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The AugerMuons and Infill for the Ground Array (AMIGA) is an enhancement of the Pierre Auger
Observatory, whose purpose is to lower the energy threshold of the observatory down to 1016.5 eV,
and to measure the muonic content of air showers directly. These measurements will significantly
contribute to the determination of primary particle masses in the range between the second knee
and the ankle, to the study of hadronic interaction models with air showers, and, in turn, to the
understanding of the muon puzzle. The underground muon detector of AMIGA is concomitant
to two triangular grids of water-Cherenkov stations with spacings of 433 and 750m; each grid
position is equipped with a 30m2 plastic scintillator buried at 2.3m depth. After the engineering
array completion in early 2018 and general improvements to the design, the production phase
commenced. In this work, we report on the status of the underground muon detector, the progress
of its deployment, and the performance achieved after two years of operation. The detector
construction is foreseen to finish by mid-2022.
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Figure 1: (Left) scintillator module under construction. (Middle) module being deployed at the field. (Right)
a full UMD position deployed, before being buried.

1. Introduction

The first surface detector of the Pierre Auger Observatory [1] consisted of an array of about
1600 water-Cherenkov stations distributed in a triangular grid with 1500m spacing (SD-1500)
covering a total area of 3000 km2. It was meant to detect cosmic rays with full efficiency at energies
above 1018.5 eV. After its completion, in 2008, two denser arrays with reduced spacings of 750m
(SD-750) and 433m (SD-433) were deployed as a part of the Auger Muon and Infill for the Ground
Array (AMIGA) [2] enhancement. The energy threshold of the surface detector was then extended
to 1016.5 eV. In addition, AMIGA is also aimed at obtaining direct measurements of the muonic
component of air showers with an underground muon detector (UMD).

The UMD consists of an array of scintillators associated with the water-Cherenkov detectors of
the SD-750 and SD-433. At each grid position, three 10m2 modules are buried at a depth of 2.3m
to shield them from the electromagnetic component of air showers [3]. Each module consists, in
turn, of 64 scintillator strips with wavelength-shifting optical fiber coupled to an array of silicon
photomultipliers (SiPMs) [4]. Pictures of a module commissioning are presented in Fig. 1: we show
a module under construction (left) and deployment (middle), along with an image of a complete
deployed station (right) just before being overburden with soil. The whole UMD array will have
73 positions, 219 modules, and over 14000 SiPMs. The deployment status, at the time of writing,
is presented in Fig. 2 where we discriminate the positions shared with the SD-1500 (blue circles)
and only AMIGA (gray circles for the SD-750 and red for the SD-433) grids. The big hexagon
(dashed-gray line) denotes the limits of the whole UMD array, while the small hexagon (dashed-red
line) indicates the location of the SD-433 array. The deployment and commissioning of the UMD
are currently undergoing at a pace of 2 full-positions (6×10m2) per month. The full circles in Fig. 2
indicate the positions where the UMD scintillators are already buried. A total of 24 stations (about
35% of the whole array) are deployed: 20 stations of the SD-750 and 4 of the SD-433.

In addition to the UMD, both scintillator [5] and radio detectors [6] will be deployed on top of
the water-Cherenkov detectors in the SD-1500 as part of the Pierre Auger Observatory upgrade [7].
This will improve the separation of the muonic and electromagnetic components in air showers and,
in turn, the cosmic-ray mass identification at the highest energies.

2. The underground muon detector

Each acquisition channel of the UMD consists of a scintillator strip with optical fiber coupled
to a SiPM. The buried modules are segmented in 64 of these channels, whose outputs are processed
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SD-1500

SD-750

With UMD
Without UMD
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Figure 2: Schematic of the AMIGA array. The big hexagon denotes the limits of the UMD array, while the
small hexagon indicates the limits of the SD-433 array.

in two different ways: (i) in 64 binary traces, the so-called binary acquisition mode, and (ii) in two
waveforms, dubbed ADC mode. By implementing both acquisition modes, we attain a dynamic
range that extends from a single muon up to a few tens of muons per m2.

Within the binary channel [4], each SiPM signal is processed independently through a pre-
amplifier, a fast-shaper, and a discriminator integrated into two 32-channel application-specific
integrated circuits. Then, the discriminator outputs are sampled with a field-programmable gate
array in 64 binary traces with a sampling speed of 320MHz (3.125 ns) and a total event time of
6.4 `s. For each channel and time sample, the output consists of a “0” (“1”) if the fast-shaper signal
is below (above) the discriminator threshold. This threshold is set at 2.5 photo-equivalents (PE)
to filter most of the SiPM dark current. The number of impinging particles is finally inferred by
searching sequences of “1”s in the binary traces.

In the ADC acquisition mode [8], the 64 SiPM signals are summed with two steps of adders
and then processed with low- and high-gain amplifiers. The outputs are sampled with analog-to-
digital converters into two waveforms with a sampling speed of 160MHz (6.25 ns). By computing
the signal charge and dividing it by the mean of a single muon, we can determine the number of
impinging particles with this mode.

The binary acquisition is hardware-limited by the segmentation of the modules: if more than
63 segments are activated simultaneously, then the binary mode is saturated. This mode is designed
to measure low densities with minimized uncertainties as fluctuations of the energy deposit in the
scintillator, and subsequent photo-production have a reduced impact on the resulting sequence of
“1”s. However, uncertainties associated with the binary mode grow with the number of muons as
the impinging particles pile up. Not only does the ADC mode extend the saturation point of the
UMD but also, it allows for improved measurements in a region where, despite not being saturated,
the binary mode introduces large fluctuations.

The trigger system of the UMD depends on the SD-750/433 triggers both at the local station
and global array level [9]. Once a local trigger condition is satisfied in a water-Cherenkov detector,
a signal is sent to the UMD modules, and data is temporarily stored in internal memory. When
an array trigger condition is met, the data is sent to the central acquisition system for permanent
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Figure 3: (Top) binary channel raw traces. Signal accumulation around the trigger scope can be seen.
Randomly distributed entries produced by background noise are also observed. (Bottom) raw traces of the
ADC low-gain channel. Similarly to the binary channel, accumulation of signal can be seen within the
shower scope, along with uniformly distributed noise.

storage. An example of UMD traces obtained during two months of air shower data in a single
UMDmodule is displayed in Fig. 3. We present the addition of all binary traces in the top panel, and
the overlap of all ADC traces at the bottom. The three peaks between 2500 and 4200 ns correspond
to the different local trigger types of the water-Cherenkov detector [9]. Entries beyond this range
are produced mainly by the noise of both the SiPM and the scintillator/optical fiber system. We
denominate the time bin of maximum accumulation in the binary channel as the effective latch.
This bin is of particular importance for the calibration of the ADC mode. It is worth noting the
delay of about 150 ns between binary and ADC channel mainly produced by the different electronic
responses, and undershoot in the ADC originated by signals with a high amplitude.

3. Calibration

To determine the muonic content in air showers with the UMD it is necessary to interpret the
previously displayed traces in terms of impinging particles. For the binary channel, this is defining
a strategy to translate the sequences of “1”s into a number of particles, i.e., finding the time width
for which the amplitude of a typical muon pulse is above the discriminator threshold. In the ADC
mode, we map the traces to particles dividing the total signal charge by the mean of a single muon.
During the calibration process, both the discriminator threshold level and the single-muon charge
are determined [10].

The first step of the procedure is to set the operating point of the SiPMs using their thermal
noise: the dark-count rate is measured as a function of an amplitude threshold using different
reverse-bias voltages, +bias. In the left panel of Fig. 4, we show the rate of dark-counts as a function
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Figure 4: (Left) Dark-counts per second (cps) as a function of the discriminator threshold for different +bias
with an individual SiPM. In the inset, we show one rate curve (solid brown) and its derivative (dashed brown)
fitted with a Gaussian distribution (dotted green) to obtain the corresponding PE amplitude. (Right) Example
of single-muon charge histogram. The calibration histogram is filled by selecting background muon signals
with the binary channel.

of an amplitude threshold for different values of +bias; the mean amplitude of 1 and 2.5 PE signals
are indicated for illustration. It is apparent how the dark-count rate and PE amplitude shift towards
higher values when increasing the +bias. In the inset, we present the determination of the PE
amplitude for one of the rate curves: the PE amplitude is located between the transition of the first
two consecutive plateaus (solid-brown line) and is fitted (dotted-green line) after differentiating the
rate curve (dashed-brown line). By repeating this procedure for all curves, we determine the 1 PE
mean amplitude as a function of the +bias. This amplitude is proportional to the SiPM gain and
becomes 0 when+bias is equal to the minimum voltage needed to operate the SiPMs in Geiger mode,
named, breakdown voltage or +br. Once the +br is determined, we can set +bias = +br + 3.5V, and
the discriminator threshold of the binary mode at 2.5 PE. This routine, replicated in all the UMD
channels, allows us to uniformize the module response by setting the same over-voltage of 3.5V to
all SiPMs.

To obtain themean charge of singlemuons in the ADC channel, an algorithm runs parallel to the
shower acquisition: when a UMD module receives a local trigger signal from the water-Cherenkov
detector, the algorithm looks for an exclusive single-muon signature in the 64 binary traces, which
consists of a sequence between four and twelve “1”s [10]. If this condition is fulfilled, the signal
in the ADC channel corresponds to a single muon, and we compute the charge by integrating the
trace in a 200 ns window. We present an example of the resulting charge histogram for the ADC
acquisition mode in the right panel of Fig. 4 where we obtained a mean charge of (4.3± 0.1) pC and
a standard deviation of (3.1± 0.1) pC. We can fill a calibration histogram with data close in time to
an air shower to reduced uncertainties in the determination of the number of impinging particles or
periodically to assess the UMD performance (see Section 4).

4. Long-term stability and array uniformity

The UMD modules will be operated at the Pierre Auger site, where environmental conditions
cannot be controlled, for several years. Therefore, monitoring the detector performance is of utmost
importance to guarantee the well-functioning of the array.

The algorithm to extract calibration data is integrated into the UMD electronics firmware and
requests two parameters: the effective latch bin of the binary channel and the delay between binary
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Figure 5: (Left) mean start time and effective latch in the binary channel as a function of time. (Right) mean
delay between the start time of the binary channel and the maximum amplitude of the ADC trace. Gaps
match the periods where the module was out of acquisition or under maintenance.

and ADC as already indicated in Fig. 3. We need the latch to look for the exclusive single-muon
signature in the binary trace: the sequence of more than four and less than twelve “1”s is search in
a 62.5 ns window around this bin. The delay is used to define the start time of the 200 ns window
to integrate the charge of the ADC signal.

The stability of these two parameters is monitored by inspecting the full binary and ADC traces,
only available in data permanently stored after global array triggers. As an example, we show in
Fig. 5 the effective latch (left) and the delay (right) in an individual module as a function of time
for about two years of operation. Jumps in the latter were produced when the UMD firmware was
updated to include new functionalities. Still, the delay remains stable between firmware updates, and
the jumps only denote the importance of updating this parameter when modifying the electronics
firmware. The gaps in the timeline correspond to periods where the module was out of acquisition
and/or under maintenance.

The SiPMs are operated with a temperature compensation mechanism that stabilizes the gain
among the whole UMD array to assure the same detection efficiency through the years. However,
the dependency of the dark-count rate on the temperature cannot be controlled. As an example, we
present in Fig. 6 the electronics temperature (red squares and right y-axis) and the rate of dark-counts
with an amplitude above 2.5 PE (black circles and left y-axis) as a function of time for an example
module. The dark-count rate is obtained after averaging the 64 SiPMs; we present both temperature
and rate as the mean per hour. It is apparent how the SiPM noise is modulated by the temperature:
the mean rate per SiPM varies between 250 and 500Hz, a factor of two between summer and winter.
For the 64 SiPMs, this implies a probability of having a “1” produced by noise between 10% and
20% in a time window of 6.4 `s.

After deploying a module in the field, we need to set up the algorithm to extract data for the
ADC calibration. After configuring the latch and delay, the output of the calibration algorithm
is stored in the acquisition server and can be subsequently used offline to extract the single-muon
charge. As we extract this data in real-time, it is convenient for module monitoring and sanity-check
purposes.

To illustrate the performance of the calibration, we present in the left panel of Fig. 7, the
number of events matching the muon selection criteria per hour as a function of time for one

6
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Figure 6: Temperature (right y-axis) and mean dark-count rate (left y-axis) per SiPM as a function of time,
averaged every one hour.
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Figure 7: Number of events (left) and mean charge of the muon signal with error bars indicating one standard
deviation (right) as a function of time. Each data point is extracted from histograms filled with 24 hours of
calibration data.

example module; a seasonal modulation seems to appear with an amplitude of about 10% from the
mean. We also present the charge of the single-muon signal every 24 hours in the right panel of
Fig. 7, determined from calibration histograms as in Fig. 4. The mean value obtained for the whole
period (dashed-gray line) is (4.408 ± 0.004) pC with a standard deviation of (0.059 ± 0.003) pC,
which corresponds to a mean fluctuation of (∼1.3%) in the whole analyzed period. To better
illustrate this, the 5% fluctuation of the mean, corresponding to about four standard deviations, is
shown in dotted-gray lines. This indicates that the calibration method is robust and stable, even
under temperature variations.

We also assessed the uniformity of the array using data from 21 modules so far deployed in the
field. For each one, we obtained the mean charge averaged over six months; results are presented
in the left panel of Fig. 8. The mean obtained over the array is (5.69± 0.08) pC with a standard
deviation of (0.68± 0.06) pC. Finally, we computed the mean dark-count rate for all modules in
the array, and we present the result in the right panel of Fig. 8. We estimated the rate averaging
data from one month in summer (February 2021) and one in winter (August 2020). Histograms
are normalized since the total number of modules increased between the two time periods. The
seasonal dependence of the SiPM noise is apparent.
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Figure 8: (Left) Mean charge per module in the ADC channel. Each entry corresponds to the mean charge of
a UMD module averaged in a period of one month. (Right) Mean rate of dark-counts with amplitude above
2.5 PE per module. Results are shown after averaging one month in summer and one in winter. Histograms
are normalized to the total number of modules in acquisition during the time period.

5. Summary and outlook

The status and performance of the AMIGA underground muon detector were presented. The
deployment of the UMD is undergoing, having 24 stations out of 73 already deployed (35% of the
whole array), and is foreseen to finish by mid-2022.

We discussed the performance of the UMD calibration data and parameters for the two ac-
quisition modes: binary and ADC showing that the calibration method is robust to work with the
219 modules and more than 14000 SiPMs in the whole array that will be acquiring data for several
years.

Quality air shower data is already available and will significantly increase with the deployment
of new positions. High-level physics analyses with UMD data will soon commence.
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