
A novel multi-objective method with online Pareto

pruning for multi-year optimization of rural microgrids

Marina Petrellia,∗, Davide Fioritib, Alberto Berizzia, Cristian Bovoc, Davide
Polib

aPolitecnico di Milano, Energy Department, Via Giuseppe La Masa 34, Milano, Italy
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Abstract

Decentralized hybrid energy systems are promising long-lasting solutions
to support local socio-economic development in compliance with environ-
mental concerns. Traditionally, microgrid planning has mainly focused on
economics only, sometimes with reliability or environmental concerns, and
the project costs have been estimated by approximating the multi-year op-
eration of the system with a single-year approach, thus neglecting assets
degradation and demand growth. In this paper, we propose a multi-objective
multi-year method to plan microgrid projects in the Global South, accounting
for socio-economic, security and environmental impacts on the local commu-
nity; the entire multi-year lifespan of the project is considered, including
detailed degradation of the system assets. In order to solve the proposed
non-linear multi-objective model, the advanced version of the augmented ε-
constraint algorithm, denoted as A-AUGMECON2, is here proposed, by us-
ing a novel pruning algorithm that avoids solving redundant optimizations.
The proposed multi-objective multi-year methodology is applied to the nu-
merical case study of an isolated hybrid microgrid in Uganda. Results confirm
that the proposed approach successfully quantifies the trade-off between local
long-term impacts, namely Net Present Cost, carbon emissions, land use, job
creation, and public lighting coverage, in terms of the Pareto-optimal designs,
which can successfully support policy makers and local developers in devel-
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oping effective policies and projects. Moreover, the novel A-AUGMECON2
algorithm enables reducing by 48% the computational requirements of the
standard AUGMECON2, which extends the application of multi-objective
methodologies to more complex problems.

Keywords:
Hybrid microgrid sizing, Mixed-Integer Linear Programming (MILP),
eps-constraint method, online Pareto filter, holistic design, off-grid systems

1. Introduction

1.1. Motivation

As stated in the Sustainable Development Goals, achieving universal elec-
tricity access is a key priority of the international community [1]. Electricity
is a well-known determinant for social development [2], as it enables the use of
modern appliances, replaces lower quality energy sources, such as kerosene,
wood, and charcoal, stimulates economic growth, and improves well-being
[3, 4], given the possible synergies with access to food and water under the
water-energy-food nexus [5].

However, currently, almost 800 million people live without access to elec-
tricity, and most of them are located in rural areas in Sub-Saharan Africa [6],
which are often difficult to reach. Additionally, these remote areas typically
rely on subsistence economy, with very basic electricity needs, such as lighting
and charging of mobile phones; therefore, depending on the location, extend-
ing the public power grid may be considered too expensive and not-worth in
the short-term. Conversely, decentralized solutions such as microgrids can be
promising and cost-effective solutions, but adequate optimization tools shall
be developed to account for the multi-faceted context of rural areas in the
Global South for the entire lifetime of the project.

Given the strong recent efforts by governments and international entities
in addressing the rural electrification challenge, it is timely and useful to
develop a multi-objective planning methodology able to address economic,
social, and environmental objectives, besides accounting for the entire multi-
year simulation of the project lifetime and including the degradation model
of the assets. On the other side, in order to tackle the increased complexity in
the planning methodologies, it is also important to develop novel techniques
to more efficiently address multi-objective optimization, as proposed in this
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study. The multi-objective planning of rural microgrids, here formulated us-
ing Mixed-Integer Linear Programming (MILP), is successfully solved in this
paper by developing the novel A-AUGMECON2 method, that is an improved
version of the standard augmented ε-constraint method [7, 8], to efficiently
deal with the multi-objective optimization and reduce computational require-
ments without affecting the quality of the results.

1.2. Literature analysis

Standard microgrid sizing tools usually focus on single-year economics-
only optimizations in order to reduce the complexity of the analysis. In
[9–11], the least-cost solution, in compliance with the technical features of
the components, is identified by optimizing the generating portfolio together
with the scheduling strategy of the first year, assumed to be representative
of all the subsequent years. Likewise, the operating costs will also recur from
year to year. Therefore, cost is considered as the only determining factor
in the effectiveness of the rural electrification process. These assumptions
hardly match the complex circumstances of off-grid microgrids in the Global
South, given the multiplicity of impacts on the community involved, the
intrinsic long-lasting nature of the system, the significant load growth and the
assets degradation over the years. Neglecting these aspects in favour of more
details on short-term features can lead to sub-optimal designs, since long-
term dynamics are more relevant in rural contexts and significantly affect
the optimal choice of the system [12].

Only few studies have recently adopted a multi-year approach, partially
integrating the multi-year characteristics of the system [13–15]; namely, load
growth [13, 15] and storage capacity reduction, regardless of how the bat-
teries are used [14, 15]. Actually, the pace at which batteries degrade is
strongly linked to their operation [16] and this has significant impact on the
optimal microgrid planning and scheduling [17]. Moreover, renewable energy
generators are subject to performance deteriorations too [18, 19], and this
influences their optimal size.

A growing interest in environmental protection issues has led various
scholars to also include an assessment of carbon emissions in their analy-
ses, as a limit not to be exceeded [20], or as monetary cost to be minimized
[15, 21], or as additional objective function [22–25]; however, Life-cycle As-
sessment (LCA), which quantifies the emissions along the whole life-cycle of
an asset, is rarely adopted [20, 24], and generally only direct emissions are
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taken into account [15, 21–23, 25], resulting in incomplete and sometimes
misleading evaluations.

In addition to this, the importance of considering the social impact of
rural electrification projects is increasingly recognized and demanded as an
indispensable element of system planning tools [26]. Nonetheless, very few
multi-objective algorithms have been developed including social assessments.
The most common social aspect under analysis is the employment generation
[27–29], while the maximization of the Human Development Index (HDI) in
relation to energy consumption is rarely adopted [29]. Although the rela-
tionship between HDI and energy use is widely recognized nowadays, it can
hardly describe the local impact on the electrified community, while job cre-
ation is an understandable and measurable criterion in situ; this is why the
latter is used much more extensively.

A popular and consolidated approach for holistic analysis of rural electri-
fication projects is to use Multi-Criteria Decision Analysis (MCDA) [30–33],
which is more prone to including social and qualitative decision criteria.
However, MCDA cannot determine the generation mix and the scheduling
strategy and is not able to efficiently manage different configurations of hy-
brid systems. Hence, these aspects must be analysed separately and MCDA
is used for ex-ante [32] or ex-post [33] assessments, but planning tools are
still needed.

Therefore, it turns out that the literature lacks a holistic multi-objective
optimization that addresses all the aforementioned shortcomings.

In the scope of MILP optimization, the most common approaches to solve
multi-objective problems are the weighted sum method [34, 35] and the ε-
constraint method [36–38]. The latter has the advantage of being able to
represent the entire Pareto frontier independently of its shape; moreover,
its results are not influenced by normalization issues and it generally has
better computational performances [39, 40]. In particular, the augmented ε-
constraint method (AUGMECON2) has been developed as an advancement
of the traditional ε-constraint method [7, 8] and, currently, it is a well con-
solidated method, widely adopted to solve a diverse portfolio of problems in
the energy sector [37, 38, 41, 42].

However, AUGMECON2 presents two interrelated drawbacks: 1) when
complex algorithms with more than two objective functions are optimized,
the computational burden may become extremely large because of the pres-
ence of redundant iterations; 2) the higher the desired resolution of the Pareto
frontier, the more the redundant points. The former issue needs an advance-
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ment of the methodology, while the latter, which is related to the readability
of the results and the choice of the final point, could be faced by one of the
post-Pareto selection methods available. These can be grouped into three
major categories: offline pruning algorithms to reduce the number of Pareto
points [43, 44]; clustering algorithms to identify and group similar solutions
[45]; mathematical methods to select a single final point [46, 47]. This addi-
tional step requires further computational resources, thus exacerbating the
first issue.

AUGMECON2 is selected by the authors to solve the multi-objective
multi-year optimization under study, and its two main shortcomings are
faced by a novel methodology, aimed at providing better computational per-
formances and improved readability of the Pareto frontier by means of an
online filter of redundant optimizations.

1.3. Contributions

To the best of the authors’ knowledge, this is the first study discussing the
multi-objective multi-year planning of an off-grid microgrid, accounting for
its entire lifetime by using a modified version of AUGMECON2, here denoted
as A-AUGMECON2. The proposed approach, which is firstly presented in
this paper, goes beyond the state of the art because it preemptively detects
the redundant simulations, thus reducing the computational requirements
without affecting the quality of the results. The assets degradation and
their operational constraints have been taken into account by using a custom
iterative approach that enables decomposing the general non-linear problem
into the consecutive optimization of simple MILP problems, where constant
parameters are updated in every iteration [17]. Economic (Net Present Cost),
social (Job Creation and Public Lighting), and environmental (Life-cycle
emissions and Land use) concerns are considered as objective functions. In
short, the main novelties are discussed below.

1. Development of a multi-objective multi-year planning methodology able
to efficiently optimize and simulate the operation of the entire lifetime
of a project, using economic, social, and environmental objective func-
tions.

2. Detailed modelling of the degradation of the assets of the microgrid
performed by decomposing the full non-linear model into the iterative
optimization of a MILP problem.
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3. Development of the A-AUGMECON2 methodology that reduces the
computational requirements of the standard AUGMECON2, using a
novel pruning algorithm that avoids the simulation of redundant it-
erations and enables the introduction of the first two novelties while
keeping a good tractability of the algorithm.

2. Microgrid planning

In this section, the model for the multi-year planning of off-grid microgrid
projects is described. The formulation, based on [17], accounts for detailed
hourly simulations of the entire lifetime of the microgrid project, including
the operational effects of the generation and storage degradation.

2.1. Description

The configuration of the microgrid considered in this study and shown in
Figure 1 is aimed at representing the typical off-grid system in the Global
South: it includes photovoltaic panels of type p, wind turbines of type w,
fuel-fired generators of type g), and battery storage of type b, coupled at the
AC busbar to supply the demand. The elements in the set i ∈ {p, w, g, b}
represent the different technologies available for each asset.

Figure 1: Microgrid architecture [17].

The proposed model aims at reproducing the design and dispatch of the
system at every hour of the project lifetime, typically lasting several years,
also accounting for the degradation of the main assets.
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2.2. The objective functions

While the scientific literature devoted to the optimal microgrid sizing has
widely focused only on economics, the following socio-economic and environ-
mental objectives are considered in this work: Net Present Cost, life-cycle
emissions, land usage, job creation and public lighting supply. Their mathe-
matical formulation is discussed in the following subsections.

2.2.1. Net Present Cost

As typically done in microgrid investments [17], Net Present Cost is con-
sidered as economic objective function, to be minimized, according to the
mathematical description detailed in (2)-(8). Its formulation takes into ac-
count the investment costs (ICi) of every component i ∈ {p, w, g, b}, the
operation and maintenance charges (O&Mi), the replacement costs RCi of
batteries and diesel generators, and the residual values RVi of the assets at
the end of the project lifetime. In particular, ICi depends upon the num-
ber Ni of the installed items of the i-th component and its specific cost ci.
Similarly, for all components but diesel generators, O&M costs are assumed
to be proportional to Ni and the specific yearly cost mi, accounting for the
discounting factor dy, as in (3); in the case of diesel generators, the oper-
ational charges are modelled as a function of the diesel price πf , the fuel
consumption FCy,h,g, the number of operating hours of the units, accounting
for the number of dispatched units Uy,h,g in each time step, and their spe-
cific maintenance and replacement costs, as detailed in (4). The replacement
costs RCg of the generators are accounted for as in (5), with hlifeg maximum
number of operating hours, whereas the ones of the battery are detailed in
(6); ky,h,b represents the cumulative number of battery replacement and ylifei

is the expected lifetime of each component. Finally, the residual value RVi
of all assets is detailed in (7), as proportional to the remaining lifetime of
each asset with the exception of the generator and the battery storage; |Y |
represents the project lifetime. The replacement charges of the generators
are gradually accounted for as in (5), so they are not included in the final
residual value; whereas the formulation of RVb for the batteries is detailed
in (8), as proportional to the remaining capacity of the battery; Cb and Cb
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represent the capacity of a battery in brand-new and aged conditions.

minNPC =
∑
i

(ICi +O&Mi +RCi − SVi) (1)

ICi = Ni · ci (2)

O&Mi\{g} = Ni ·mi

∑
y

dy (3)

O&Mg =
∑
y,h

dy(mg · Uy,h,g + πf · FCy,h,g) (4)

RCg =
cg

hlifeg

∑
y,h

dy · Uy,h,g (5)

RCb = Nb · cb
∑
y,h

dy(ky,h,b − ky,h−1,b) (6)

RVi\{g,b} = d|Y | ·Ni · ci ·
ylifei − |Y |

ylifei

(7)

RVb = d|Y | · cb
Cres
|Y |,|H|,b −NbCb

Cb − Cb

(8)

2.2.2. Emissions

Environmental objectives have become increasingly included in planning
energy projects, due to the climate-change concerns. In order to perform
an accurate evaluation of the microgrid global impact, emissions have been
considered in the proposed methodology in terms of LCA, i.e. account-
ing for construction, installation, operation and disposal of the assets. The
minimization of total emission allows to evaluate solutions in line with the
increasing pressure of governments for energy production with a high pen-
etration of renewables. The mathematical formulation of CO2 emissions is
reported in (9), where CCO2i represents the emissions for the installation
and replacement of the asset i and OCO2i corresponds to the CO2 emissions
due to the operation phase, which is non-null only for fuel-fired generators, as
detailed in (13); ei is the specific emission for each installed component and
eopg represents the specific emission per unit of fuel consumption. CCO2i of
renewable assets is detailed in (10), while its formulation for the battery and
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the generator, (11) and (12), respectively, also accounts for their replacement.

minCO2 =
∑
i

CCO2i +OCO2i (9)

CCO2i/{g,b} = Ni · ei (10)

CCO2b =

[
1 +

∑
y,h

(ky,h,b − ky,h−1,b)

]
Nb · eb (11)

CCO2g = Ng · eg +
∑
y,h

Uy,h,g ·
eg

ylifeg

(12)

OCO2g = FCy,h,g · eopg (13)

2.2.3. Land use

The local environmental impact of the microgrid is taken into account
by including in the analysis the minimization of the space required for the
installation of the different assets [27]. The importance of this variable for
decision-makers is strictly related to the specific conditions of the area where
the system needs to be installed; a case in which land occupation may become
a sensitive issue is for example when the community is based in a protected
area. The mathematical formulation of the land use (LU) is then considered
and its model (14) is proportional to the number of installed units and their
land occupation loi.

minLU =
∑
i

Ni · loi (14)

2.2.4. Jobs creation

Energy planning can promote local jobs, as a consequence of the assets
installation and operation, which are incorporated in the proposed multi-
objective method by means of a maximization problem [27–29]. The mathe-
matical formulation of the job creation JC, detailed in (15), is a function of
the jobs generated throughout the value chain of each asset (CJCi). More-
over, the contribution related to fuel consumption for fuel-fired generators
is accounted by means of a separate variable (OJCg). Their mathematical
formulation is detailed in (16)-(18), where ji and jopi represent the specific
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job creation per installation and operation of each asset.

max JC =
∑
i

CJCi +OJCg (15)

CJCi/{g} = Ni · ji (16)

CJCg = Ng · jg +
∑
y,h

Udg
y,h ·

jg

ylifeg

(17)

OJCg =
∑
y,h

P dg
y,h,g · j

op
g (18)

2.2.5. Public lighting coverage

Finally, public lighting (PL) is considered and included in the optimiza-
tion, as it is an important enabler of better living conditions, including
but not limited to improved security, recreational and educational activi-
ties. Street lights are considered as priority loads: once a street light is
installed, it must be supplied during the dark hours. Equation (19) maxi-
mizes the coverage of the service Llight, evaluated according to the needs of
the community and varying in the range 1÷100%.

maxPL = Llight (19)

2.3. Main constraints

The electric balance is guaranteed by (20), where P dch
y,h,b and P ch

y,h,b are the
discharging and charging power from the battery system of type b, ηy,h,b is
the efficiency of the battery as function of the power rate, P ren

y,h is total power

dispatched by renewable assets, P dg
y,h,g is the power produced by the fuel-fired

units of type g, Du
y,h is the unmet demand, and Dy,h and Llight

y,h represent the
electric demand due to load and street lighting at any year, which are defined
in (21) and (22), accounting for the demand growth δ. The lighting demand
is defined in (22) as the product between the proportion of lighting service
to be put in place (Llight) and the profile pattern Ly,h of the street lighting
when all the village benefits from this service.

The unmet demand cannot be higher than the actual demand (see (23))
and it is limited by a yearly cap represented by the per-unit fraction fu in
(24). A reasonable amount of load shedding, to be defined according to local
socio-economic information, is generally admitted in rural areas, as long as
it enables a reduction of the electricity tariff.
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The dispatched power from renewable sources (P ren
y,h ) is limited by the size

of the number of the photovoltaic modules (Np) and wind turbines (Nw), and
their specific hourly production, P pv

y,h,p and Pw
y,h,w respectively, as stated in

(25). The degradation of the renewable assets is taken into account by a
linear trend described with coefficients ρpvy,h,p and ρwt

y,h,w for the PV plant and
wind farm, respectively.

∑
b

(
P dch
y,h,b · ηy,h,b −

P ch
y,h,b

ηy,h,b

)
+ P ren

y,h +

+
∑
g

P dg
y,h,g +Du

y,h = Dy,h + Llight
y,h

(20)

Dy,h = D1,h(1 + δ)y (21)

Llight
y,h = Llight · Ly,h (22)

Du
y,h ≤ Dy,h (23)∑

h

Du
y,h ≤ fu

∑
h

Dy,h (24)

P ren
y,h ≤

∑
p

Np · P pv
y,h,p · ρ

pv
y,h,p +

∑
w

Nw · Pwt
y,h,w · ρwt

y,h,w (25)

Constraints (26)-(29) detail the mathematical description of the fuel-fired
generators, for every technology g taken into consideration. Equation (26)
describes the model of the fuel consumption FCy,h,g as a piece-wise linear
function with respect to the number of the committed units Uy,h,g and their

total production P dg
y,h,g, by technology; a and b are the corresponding pa-

rameters. The maximum and minimum power boundaries are expressed by
(27) and (28), respectively, where P g and P g represent the maximum and
minimum power limits of dispatched generators, while equation (29) guaran-
tees that the number (Uy,h,g) of the dispatched units is no greater than the

number of installed generators. Rdg
y,h,g represents the upward reserve.

FCy,h,g = a · Uy,h,g + b · P dg
y,h,g (26)

P dg
y,h,g +Rdg

y,h,g ≤ P g · Uy,h,g (27)

P dg
y,h,g ≥ P g · Uy,h,g (28)

Uy,h,g ≤ Ng (29)
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The equation block from (30) to (36) describes the model of the battery
storage by technology b. While (30) depicts the energy balance in the battery,
(31) and (32) detail the maximum and the minimum state of charge of the
battery, DODb being the maximum Depth Of Discharge; Qy,h,b represents
the energy available in the storage bank of type b in every time step of the
simulation. It is worth noticing that Cres

y,h,b models the total capacity of the
battery, accounting for its degradation as stated in the following subsection.
The power limits of the batteries are instead managed by constraints (33)-
(36); Nb represents the number of batteries, each one having Cb nominal
capacity, and PQb represents the maximum power-to-energy ratio. wdch

y,h,b is a
binary variable used to guarantee that charging and discharging cannot occur
in the same time step and M is a large constant value. Rsb

y,h,b of equation
(32) represents the total reserve power of the storage system.

Qy,h,b = Qy,h−1,b + (P ch
y,h,b − P dch

y,h,b)∆h (30)

Qy,h,b ≤ Cres
y,h,b (31)

Qy,h,b ≥ Nb · Cb(1−DODb) +Rsb
y,h,b ·∆h (32)

P dch
y,h,b +Rsb

y,h,b ≤ Cres
y,h,b · PQb (33)

P ch
y,h,b ≤ Cres

y,h,b · PQb (34)

P dch
y,h,b ≤ wdch

y,h,b ·M (35)

P ch
y,h,b ≤ (1− wdch

y,h,b) ·M (36)

Finally, the reserve requirements are detailed by (37) and (38). Equation
(37) expresses the total reserve requirements Ry,h as a function of the demand
and the renewable sources, which shall be covered by the reserve bands of the
batteries and fuel-fired generators, modelled by Rdg

y,h,g and Rsb
y,h,b, respectively.

The coefficients γd, γpv and γwt, represent the contribution to reserve require-
ments of load, photovoltaic production and wind generation, respectively, in
every time step of the simulation.

Ry,h = γd ·Dy,h + γpv
∑
p

Np · ppvy,h,p + γwt

∑
w

Nw · pwt
y,h,w (37)

Ry,h ≤
∑
g

Rdg
y,h,g +

∑
b

Rsb
y,h,b · ηh,y,b (38)

2.4. The model of the battery efficiency

The efficiency η̂y,h,b of the battery system is calculated as function of the
power-to-energy ratio [16, 17]: the higher the power flow from the battery,
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the lower the efficiency. In particular, a step-wise function (η̂b(PQy,h,b))
dependent upon the power ratio PQy,h,b, computed as in (39), is used to
model the efficiency in every time step, as detailed in (40).

PQy,h,b =
P ch
y,h,b + P dch

y,h,b

Nb · Cb

(39)

η̂y,h,b = ηb(PQy,h,b) (40)

It is worth noticing that the direct implementation of the efficiency model
of η̂y,h,b in the previous section, which means setting η̂y,h,b = ηy,h,b, would
make the problem significantly non-linear and hard to solve. For this reason,
the iterative approach described in the following section is used.

2.5. The degradation of the battery system

The storage system is critical for most off-grid applications and its degra-
dation can affect the profitability of the system, thus the battery model
accounts for the degradation as in [17]. In particular, the residual capac-
ity Ĉres

y,h,b of the battery defined in (42) for every type b is calculated as a
function of the energy throughput Qy,h,b, detailed in (41). The formula-
tion accounts for the variable degradation rate depending on charging and
discharging power-to-energy ratio, modelled by the coefficient on maximum
number of cycles ncyc

y,h,b(PQy,h,b). When the useful battery capacity falls be-
low a given threshold (αb), the battery is replaced, the available capacity
is restored to the initial value and the counter ky,h,b stating the number of
replacements is updated.

Qthr
h,b = Qthr

h−1,b + (P ch
h,b + P dch

h,b )∆h (41)

Ĉres
y,h,b =


Ĉres

y,h−1,b −
(1− αb)

(
Qthr

y,h,b −Qthr
y,h−1,b

)
2ncyc

y,h,b(PQy,h,b)DODb

Ĉres
y,h−1,b

NbCb

≥ 1− αb

NbCb

Ĉres
y,h−1,b

NbCb

< 1− αb

(42)

Similarly to the variable efficiency model, setting Ĉres
y,h,b = Cres

y,h,b would
mean to include in the main model a non-linear battery degradation model.
In the following subsection a simplified iterative approach is proposed to
overcome this complexity.
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2.6. The iterative model

The model discussed in Sections 2.4 and 2.5 is significantly non-linear.
Therefore, in this study, based on the iterative approach discussed in [17],
the non-linearities of variables Cres

y,h,b and ηy,h,b are calculated externally to
the MILP with off-line computations, as depicted in Figure 2. To do so, the
two variables are modelled as in (43) and (44), where parameters αy,h,b|it and
βy,h,b|it vary in the range 1÷100% and represent the hourly available storage
capacity and efficiency with respect to their nominal values Nb · Cb and ηb.
αy,h,b|it and βy,h,b|it are updated in every iteration it to account for such
non-linear phenomena in a MILP model, using a computationally efficient
procedure.

Cres
y,h,b = αy,h,b|it ·Nb · Cb (43)

ηy,h,b = βy,h,b|it · ηb (44)

As shown in Figure 2, after each MILP iteration, the values of αy,h,b|it+1 and
βy,h,b|it+1 for the following iteration (it + 1) are computed as in (45) and

(46), based on the values of Ĉres
y,h,b and η̂y,h,b calculated downstream of the

planning procedure of the current iteration it. The algorithm stops when the
relative changes of the parameters over consecutive simulations fall below a
given threshold; more details of the procedure are discussed in [17].

αy,h,b|it+1 =
Ĉres

y,h,b

∣∣∣
it

Nb · Cb

(45)

βy,h,b|it+1 =
η̂y,h,b|it
ηb

(46)

3. Multi-objective optimization

A generic multi-objective optimization can be expressed as follows:

maxf(x) = [f1(x), f2(x), ..., fp(x)]T

s.t.yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]T

(47)
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START

Initialize loop

Solve MILP planning problem

Compute battery parameters

YES

NO

END

Figure 2: The optimization algorithm [17].

where f(x) is the p-dimensional vector of objective functions, defined by
the n-dimensional vector of decision variables x. The problem is subject to
m inequality constraints and q equality constraints. For the sake of sim-
plicity, we describe a problem where all objective functions are maximized,
but the same considerations follow also for minimization or mixed maximiza-
tion/minimization problems.

The goal of multi-objective optimizations is to find the solutions as close
as possible to the Pareto frontier, which is composed by the set of so-called
non-dominated points, i.e. solutions in which the performance of one ob-
jective function cannot be improved without worsening at least one other
objective function [40, 48].

3.1. ε-constraint method

3.1.1. Classic formulation

One of the most common and efficient techniques for solving multi-objective
problems with MILP optimization is the ε-constraint method [40], where the
multi-objective problem is transformed into several single-objective optimiza-
tion problems, as shown in (48), by using an iterative approach. In partic-
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ular, in every iteration, only the first objective function is optimized, while
the optimization of the others is incorporated as constraints: every objective
function fk(x) but the first, is constrained to be higher than a constant value
eitk , which is modified in every iteration it. By varying eitk between the max-
imum (ek) and minimum (ek) values of each objective function, calculated
beforehand, the procedure is able to calculate an approximation of the Pareto
frontier [40, 48]. It is worth noticing that the maximum and minimum values
of eitk are calculated by solving p optimization problems corresponding to the
maximization of each fk(x) one at a time, disregarding the other fj 6=k(x).
The results are stored in the payoff table and upper and lower bounds for
each objective function are identified.

maxf1(x)

s.t.f2(x) ≥ eit2

f3(x) ≥ eit3
...

fp(x) ≥ eitp

yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]T

(48)

As typically done, the parameters eitk span between ek and ek with a
uniform distribution divided into gk intervals and (gk + 1) points, with a
resolution of stepk = rk

gk
, where rk = ek− ek represents the range of variation

of the objective function k. With this formulation, each optimization (48) is
carried out on a specific subspace of the search space, which can be described
as a p-dimensional matrix of points. For every iteration it, the values of
parameters eitk can be calculated as ek = ek + iitk ·stepk, where iitk ∈ {1, ..., gk +
1} is the integer value representing the current position in the grid.

The total number of points in the grid is (g2+1)·(g3+1)·...·(gk+1), which
leads to an exponential behaviour. Therefore, the computational complexity
can be very challenging as the number of objective functions increases.

When the optimization of a grid point leads to a better performance
with respect to the thresholds forced by the vector e, all the optimizations
with intermediate positions of e will be characterized by very similar results
(exactly the same Pareto point in case of null optimality gap). Moreover, the
information from initial optimizations used to identify the limits of the eitk
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parameters is not used in the main iterative algorithm (48). This means that
the standard ε-constraint method can lead to a large number of redundant
optimizations that significantly increases the computational requirements.

3.1.2. AUGMECON2

The augmented ε-constraint method, a significant improvement of the
ε-constraint method, was proposed by Mavrotas and named AUGMECON2
in its most recent development [7, 8]. Conversely to the classic approach in
which the extreme values (ek and ek) of the objective functions are calculated
by simply optimizing one objective function at a time, AUGMECON2 makes
use of lexicographic optimization for every objective function: problem (49),
with J initially empty, is sequentially solved over the set of p objective func-
tions by adding at the end of every iteration the constraint (fj(x) ≥ f̂j)
updating J . This guarantees that the forthcoming optimization does not de-
teriorate the optimality of the previous objective functions, as f̂j represents
the best value of objective function j. This limits the search space only to
Pareto optimal solutions. The procedure is solved p times, covering the entire
set of objective functions, for a total of p2 optimization problems to solve.

f̂k = max fk(x)

s.t.fj(x) ≥ f̂j j ∈ J
yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]T

(49)

Moreover, problem (48) is modified as follows, where s = [s2, s3, ...sp]
T is

the vector of slack variables that introduce a penalty when objective functions
do not correspond to their desired values eitk , eps is an adequately small
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number:

max(f1(x) + eps · (s2/r2 + 10−1 · s3/r3+
+ ...+ 10−(p−2) · sp/rp))

s.t.f2(x)− s2 = eit2

f3(x)− s3 = eit3
...

fp(x)− sp = eitp

yi(x) ≤ 0 i ∈ 1...m

hl(x) = 0 l ∈ 1...q

x = [x1, x2, ..., xn]T

(50)

This configuration of the objective function allows avoiding weakly effi-
cient points. Moreover, to partially reduce the above stated problem of the
presence of redundant points, the ratio s2/step2 is exploited to bypass the
redundant points of the innermost loop only, i.e. the loop on e2. This is a
significant limitation that would lead to a considerable increase in computa-
tional requirements when more than two objective functions are used.

3.2. The novel A-AUGMECON2

Even if AUGMECON2 is one of the most efficient multi-objective method-
ologies, the computational burden is still a big issue, especially for com-
putationally intensive algorithms like the one detailed in Section 2; hence
inefficiencies, such as redundant simulations, shall be preemptively removed.

The number of grid points to be analysed grows exponentially with the
number of objective functions and with the desired density of the Pareto
curve. Moreover, the curve tends to present conglomerates of almost identical
points, not of interest for the decision maker. This is due to the fact that
the very valuable information contained in the slack variables is only used
by AUGMECON2 to bypass redundant points on the innermost loop.

A-AUGMECON2, whose source code is publicly available (see Appendix),
tackles the problem by limiting the calculation of points only to those whose
embedded information is worth to be included in the curve, thus minimizing
the computational time.

Two main actions allow limiting the number of points computed:
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1. Redundant simulations are preemptively recognized and not performed
for all objective functions: slack variables s are used to identify the
redundant grid points.

2. Redundant simulations corresponding to the points obtained to draw
the extreme points (ek and ek) of the search space are not repeated.

3.2.1. Computation of the payoff table

The priority order adopted in AUGMECON2 for the lexicographic opti-
mization of the payoff table, does not reflect the optimization order used
in the iterative algorithm for the creation of the Pareto frontier; hence,
payoff table points cannot be used to remove simulations in the following
step. Conversely, the priority among the objective functions is designed in
A-AUGMECON2 to reflect the procedure of the iterative loop and avoid
redundant optimizations.

To achieve this, the priority order of the objective functions in the lexi-
cographic optimization needs to be modified in such a way that, instead of
simply following the order in which the objective functions are listed in the
set as in AUGMECON2, once the k-th objective function with the highest
priority has been optimized, the second highest priority is attributed to f1(x);
after these two rounds, the rest of the objective functions can be sequentially
optimized following the order in which they are listed in the set. As in AUG-
MECON2, constraints are added at the end of every iteration to prevent
the optimizer from worsening the optimality of the previous solutions. The
mathematical description is detailed in Algorithm 1.

For the sake of clarity, Table 1 compares the order followed in the lexi-
cographic optimization for the computation of the payoff table in AUGME-
CON2 and A-AUGMECON2, in the case of p=3 objective functions. While
the former simply follows the order in which the objective functions are listed
in the pertaining set, the latter employs Algorithm 1 to always have f1 as sec-
ond highest priority (besides the first optimization, in which it is optimized
as first). The A-AUGMECON2 approach allows to obtain a payoff table that
contains points belonging to the Pareto curve; those points can be automat-
ically included in the final results, thus avoiding their re-optimization in the
iterative procedure to build the Pareto frontier.

Moreover, the hard constraints on the objective functions introduced by
the sequential optimizations (see line 9 of Algorithm 1) are turned into soft
constraints, i.e. penalties are associated to the differences from the desired
values f̂j, in order to avoid infeasibilities that may occur in case of non-null
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Algorithm 1 Defining the bounds with the new priority order for lexico-
graphic optimization.

1: for k ∈ {1, 2, ..., p} do
2: for kk ∈ {1, 2, ..., p} do
3: if kk = 1 then
4: Solve (49) with fj=k(x) obj. function; store solution f̂k,k
5: else if kk ≤ k then
6: Solve (49) with fj=kk−1(x) obj. function; store solution f̂k,kk−1
7: else
8: Solve (49) with fj=kk obj. function; store solution f̂k,kk

9: Add constraint fj(x) ≥ f̂j

10: Save final solution into payoff table

11: Calculate bounds: ek = min
k̂∈{1..p}

f̂k̂,k and ek = max
k̂∈{1..p}

f̂k̂,k

optimality gap.

3.2.2. Construction of Pareto frontier with online filter

The procedure to find the efficient solutions is shown in Figure 3 and
described in this section.

First, the payoff table is completed and the ranges of variation rk of
objective functions f2(x), ..., fp(x) are divided into gk intervals to identify
the grid of (g2 + 1) · (g3 + 1) · ... · (gk + 1) points, corresponding to the
maximum number of iterations to be performed, as detailed in the previous
section. Then, after the initialization of given indices, the main iterative loop
starts.

Table 1: Priority order in lexicographic optimization for p=3, in AUGMECON2 and A-
AUGMECON2.

AUGMECON2 A-AUGMECON2

it=1 f1 → f2 → f3 f1 → f2 → f3
it=2 f2 → f3 → f1 f2 → f1 → f3
it=3 f3 → f1 → f2 f3 → f1 → f2
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START

Create payoff table (lexmax fk(x),k=1,..p)

Set lower bounds lbk for k=2,...p

Calculate ranges rk for k=2,...p

Divide rk into gk intervals 
(set number of gridpoints = gk+1)

Initialize counters:
ik=0 for k=2,...p, np=0, vi2,...ip=1 

ip=ip+1

ip-1=ip-1+1

i2=i2+1

vi2,..,ip=0?

Payoff point?

NO

Solve problem P

NO

Feasible?

np=np+1

YES

i2=g2

Calculate bk=floor(sk/stepk)+1
for k=2,...,p

Find redundant points and set
vi2,..,ip=0 for each of them

NO i2<g2?

YES

i2=0

NO

ip-1<gp-1?

YES

ip-1=0

NO

ip<gp?

YES

END

NO

YES

YES

Problem P
max(f1(X)+ eps ∙ (s2/r2+10-1 ∙s3/r3+...+10-(p-2)∙sp/rp) 
st
X ϵ F
fk(X)-sk=ek   k=2,...,p

where
fk(X): objective functions to be maximized
ek=lbk+ik∙stepk
lbk: lower bound for objective function k
stepk=rk/gk: step for the objective function k
rk: range of the objective function k
gk: number of intervals for objective function k
sk: surplus variable for objective function k
F: feasible region
eps: a very small number
np: number of Pareto optimal solutions
bk=floor(sk/stepk): bypass coefficient for the objective function k
vi2,..,ip: parameter equal to 0 for redundant points, 1 otherwise

Figure 3: Flowchart of the proposed methodology.
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In order to improve the computational performances and the readability
of the results, an online filter skipping the redundant points is implemented
in every iteration. Each point is associated with a parameter vi2,...,ip , where
i = [i2, ..., ip]

T is the position vector of the point in the grid. The parameter
has value 1 if the point shall be analysed, 0 if it shall be skipped. At the
beginning of the procedure, the vector v of all vi2,...,ip is initialized to analyse
all points (vector of ones).

The optimization of a given iteration is performed only if the correspond-
ing vi2,...,ip equals 1 and if the position of the point in the grid does not
correspond to a point already calculated in the payoff table. If this last
condition occurs, the results obtained from the lexicographic optimization to
form the payoff table, as per Section 3.2.1, are directly included in the Pareto
frontier, thus avoiding the repetition of its calculation.

When the current iteration corresponds to a non-redundant solution, then
the optimization is performed and the outcome is collected; when a non-
feasible solution is returned, points characterized by more stringent thresh-
olds are skipped, as they are expected to provide non-feasible solutions, too.

When a feasible solution is obtained, it is stored in the repository of the
Pareto curve and the result is analysed to evaluate whether some redundant
simulations shall be removed from the analysis by setting the corresponding
vi = 0. To do so, the bypass coefficient bk = floor(sk/stepk) + 1 is computed
for k = 2, ..., p, where floor(·) returns the integer part of the number. Then,
Algorithm 2 is adopted to determine all the Ncomb combinations of i2, ..., ip
identifying the points of the grid that would produce a similar result, where
comb and ∆ik are parameters and mod(·) is a function that returns the
remainder of the division. The parameter vi2,...,ip of the Ncomb redundant
points is set to zero.

Algorithm 2 Defining the positions of redundant points.

1: bk = floor(sk/stepk) + 1, k ∈ 1, 2, ..., p
2: Ncomb =

∏p
k=2 bk

3: for comb ∈ 0, ..., Ncomb − 1 do
4: for k ∈ 2, ..., p do
5: ∆ik = mod(comb/bk)
6: comb = floor(comb/bk)
7: ik = ik + ∆ik
8: vi2,...,ip = 0
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Finally, the parameters i2, ..., ip are updated to move forward in the grid.
The procedure stops when the condition ik = gk + 1 holds for k = 2, ..., p.

For the sake of clarity, Figure 4 illustrates the procedure in presence
of redundant optimizations for the case of p=3 objective functions, where
f1(x) is optimized, while f2(x) and f3(x), both varying in the range 1÷4,
are turned into constraints. Point Uit, identified by the green square, is the
grid element to be analysed. It lies in position iU = [2, 1], i.e. problem (50)
is subject to the constraints (f2(x) − s2 = 2) and (f3(x) − s3 = 1). As
viU = 1, the optimization is not redundant and must be carried out. The
problem corresponding to the grid point Uit is solved; the results, shown in
Figure 4, are characterized by s2 = 1 and s3 = 2. Applying Algorithm 2, vi
is set to zero for Ncomb = 6 points, including the current grid point and 5
redundant iterations, represented as red dots in Figure 4. Then, the grid is
crossed in the direction of the blue arrow, according to the order in which
objective functions are listed in the related set, i.e. along f2 first, then along
f3. Therefore, the following point to be analysed is Uit+1.

Figure 4: Procedure to skip redundant optimizations in case p=3.

4. Case study

4.1. Description

The proposed methodology has been tested on the case study of the
rural community of Soroti, Uganda, accounting for about 100 households
and small commercial activities. Given the location and climate of the site,
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a photovoltaic plant and a wind farm are possible technology candidates for
the system along with lithium storage and fuel-fired generation, as shown in
Figure 1.

4.2. Load and renewable production

The initial load curve, shown in Figure 5, has been estimated in [49] by
means of on-field surveys and stochastic analysis. A 2% annual growth has
been considered [50].

The specific renewable and wind power production per unit of asset has
been estimated using the Renewable.ninja platform [51, 52].

Figure 5: Initial daily load.

4.3. Input parameters

According to the proposed multi-objective approach aligned with the Sus-
tainable Development Goals, the three sustainability dimensions, economic,
environmental and social, have been taken into account. The main economic
parameters of the optimization are summarized in Table 2; the data related
to the environmental impact (global CO2 emissions and land use) are re-
ported in Table 3; the information related to job creation is shown in Table
4, and the need for public lighting has been estimated based on on-field data
collection [49].
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Table 2: Components costs and lifetimes [11, 14, 17, 53].

Unit size ci mi FCi Lifetime

Photovoltaic panel 1 kW 1.1 kAC 10 AC/y - 20 y

Wind turbine 10 kW 27 kAC 810 AC/y - 20 y

Diesel generator 16 kW 11 kAC 0.208 AC/h 0.75 AC/L 15,000 h

Battery 1 kWh 0.4 kAC 10 AC/y - 15 y

Converter 1 kW 0.3 kAC - - 20 y

It is worth noticing that, in order to investigate the global environmen-
tal impact of the proposed systems, the emissions have been evaluated with
an LCA approach that allows a more in-depth and accurate impact analysis
with respect to an evaluation limited to direct emissions alone. The assess-
ment of the local environmental impact of the electrification project has been
accounted for in terms of land use of the different components. As for batter-
ies, their space requirements are considered negligible, as racks can present
a very compact layout.

Table 3: Components LCA emissions and land use [31, 54, 55].

Emissions Land use

Photovoltaic panel 2472.07 kgCO2/kW 7.1 m2/kW

Wind turbine 935.57 kgCO2/kW 267.7 m2/kW

Diesel generator 192.17 kgCO2/kW 2.35 m2/unit

Fuel 3.15 kgCO2/L -

Battery 56.45 kgCO2/kWh -

Many studies have analysed the impact of different energy technologies
on the job market in industrialized countries [56, 57], but little has been
done to investigate this topic for rural communities in the Global South. A
methodology has been developed in order to estimate multiplicative factors
that allow the data of industrialized countries to be applied to different con-
texts [58]. Given the interest of this work in evaluating the local impacts
in terms of job creation, only construction and installation (C&I) and op-
eration and maintenance (O&M) are included and shown in Table 4, as the
manufacturing of components for rural electrification projects is very likely
to be performed abroad, not contributing to local development.

25



Table 4: Components job creation per phase [59].

C&I O&M Fuel

[jobs/MW] [jobs/MW] [jobs/GWh]

Photovoltaic panel 13.46 7.34 -

Wind turbine 3.06 4.90 -

Diesel generator 2.08 1.96 2.94

Asset degradation has been included in the analysis by considering a 1%
annual decay of PV panel [18], a 0.53% annual deterioration of wind turbines
[19], and a non-linear power-dependent degradation of batteries [60–62].

4.4. Test procedure

The multi-objective problem described in Section 2 has been modelled
in GAMS 24.0.2 and solved with CPLEX, using A-AUGMECON2 method
described in Section 3.2. The comparison with the standard AUGMECON2
algorithm is also proposed.

The simulations have been run on a 6-core 3.20GHz Intel Core i7 computer
with 16GB RAM. A tolerance of 0.5% has been set on thresholds e, gk = 6
for k ∈ {2, ..., p}; hence, a grid of

∏p
k=2(gk + 1) = 2401 points is analysed.

Each optimization is bound by a time limit of 30 minutes and the time frame
under study is 10 years, described by means of one representative day per
month.

5. Results

The proposed multi-objective optimization provides a significant contri-
bution in terms of both methodological improvement and holistic analysis
of rural electrification projects. These aspects are analysed in the following
subsections.

5.1. Validation of the online Pareto pruning

Table 5 confirms that the novel methodology described in Section 3.2
allows a considerable reduction of the computational burden by skipping
many redundant computations, while keeping the same quality of informa-
tion about the Pareto curve. In particular, as highlighted in Table 5, the
total number of points in the curve is reduced by 42% with respect to the
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AUGMECON2 method, and the total time employed by A-AUGMECON2
is 48% lower. Hence, the tractability of the problem is highly improved.

Table 5: Computational performances with and without online Pareto pruning.

Points Computation time

AUGMECON2 240 95 h

A-AUGMECON2 139 49 h

In terms of Pareto frontier, the curve obtained with AUGMECON2 (Fig-
ure 6a) has more than four times the number of points than with the proposed
A-AUGMECON2 (Figure 6b), but actually it does not enrich the portfolio of
solutions; on the contrary, it hinders the readability of the results, as many
points overlap without providing further information, resulting in a more dif-
ficult decision making process. Hence, the presence of the online filter does
not undermine the accuracy of the results; on the contrary, it enables a more
efficient analysis of the curve. Moreover, it is worth noticing that, given the
limit on the duration of each optimization, AUGMECON2 was not able to
identify the extreme of the curve corresponding to maximum job creation,
while the proposed methodology automatically included this point without
additional computations, being it in the payoff table. Therefore, Figure 6b
provides a more comprehensive view of the possible solutions, even more
efficiently and faster than the standard AUGMECON2.

(a) (b)

Figure 6: Optimization results using AUGMECON2 (a) and A-AUGMECON2 with online
filter (b).
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5.2. Discussion on numerical results

The algorithm deals with conflicting objectives and the search space is
delimited by the points identified in the payoff table, in which the best per-
formance of each objective function is evaluated as per Section 3.2.1.

As highlighted in Figure 7, the minimum NPC point is characterized by
performances very similar to those of the points with minimum emissions and
maximum supply of the public lighting service. This means that the three
objective functions can perform very well without substantially compromising
the other two. In fact, public lighting has a limited effect in terms of the
other objective functions. Moreover, the economic target almost meets the
environmental one because of the affordability of renewable sources. On the
other hand, job creation and land use show quite poor performances in all the
three points. These solutions provide for the installation of a diesel generator,
about 160 kW of solar panels and more than 460 kWh of batteries.

Interestingly, it is worth noticing that the LCA approach for emissions
accounting leads to a generating portfolio of the point at minimum emissions
that is not entirely based on renewable sources: the diesel generator is oc-
casionally employed at the end of the project, when the load is higher and
the performances of PV panels are poorer. This is because the installation
of an additional quantity of panels sufficient to cover the load for the entire
duration of the project, net of the degradation phenomena, would cause a
greater quantity of life-cycle emissions than those associated with the instal-
lation and occasional use of a diesel generator, providing about 2% of the
total energy. This result highlights the importance of an LCA impact assess-
ment (from cradle to grave), because limiting the analysis to direct emissions
could lead to distorted and incorrect considerations.

If land use had the highest priority for the decision maker, it could be
drastically reduced by installing 2 diesel generators and about 121 kWh of
batteries, providing an equivalent of more than 7 full-time jobs. However, it
would come with very high life-cycle emissions and a considerable increase
of the NPC with respect to the least-cost option.

Finally, the maximization of jobs leads to the installation of all the avail-
able units and, consequently, to a significant oversizing. Hence, it is asso-
ciated with the highest costs, emissions and land use, and the total public
lighting demand can be easily satisfied. This is the only case in which wind
turbines are installed.
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Figure 7: Payoff table points.

5.3. Narrowing down possible solutions

The output of the procedure, shown in Figure 6b, provides a comprehen-
sive view of the problem and enables the decision maker to analyse the mu-
tual relationships of the various objective functions. Despite the filter, which
removes redundancies and improves the readability of the results, some con-
siderations can be made to further reduce the portfolio of available options
and ease the decision making process, starting from the analysis of Figures
6b and 7 and from the considerations in Section 5.2. In particular, the points
of the grid with high thresholds on jobs creation (> 8) can be excluded from
the analysis, as they correspond to oversized microgrids. Moreover, given the
very limited influence of public lighting on the total cost of the system, it
is sensible to guarantee a high share of the service, in light of the extremely
positive impact it has on the well-being of the community. Therefore, only
points with PL > 90% are taken into consideration. This allows to narrow
the options down to the 15 points shown in Figure 8.

Figure 8a highlights that higher emissions are associated with higher costs
and more people employed in the plant. In fact, the higher the reliance on
diesel generators, the greater the emissions and the workforce needed to
manage the supply of fuel in the system.

As previously underlined, the lowest land occupation is achieved with the
installation of diesel generators, supported by batteries, which produces a
rather high demand for labour. When PV panels are installed, they make up
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(a) (b)

Figure 8: Cost and jobs variations depending on LCA emissions (a) and land use (b).

the prominent contribution to land take, considering that wind turbines are
not installed because their limited energy production makes them inefficient
in terms of both cost and land use. Figure 8b makes it possible to identify
the presence of two trends: an upper curve characterized by a large land use
(yellow-orange dots), and a lower one (cyan-blue dots) with lower land use
needs. When comparing points of the two curves with similar NPC, it turns
out that the upper curve comes with lower emissions and a related higher
renewable penetration. Moreover, in case of fairly homogeneous points in
terms of land use (having similar colour in Figure 8b), which also means
similar PV capacity, the different capacities of the battery system and diesel
generators, and therefore a different operation of the assets, highly influence
the other objective functions. In particular, the operating costs of diesel
generators significantly affect NPC and emissions.

5.4. Decision making process

The peculiarity of the Pareto curve obtained from multi-objective opti-
mization is that it preserves the complexity of the problem under analysis
and allows the decision maker to have a full picture of the possible solutions
and of their outcomes in different scopes.

Several works adopt procedures that lead to the selection of one single
point of the curve by means of mathematical methods [46, 47]. In the authors’
opinion, the selection of the optimal microgrid for the purpose of rural elec-
trification has so many impacts on the community, that it is preferable that
the decision maker is able to evaluate among a reasonable number of options
and to select the most appropriate according to site-specific characteristics.

Among the various qualitative criteria that can facilitate the final evalu-
ation based on the specificities of the community are: the willingness to pay
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for energy; the social acceptability of the different technologies; the compati-
bility with future expansion of the plant; the resilience of the system, related
to the availability of components and to the ease of maintenance and training
of specialized personnel [30, 31, 33].

6. Conclusions

This paper successfully proposes a multi-objective planning method for
off-grid microgrids able to optimize socio-economic, security and environmen-
tal concerns in a long-term perspective, accounting for detailed multi-year
simulations of the system operation and assets degradation. In order to
efficiently solve the corresponding non-linear multi-objective problem, the
novel A-AUGMECON2 algorithm has been developed and its results proved
to improve the convergence characteristics of the standard AUGMECON2,
thanks to the novel Pareto pruning method that avoids repeating redundant
optimizations. Each A-AUGMECON2 optimization is integrated with an it-
erative approach that allows to efficiently deal with the non-linear problem
by solving a number of MILP subproblems, where parameters are updated
till convergence.

The results of this paper demonstrate that increasing the reliance on fuel-
fired generators can improve the direct local jobs, as a consequence of the
installation, maintenance and operation of the assets, and limit the land use.
However, this objective is conflicting to life-cycle economic cost and global
environmental impact; thus a compromise is required. Interestingly, the op-
timal design considering economics only leads to very good performances in
terms of carbon emissions, as renewable energy sources supported by bat-
teries can provide a reliable service at low cost. Moreover, the provision of
public lighting service has a very limited impact on the generating portfolio
but it has a significant impact on the well-being of the community; therefore,
it is reasonable to guarantee the provision of this service when planning rural
electrification projects.

The Pareto frontier obtained using the A-AUGMECON2 is equivalent
to the one obtained by the standard AUGMECON2, but the computational
requirements are more than halved with respect to the latter.

The corresponding Pareto frontier can guide developers and policy mak-
ers in better understanding the trade-off between multiple impacts for rural
microgrids, accounting for detailed non-linear models of the assets degra-
dation and the system operation. Moreover, A-AUGMECON2 method has
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proved to effectively solve multi-objective problems and can be easily applied
to other energy fields and system configurations.

Appendix A. Source code

The source code is publicly available on the GitHub platform at the fol-
lowing link: https://github.com/marinapet/multi-objective.
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