results between Figs. 16 and 7, diagrams reporting the probability of failure vs. the coefficient of friction
for the dome exhibit the same features of those computed for the arch, see Fig. 17(left). For tan𝜓 ≥ 0.4, the probability of failure
is not affected by the friction coefficient in any appreciable manner. When the coefficient of friction is too small, failure is a sure
event for load multipliers that exceed a certain value, depending on tan𝜓 , whereas the structure is safe below. This is the case of
tan𝜓 = 0.2: no equilibrium can be found at 𝜆 > 79.33; otherwise the probability of failure is negligible. In between, the diagrams
14
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Fig. 18. Dome (material A). Funicular networks at incipient collapse for tan𝜓 = 0.45 and: 𝜎𝑐𝐴,0.05 (𝜆 = 220.00) (left) and 𝜎𝑐𝐴,0.95 (𝜆 = 465.30) (right). Forces are
in kN.

Fig. 19. Dome (material A). Funicular network at incipient collapse for tan𝜓 = 0.2 and 𝜎𝑐𝐴,0.05 (𝜆 = 79.33). Forces are in kN.

Fig. 20. Dome (material A). Funicular networks at incipient collapse for tan𝜓 = 0.35 and: 𝜎𝑐𝐴,0.05 (𝜆 = 219.08) (left) and 𝜎𝑐𝐴,0.95 (𝜆 = 407.24) (right). Forces are
in kN.

are made of a portion of the curve found for tan𝜓 ≥ 0.4, which undergoes an abrupt change at a location that strongly depends
on tan𝜓 . For instance, considering tan𝜓 = 0.35, failure becomes a sure event at 𝜆 > 407.24. In Fig. 17(right), curves reporting the
probability of failure vs. 𝜆 for different values of the coefficient of friction are given in the case of material B. As already seen for
the arch, the behavior is exactly the same at very low values of tan𝜓 , see curves for tan𝜓 = 0.2. Again, the distribution of the
compressive strength of material B generally allows for a noticeable increase in terms of load multipliers, for the same probability
of failure, provided that no purely friction collapse occurs due to lack of frictional resistance.

Additional investigations are reported for the dome with material A, with the aim of assessing the link between collapse modes
and statistics in Fig. 16. Funicular networks at incipient collapse are represented in Fig. 18 for the case of tan𝜓 = 0.45, both for
𝜎 and 𝜎 . Independently on the value of the compressive strength, the same joint sections where crossing members activate
15
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Fig. 21. Dome (material A). The stability area 𝐴 reduces to a single point for tan𝜓 = 0.45 and 𝜎𝑐𝐴,0.05 (𝜆𝐷𝐶 = 222.17) (left); the corresponding thrust line, with
the location of the critical joints (right).

a strength constraint are responsible for the incipient activation of a collapse mode, whereas no Coulomb’s friction constraint is
active. The achieved funicular networks (involving all the meridians and the upper parallel) have the same geometry, but differ in
terms of the associated load multiplier. As already observed for the arch, this confirms why for large values of tan𝜓 , the continuous
random variable 𝜆 may be handled through the same density function, see Fig. 16(left). When tan𝜓 = 0.2, the solution retrieved for
𝜎𝑐𝐴,0.05 coincides with that found for 𝜎𝑐𝐴,0.95, see Fig. 19. The funicular network is made of meridians only, which activate friction
constraints both at the crown and at the imposts. This case illustrates the description of 𝜆 as a discrete random variable, as done
in Fig. 16(right). The last set of investigations refers to the case tan𝜓 = 0.35, which falls in the range where 𝜆 behaves as a mixed
random variable, see Fig. 16(center). For 𝜎𝑐𝐴,0.05 the retrieved funicular network looks like those found for tan𝜓 = 0.45. Indeed, with
respect to the solution in Fig. 18(left), the result in Fig. 20(left) is characterized by the additional activation of Coulomb’s friction
constraints at keystone, whereas the load multiplier is slightly lower. For 𝜎𝑐𝐴,0.95, a funicular polygon of the type already found for
tan𝜓 = 0.2 (but a larger value of the load multiplier) is reported, see Fig. 20(right) in comparison to Fig. 19.

To validate the above results, given the particular loading conditions and axial symmetry, the Durand-Claye method is exploited
to evaluate the collapse load multiplier related to any of the ‘lunes’ composing the dome, according to the ‘slicing technique’. By
examining the associated mechanism, it is determined if the limit condition thus identified for a single ‘lune’ corresponds to the
collapse of the entire dome [47].

The first dome under examination is that plotted in Fig. 18(left), along with the funicular network at incipient collapse. The
friction angle and the compressive strength are tan𝜓 = 0.45 and 𝜎𝑐𝐴,0.05, respectively, while the collapse load multiplier found
through the funicular method is 𝜆 = 220.00 , with a funicular networks made by all the meridians and the upper parallel. Working
with meridians only, the collapse load multiplier retrieved by the funicular method is 𝜆 = 212.66 , which corresponds to the same set
of active failure constraints represented in Fig. 18(left). Because the parallels do not make a significant contribution in the considered
case, the Durand-Claye method, which handles the single ‘lune’ without accounting for any hoop force, is used for validation
purposes. For the first dome under examination, the stability area method provides the collapse load multiplier 𝜆𝐷𝐶 = 222.17 .
Note that the stability area related to a single ‘lune’ shrinks to a single point (see the black point in Fig. 21, left), defined by the
intersection between the curves +𝑀 𝑙𝑖𝑚

1,𝜉 , +𝑀 𝑙𝑖𝑚
7,𝜉 (red curves), and −𝑀 𝑙𝑖𝑚

3,𝜉 (blue curve). This point is contained in the sliding domain,
identified by the region comprised between the two vertical straight lines belonging to the (𝑓, 𝑒0) plane: in this case, collapse depends
only on the hypotheses on the strength of masonry, not on the coefficient of friction. In Fig. 21(right), the thrust line corresponding
to incipient collapse is plotted, with the location of the centers of pressure at the critical joints. Full agreement with the network
provided by the funicular method is reported.

For a very low value of the friction coefficient, tan𝜓 = 0.2, the funicular network at incipient collapse (𝜆 = 79.33) shows the
activation of two friction constraints at joints 𝑖 = 1 and 𝑖 = 7 (Fig. 19). Durand-Claye’s method confirms such a result. In Fig. 22(left)
the collapse condition, corresponding to 𝜆𝐷𝐶 = 79.88, is represented in the (𝑓, 𝑒0) plane. The stability area 𝐴 is the black vertical
segment, which identifies a unique value of the crown thrust, 𝑓 , and an infinite set of thrust lines (Fig. 22, right). The critical joints,
where the limit friction condition is attained, coincide with those provided by the funicular method, joint 𝑖 = 1 (blue joint) and
joint 𝑖 = 7 (red joint).

Regarding the validation of the results, a brief remark on the modeling of the 𝑖th joint is given here, with a specific reference
to the case studies plotted in Fig. 18. As described in Section 3, according to the modern version of Durand-Claye’s method for
masonry domes, any joint is schematized as a rectangle of dimensions 𝑙𝑖,𝜂 × 𝑥𝐶𝑖𝛥𝜙 (see Fig. 3). In the funicular method, conversely,
a different procedure is adopted, which identifies the maximum rectangle inscribed inside the joint. Despite these slightly different
assumptions on the joint’s shape, the results related to the domes obtained using the two methods are in good agreement (as testified
by the examples described above).
16
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Fig. 22. Dome (material A). The stability area 𝐴 reduces to a segment for tan𝜓 = 0.2 and 𝜎𝑐𝐴,0.05 (𝜆𝐷𝐶 = 79.88) (left); the corresponding set of thrust lines, with
the location of the critical joints (right).

Fig. 23. Dome (material A). Maximum load multiplier, 𝜆𝐷𝐶 𝑣𝑒𝑟𝑠𝑢𝑠 friction coefficient, tan𝜓 , for assigned values of the compressive strength (left); compressive
strength corresponding to an incipient collapse condition, 𝜎𝑐 , 𝑣𝑒𝑟𝑠𝑢𝑠 friction coefficient, tan𝜓 , for assigned values of 𝜆𝐷𝐶 (right).

It is interesting to remark that for both domes in Fig. 18, due to the three-dimensional modeling provided by the funicular
method, the collapse condition is characterized not only by the activation of strength constraints at three critical joints, but also
by the presence of a compressed parallel. This result, which deserves further investigation, is linked to the hypothesis of a limited
compressive strength and cannot be retrieved by the ‘slicing technique’, which does not capture the effects of the internal forces
along the parallels in the condition of incipient collapse. Given the above, the value of the collapse load multiplier determined
through the Durand-Claye method (based on the ‘slicing technique’) should be lower than that obtained by means of the funicular
method, capable of taking into account the three-dimensional behavior of the dome. This does not occur when the 𝑖th joint is
schematized as described in Section 3. On the contrary, considering a rectangle of dimensions 𝑙𝑖,𝜂 × 𝑥𝐷𝑖𝛥𝜙 (i.e. a slightly smaller
rectangle, in favor of safety) provides even better consistency with the results obtained via the funicular method: 𝜆𝐷𝐶 = 212.59
for the first dome, while 𝜆𝐷𝐶 = 464.65 for the second dome. Both values of 𝜆𝐷𝐶 are close to those obtained with the funicular
method implementing a full three-dimensional network (𝜆 = 220.00 and 𝜆 = 465.30), but are lower than them, in accordance with
the mechanical models underlying the two methods, respectively. Also, they are in full agreement with the collapse load multipliers
obtained with the funicular method implementing meridians only, i.e. 𝜆 = 212.66 and 𝜆 = 464.74, respectively.

As already done for arches, deterministic analyses are performed by means of Durand-Claye’s method in order to study the
collapse of masonry domes. In Fig. 23(left), the collapse load multiplier, 𝜆𝐷𝐶 , is plotted 𝑣𝑒𝑟𝑠𝑢𝑠 the friction coefficient, by assuming
constant values for the compressive strength. By fixing 𝜎𝑐 = 𝜎𝑐𝐴,0.05 = 1.26 MPa (resp. 𝜎𝑐𝐴,0.95 = 3.07 MPa), three different collapse
modes are identified: a collapse mode involving the activation of friction constraints for 0.2 ≤ tan𝜓 ≤ 0.302 (resp. 0.2 ≤ tan𝜓 ≤ 0.353);
a mixed collapse mode (corresponding to the activation of both friction and strength constraints) for 0.302 ≤ tan𝜓 ≤ 0.333 (resp.
0.353 ≤ tan𝜓 ≤ 0.388); a collapse mode involving only the activation of no-tension/crushing constraints for 0.333 ≤ tan𝜓 ≤ 0.6 (resp.
.388 ≤ tan𝜓 ≤ 0.6). The transition between a sliding collapse mode and a rotational collapse mode occurs over a wider (although

still narrow) range of friction coefficients than that found in the arches examined. Again, the initial part of the curves drawn for
𝜎 = 𝜎 and 𝜎 = 𝜎 lies along that found when considering infinite compressive strength.
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In Fig. 23(right), the compressive strength corresponding to an incipient collapse condition is determined, by assuming that the

ollapse load multiplier is assigned (𝜆𝐷𝐶 = 100 and 𝜆𝐷𝐶 = 125), while the friction coefficient, tan𝜓 , varies. The graph is composed of
a vertical segment, corresponding to the value of the friction coefficient that identifies a purely sliding collapse mode, tan𝜓 = 0.2252
for 𝜆𝐷𝐶 = 100, tan𝜓 = 0.2494 for 𝜆𝐷𝐶 = 125. For 0.2252 ≤ tan𝜓 ≤ 0.2550 (𝜆𝐷𝐶 = 100) and 0.2494 ≤ tan𝜓 ≤ 0.2600 (𝜆𝐷𝐶 = 125)
mixed collapse modes arise: the sloped segment provides the limit value of the compressive strength 𝑣𝑒𝑟𝑠𝑢𝑠 the friction coefficient.
Finally, a collapse mode involving only strength constraints occurs for 0.2550 ≤ tan𝜓 ≤ 0.6 (𝜆𝐷𝐶 = 100) and 0.2600 ≤ tan𝜓 ≤ 0.6
(𝜆𝐷𝐶 = 125). Also in this case, the examples of domes here considered exhibit a behavior characterized by a less abrupt transition
between sliding and rotational collapse modes.

The impact of a limited compressive strength and/or finite friction on the collapse behavior of masonry arches has been addressed
from a deterministic perspective particularly in [32,35]. More in detail, analyses aimed at defining the minimum thickness in the
hypothesis of finite strength and finite friction have been addressed in [35], whereas the effects of friction together with other
parameters have been investigated in [32]. A common denominator of the above mentioned deterministic approaches, which include
the investigations based on the stability area method herein described, is the identification of different collapse modes depending
on the value of the friction coefficient. Collapse due to the arising of hinges or to the activation of strength constraints is realistic,
provided that friction can prevent sliding between the voussoirs; otherwise, by progressively decreasing the friction coefficient,
mixed and purely sliding collapse modes occur. The probabilistic approach presented in this paper aims at enriching the framework
of the deterministic procedures by taking into account uncertainties on the mechanical parameters. Collapse modes retrieved at
varying friction coefficients are in agreement with trends outlined by the referenced deterministic literature.

5. Conclusions and ongoing research

A numerical investigation has been performed to assess the structural behavior of masonry arches and domes taking into
account a finite friction and a finite compressive strength of the material. Based on the availability of probabilistic models in the
literature, the finite compressive strength has been considered uncertain, adopting log-normal distributions suggested by technical
documents [48], whereas the impact of the friction coefficient has been assessed spanning a reasonable range related to the finishing
of the voussoirs [49] and exploiting the concept of fragility curves.

The main aim of the paper is providing a simple probabilistic approach to support performance assessment and risk analysis of
blocky stone structures, which are peculiar of historical constructions. For a given type of brickwork that is affected by uncertainties
on strength, fragility curves are shown to give a straightforward description of the expected collapse behavior.

More in details, Monte Carlo simulations have been performed for several samples of the compressive strength, repeating the
investigation for a discrete set of angles of friction. An arch and a dome with conventional stereotomy have been investigated to
demonstrate the procedure, considering self-weight and a live point load applied at the crown. Each one of the analyses has been
performed by solving a maximization problem that has been conceived for obtaining the maximum static load multiplier of the live
load, given a friction coefficient and a compressive strength. The method combines funicular analysis operated by the force density
method and sequential convex programming, enforcing constraints on the normal and shear resultants of the stresses at each joint.
The implemented algorithm has been validated by means of the Durand-Claye’s semi-analytical method: in this case, an iterative
procedure has been adopted to find the load multiplier corresponding to the limit condition, i.e., to the vanishing of the stability
area.

For each one of the considered values of the friction coefficient, the output random variable, i.e. the computed load multiplier,
has been analyzed. For large values of the friction coefficient, the load multiplier behaves as a continuous random variable whose
distribution is not affected by tan𝜓 . This is related to the arising of a limit condition that does not involve the activation of friction
constraints. Conversely, for low values of the friction coefficient, the output random variables practically behaves as a discrete one.
Independently on the compressive strength, all the discrete simulations converge to the same load multiplier. The limit condition
is related to the activation of a failure mode that is purely frictional. In between, a mixed random variable is retrieved. The upper
tail of the continuous part is truncated by the localization of a subset of the results at a bounding value. Limit conditions that are
purely frictional, or related to the activation of strength constraints only, are mostly found, retrieving collapse modes that have been
already encountered for small and large values of tan𝜓 , respectively. Indeed, as a preliminary approximation, the same distribution
already used at large values of the friction coefficient has been retained to build the truncated parts in the intermediate range.

By post-processing the achieved results, the probability of failure related to the load multipliers has been investigated across
tan𝜓 . It was found that diagrams of the type failure probability vs. load multipliers are not affected in any appreciable manner by
the coefficient of friction only for large values of tan𝜓 . In the intermediate and lower range, a certain value of tan𝜓 exists below
which the probability of failure blows up, being related to the occurrence of purely frictional collapse modes. The probabilistic
investigation has been performed for two different kinds of brickwork, i.e. ashlars of soft stone, and stone square blocks. Both for
the arch and the dome, the latter material generally allows for a remarkable increase in the values of the load multiplier pertaining
to similar probabilities of failure. This holds, provided that the friction coefficient is such as to avoid the occurrence of purely
friction collapse. Indeed, the behavior is exactly the same for very low values of tan𝜓 .

It must be remarked that symmetrically loaded structures have been considered to safely apply the lower bound theorem in
the case of finite friction. This also allowed for neglecting torsion-related failure modes and for providing a cross-validation of the
funicular approach and the stability area method. In fact, the main limitation of the proposed approach resides in the type of blocky
structures that can be affordably investigated. Peculiar attention should be paid to the assumption made on the estimate of the
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the friction coefficients. Further research is needed to improve the accuracy of the achieved results, especially in the intermediate
range of the friction coefficients. A more precise estimation of the output random variable could be conveniently performed, also
investigating the impact of mixed failure modes. Hence, the role of stereotomy could be assessed, by testing several types of geometry
of the blocks.

Among the others, construction defects, deterioration of materials over time and occurrence of seismic events introduce spatial
ariations in the strength of the material, see in particular [66]. The ongoing research is also focused in the adoption of random
ields to account for such kind of uncertainties, see e.g. [67]. An additional topic of research is concerned with the extension of the
roposed optimization problem, originally conceived for the limit analysis of unreinforced arches and domes, to the design of their
ptimal strengthening under the effect of uncertainties, see e.g. [68–70].
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