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A B S T R A C T   

This paper deals with the benchmarking of the technical efficiency of 23 metro systems in Europe. Since financial 
data reflecting the operating costs and revenues are not often made available to the public, the aim of this work is 
to develop a method based on production variables to enable large-scale analysis at the European level. The 
methodology consists of two stages. In the first stage, a gross value of effectiveness is estimated by means of a 
stochastic frontier regression based on the Cobb-Douglas production function. The results show about half of the 
considered firms reaching scores higher than 80%. However, these gross effectiveness estimates could be 
influenced and constrained by long term and external factors that go beyond the control of firms’ day-to-day 
management. For this reason, in the second stage, an exponential multiple regression is estimated to deter-
mine the effects of these factors on gross effectiveness. The elasticities obtained through a multiple regression are 
used for evaluating the net effectiveness, by removing positive or negative contributions to the gross effective-
ness that come from the identified “long term” factors. The results show that transit firms operating smaller 
networks tend to have higher net effectiveness scores in the short-term compared to larger transit firms.   

1. Introduction 

The comparison of operators’ performance is important in public 
transportation systems because transport firms usually operate in their 
local markets under concession without any competition within the 
market, which might lead to some inefficiencies. Therefore, it is 
important for regulators and stakeholders to measure and monitor the 
performance of a local transport operator, benchmarking it against other 
firms operating in the same sector. Performance evaluation is also 
crucial to evaluate the capacity of operators to adapt to societal or 
network changes across time, considering that the urban context where 
these firms operate is highly dynamic. Moreover, firms operating metro 
networks are characterized by high operation expenditures which are 
not fully covered by the service’s farebox revenues, since in most cases 
fares are set by public authorities with the aim of promoting an attrac-
tive and inclusive public transport network also for the lower income 
groups. The need therefore arises to understand what the optimal level 
of public subsidies is, also in relation to the conditions of the sur-
rounding environment (context and market). 

Efficiency analyses allow us to distinguish between factors related to 
operators’ inefficiencies (internal factors) and critical factors related to 

the market (external factors). Moreover, they help to identify fair levels 
of public subsidies for transit operation costs that are not fully covered 
by revenues, also in relation to different urban contexts. For these rea-
sons, they are fundamental tools when assessing the performances of 
metro systems. Despite different urban transit firms having different 
goals (De Borger, Kerstens, & Costa, 2002), studies focused on produc-
tivity and technical efficiency as all public transport sector activities are 
required to operate efficiently, and this has been a matter of concern for 
decades for the governments, transport authorities and researchers 
(Lobo & Couto, 2016). 

The aim of this paper is to collect and integrate data and develop a 
method for the benchmarking analysis of the technical efficiency of 
European metro systems. Financial variables were used in previous an-
alyses (Brage-Ardao, Graham, & Anderson, 2015), (Tsai, Mulley, & 
Merkert, 2015). However, very often this data is not made publicly 
available or it is reported with different levels of detail (Tsai et al., 
2015). In fact, in many European cities, the same public transport firm 
operates metro systems together with the other urban public transport 
modes (e.g., urban buses, trams, trolleybuses) eventually available in the 
city. The operator usually publishes only aggregated revenues and costs 
data in its annual reports and accounting documents, from which it is 
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not possible to allocate costs and revenues related only to metro oper-
ations. Different reporting criteria and different levels of detail and data 
aggregation were found in the preliminary assessment of income and 
expense statements, even between firms in the same country. Moreover, 
allocative efficiency analysis implies a behavioural assumption of cost 
minimization or profit maximization (Coelli, Rao, O’Donnell, & Battese, 
2005), which may be questionable in the case of state-owned metro 
operators, which usually prioritize service supply. 

In contrast, most metro operators usually publish data such as 
network and fleet size, labour force and produced outputs (car-kilo-
metres, passenger-kilometres, etc.). This study was developed under the 
perspective of production, with the aim of delivering benchmarking 
tools that make use of open data, to facilitate the inclusion of systems 
that otherwise would not be considered as well as the update of this 
benchmarking exercise over time. In this context, the efficiency analysis 
was performed through estimation of a production function that ex-
presses a relation between the consumption of inputs and the output 
obtained. The inputs used to produce the output are of two types: labour 
and capital. Labour input is expressed by the number of employees 
directly involved in the operation of the network. Capital consumption is 
mainly related to the use of materials (fleet and infrastructure) and 
energy. Since there is no detailed data about consumptions and main-
tenance requirements, it is necessary to find proxies, and a good-one 
could be to use the car-kilometres to characterize the consumption of 
the fleet and infrastructure, also proxying the consumption of energy for 
train circulation. In the first stage, effectiveness scores are obtained 
using the number of passengers carried per year as the output variable, 
but these scores are affected by several factors that are beyond the 
managerial control in the short-medium term. For this reason, we define 
these first effectiveness estimates as gross effectiveness, since the effects 
of external factors should be statistically controlled and removed to 
compute a net indicator of firms’ effectiveness. Therefore, in a second 
stage, a regression is performed to evaluate the net effectiveness based 
on that which the firm can control directly, removing the effects of 
factors that are beyond its control in the short-medium term. 

This paper contributes to the existing literature by performing a 
uniformized benchmarking on the efficiency of European metro systems 
under data constraints and, at the same time, by considering the impact 
of external factors on the efficiency of firms, distinguishing between 
socio-economic factors of the urban areas where metro systems operate 
and factors that firms cannot control in the short term. The stochastic 
frontier method used in this study allows us to estimate efficiency and 
test hypotheses on inputs’ coefficients. 

2. Literature review 

For decades the efficiency of transport networks has been a focus of 
concern because of their key role of these systems in fostering economic 
and social equity and development. Research related to productivity and 
efficiency analysis was carried out across the entire transport sector. As 
an example, airport operating efficiency was studied by (Oum & Yu, 
2004) and (Pels, Nijkamp, & Rietveld, 2003), while (Cullinane, Song, & 
Gray, 2002) and (Hung, Lu, & Wang, 2010) analysed the operating ef-
ficiency and benchmarked the performance of container ports. (Lobo, 
Amorim, Rodrigues, & Couto, 2018; Lobo, Couto, & Rodrigues, 2016; 
Lobo, Rodrigues, & Couto, 2014) proposed an adaptation of efficiency 
measures in the context of stochastic frontier analysis to propose new 
operating speed frontier models for two-lane roads that allow for the 
estimation of any desired percentile speed; the stochastic upper speed 
frontier, representing the fastest drivers, is estimated based on the road 
conditions, and the asymmetric error accounts for speed reductions 
(“inefficiencies”) associated with the diversity of drivers’ behaviour and 
vehicle technology. 

Focusing on the public transport sector, several studies are present in 
the literature related to both road and railroad public transport. (Boame, 
2004; Farsi, Filippini, & Kuenzle, 2006; Karlaftis, 2004; Von 

Hirschhausen & Cullmann, 2010) performed efficiency analyses of bus 
firms and (Merkert, Mulley, & Hakim, 2017) defined a two-stage model 
to benchmark 58 Bus Rapid Transit (BRT) systems operating worldwide. 
Comprehensive reviews of studies assessing bus firms’ performances can 
be found in (De Borger et al., 2002) and (Daraio et al., 2016). Moreover, 
efficiency analyses have been applied also to subunits within the same 
transport organisation: this is the case of (Barnum, McNeil, & Hart, 
2007) who analysed the efficiency of the park-and-ride lots of the Chi-
cago Transit Authority. 

Regarding the railway sector, comprehensive reviews of studies and 
methodologies dealing with its operational performance can be found in 
(Brons, Nijkamp, Pels, & Rietveld, 2005; Catalano, Daraio, Diana, Gre-
gori, & Matteucci, 2019; Fried, Lovell, & Schmidt, 2008; Holvad, 2020; 
Oum, Waters, & Yu, 1999); examples of these studies are (Alam, Xuemei, 
Baig, Yadong, & Shah, 2020; Bojović, Milenković, Kapetanović, & 
Knežević, 2016; Cantos & Maudos, 2001; Cantos, Pastor, & Serrano, 
1999; Chapin & Schmidt, 1999; Couto & Graham, 2009; Cowie, 1999; 
Growitsch & Wetzel, 2009; Jitsuzumi & Nakamura, 2010; Kutlar, 
Kabasakal, & Sarikaya, 2013; Mallikarjun, Lewis, & Sexton, 2014; Oum 
& Yu, 1994). Also, the efficiency of public transport authorities (PTAs) 
was the object of several studies: (Holmgren, 2013) analysed the cost 
efficiency of PTAs signing gross cost contracts with operators, while 
(Link, 2016, 2019) assessed the efficiency in using subsidies for fran-
chised regional services. (Sameni, Preston, & Khadem Sameni, 2016) 
developed a two-stage approach to assess the performance of stations: in 
the first stage, technical efficiency (how well stations handle train stops) 
is computed, while in the second stage, service effectiveness (how well 
stations “transform” train stops into passengers’ flow) is calculated. 
(Smith, 2012) assessed the relative efficiency performance of rail 
infrastructure managers after railway deregulation to determine 
whether and to what extent this policy change had an impact on the 
efficiency of railway systems. Similar analyses conducted after the 
important environment and policy changes introduced by railway 
deregulation and liberalization were performed by (De Jorge-Moreno & 
Garcia-Cebrian, 1999; Lerida-Navarro, Nombela, & Tranchez-Martin, 
2019; Wetzel, 2008). 

Efficiency and productivity studies have been applied, albeit to a 
lesser extent, also to urban rail transit efficiency assessment. As previ-
ously defined, labour and capital are the inputs used by transit operators 
to produce the outputs. Labour input is used to measure the human effort 
in the production process (Jain, Cullinane, & Cullinane, 2008), while 
capital expresses a stock from which a flow of services is derived (Oum 
et al., 1999). (Jain et al., 2008) used the number of staff as labour and 
the number of train cars as capital inputs, while the total length of tracks 
run by trains expresses the route length. A similar choice was made by 
(Lobo & Couto, 2016) and (Xue & Zhao, 2021). The former used network 
length, number of stations and number of train cars to characterize 
firms’ capital and the number of employees to represent the labour 
force. The latter used similar inputs and added the total traction energy 
consumptions. Urban rail transit uses several production factors for the 
provision of the services and, as defined in (Graham, Couto, Adeney, & 
Glaister, 2003), four basic factors for the production of urban rail firms 
are labour, fleet of vehicles, number of stations and fixed infrastructure. 
(Graham, 2008) used the number of employees and the route length plus 
fleet capacity as another input variable which represents the standing 
and seat capacity of the fleet. Even when the analyses are concerned 
with assessing the cost efficiency of urban rail firms, the inputs reflect 
the factors listed above. (Tsai et al., 2015) determined the input prices 
by dividing the corresponding costs by the quantities of inputs: labour 
price is the staff cost per employee; rolling stock price, which is a proxy 
of capital price, is the ratio between non-staff costs and the total number 
of cars. While the production factors of metro systems are the same as 
those of railway firms, outputs are not the same. Indeed, as stated in 
(Jain et al., 2008), when analysing the performance of the former, only 
outputs related to the provision of passenger service can be included, 
such as passengers’ trips per year or car-kilometres per year. (Novaes, 
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2001) used the total passengers carried per year as an output variable, 
while (Xue & Zhao, 2021) considered the passenger turnover volume 
and the ticket revenues. Differently, (Graham, 2008) decided to use the 
car-kilometres per year to characterize the output of the system as this 
data reflects that which a urban rail firm is able of producing, while 
measures such as passengers and passenger-kilometres are demand- 
related. This is the reason that both output measures are usually 
included in the analysis: the first one (car- kilometres) to measure sys-
tems’ efficiency, while the second one (passengers) to assess systems’ 
effectiveness. This is the case of (Lobo & Couto, 2016) who performed 
two different measurements: they measured the number of car- 
kilometres produced per year for estimating efficiency and measured 
the number of passenger carried per year for evaluating effectiveness. 
Also (Jain et al., 2008) and (Tsai et al., 2015) considered passenger trips 
and car-kilometres as output variables in their analyses. (Wey, Kang, & 
Khan, 2020) proposed a two-stage framework for the performance 
assessment of Taipei metro transit in which they decomposed the overall 
rail transit efficiency into production efficiency and service effective-
ness, considering two different high-capacity and medium-capacity 
transit systems that perform services using shared inputs (i.e., labour 
force) and dedicated inputs (i.e., the specific route length and the 
dedicated fleet of each system). In particular, operating route length, 
fleet vehicles and shared factors (such as staff) are inputs and vehicle- 
kilometres are the output for the production process. Vehicle- 
kilometres are also an input for the service process, together with the 
number of stations and other shared factors. Finally, the outputs of the 
service process are passengers and passenger-kilometres. When instead 
dealing with costs, (Brage-Ardao et al., 2015) used the train service costs 
as the dependent variable, rationalized by the car-kilometres, passenger 
journeys and train hour outputs. 

In the evaluation of the efficiency of both railway and urban rail 
transit firms, it is important to stress that scores are influenced by var-
iations in the market, operating, institutional and regulatory policy 
environments (Oum & Yu, 1994), which cannot be fully controlled or 
managed by firms. Among these factors, some are totally uncontrollable, 
while others can be controlled by firms, but only in the long term 
(Gathon & Pestieau, 1995). For these reasons (Oum & Yu, 1994) applied 
a regression to a railway gross efficiency index previously evaluated to 
identify a residual index as a closer indicator of managerial and tech-
nical efficiency. The gross efficiency index represents the combined 
outcome of true managerial and operational efficiency and the effects of 
constraints imposed by external conditions. The variables used in the 
regression capture the effects of government policy and other uncon-
trollable variables on the gross efficiency indices, and the results showed 
that to properly compare and make inferences about management and 
operation efficiency measures among firms, it is necessary to control for 
these differences in operating and market environment. Focusing on 
urban rail transit, (Tsai et al., 2015) performed Tobit regressions to 
assess the effects of external factors on the urban rail cost efficiency, 
while (Lobo & Couto, 2016) considered, in a second stage of their sto-
chastic frontier analysis, the socio-economic factors of cities where 
metro systems operate to assess their effects on the systems’ perfor-
mance. The effectiveness scores obtained in this second stage were 
compared with the ones previously obtained (without external vari-
ables), and conclusions were drawn on whether metro systems operate 
in a favourable or unfavourable surrounding environment. Finally, (Wey 
et al., 2020) introduced environmental and transport policy factors to 
evaluate their impacts on the efficiency and effectiveness of the Taipei 
metro system and its associated subsystems. A review of the variables 
used to characterize railway firms’ inputs and outputs as well as the 
characteristics of the network, service, policy, and external environment 
can be found in (Canavan, 2015) and (Catalano et al., 2019). 

Since the degree of technical efficiency can only be measured in 
relation to “best practices”, an efficiency frontier must be constructed 
(Brons et al., 2005) that can be either a production or a cost frontier. The 
production frontier represents the maximum output attainable from 

each input level, hence it represents the current state of the technology 
in the industry (Coelli et al., 2005). In other words, the production 
frontier defines the maximum output that can be produced from a 
specified set of inputs, given the existing technology available to the 
firms involved (Batiese, 1992). Existing approaches to define production 
frontiers can be distinguished as parametric versus non-parametric and 
deterministic versus stochastic. The most widely used methods are the 
deterministic non-parametric Data Envelopment Analysis (DEA) and the 
Stochastic Frontier Approach (SFA), which are both able to address the 
complexity of measuring railway efficiency (Makovsek, Benezech, & 
Perkins, 2015). A comparative study can be found in (Cullinane, Wang, 
Song, & Ji, 2006), where DEA and SFA were applied to the same dataset 
to assess the technical efficiency and the scale properties of container 
ports. The obtained efficiency scores and the relative methods’ strengths 
and weaknesses were compared and analysed. The main advantages of 
the DEA technique are that it does not require strong a priori assump-
tions regarding production technology (Couto, 2004) and it can be used 
with much smaller data samples compared to SFA (Tsai et al., 2015). The 
drawbacks instead are that DEA results are greatly dependent on the 
observed best practices in the sample (Couto, 2004) and the inclusion of 
additional firms may change efficiency scores (Coelli et al., 2005). 
Moreover, measurement errors and other noise may influence the shape 
and position of the frontier, and outliers may influence the results (Coelli 
et al., 2005; Holvad, 2020). Finally, since this technique does not 
involve the estimation of a statistical model, it cannot be used to test 
whether the efficiency index for a specific observation is statistically 
significant or not (Couto, 2004). The main advantages of the stochastic 
frontier methodology are that it accounts for noise and can be used to 
conduct conventional test of hypothesis; however, it requires to specify 
the functional form of the inefficiency component and of the production 
function (Coelli et al., 2005). Additionally, a large dataset with panel 
data is needed to estimate robust results (Tsai et al., 2015). In this way, 
our study follows in the footsteps of other studies using SFA for cross- 
country production efficiency benchmarking in the transport sector, 
such as (Gathon, 1989) for urban buses, (Cullinane et al., 2002) for 
ports, (Pels et al., 2003) for airports, (Coto-Millán, Inglada, Legidos, & 
Rodríguez-Álvarez, 2004) for airlines, and (Lobo & Couto, 2016) for 
metros. 

2.1. Data collection and pre-processing 

To evaluate the efficiency of the European metro systems, the first 
step was to collect data on the operation of the metros and the socio- 
economic factors of the surrounding urban context. The collected data 
allowed us to build up a database that includes 25 cities and 328 panel 
data observations, covering the period from 2000 to 2020. The cities and 
operators whose metro systems are included in the database are: Bar-
celona (TMB), Berlin (BVG), Bilbao (Metro Bilbao), Brescia (MetroBS), 
Brussels (STIB), Bucharest (Metrorex S.A.), Budapest (BKV), Glasgow 
(SPT), Hamburg (Hamburger Hochbahn), Helsinki (HKL), Lausanne 
(TL), Lisbon (Metropolitano de Lisboa), London (TfL), Madrid (Metro de 
Madrid), Milan (ATM), Munich (MVG), Oslo (Sporveien Oslo AS), Paris 
(RATP), Porto (Metro do Porto), Prague (DPP), Rome (ATAC), Toulouse 
(Tisséo), Turin (GTT), Warsaw (Metro Warszawskie) and Wien (Wiener 
Linien GmbH & Co KG). These metro systems are the ones for which it 
was possible to find publicly available data in official sources, such as 
annual reports of transit operators or authorities. 

The collected variables characterizing metro systems are the network 
length (NL), the number of stations (NS), the number of train sets (NT), 
the number of coaches (NC) and the number of employees (NE), which 
were collected from official reports released by public transport opera-
tors or transport authorities. In case of few missing values, a linear 
regression was performed among the available data to fill with the 
necessary information. 

The number of employees of the metro systems required further 
calculations, especially in the case of public transport firms operating 
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several transport systems. In this case, when data on workers directly 
employed in metro’s operations were not available in the report, the 
following approximation was made: for each firm, the total fleet was 
calculated as the sum of the number of trains, buses, trams and any other 
public transport vehicle operated by the firm. The percentage of metro 
trains in the fleet was then calculated and it was used to derive the 
workforce directly involved in the operations of the metro system by 
multiplying the total number of employees by this percentage. 

Two additional variables dealing with offer and demand were 
collected: car-kilometres (CARKM) and passengers carried per year 
(PASS). The published data did not always report car-kilometres: in 
about half of the cases, the available information referred to train- 
kilometres. In these situations, the procedure applied requires calcu-
lating the average number of coaches per train for each year. Then, the 
value found is multiplied by the train-kilometres value of the same year 
to obtain a proxy of the car-kilometres. The summary statistics of metro 
systems included in the database are presented in Tables 1 and 2. 

The second category of collected data concerns the socioeconomic 
attributes of the cities where the metro systems operate: metropolitan 
area total land area (AREA), total population of the metropolitan area 
(POP), age dependency ratio (DEPDEM), average household size (AHS), 
unemployment rate (UR), population density (PD), number of cars 
registered per 1000 inhabitants (CREG), gross domestic product per 
capita (GDP) and diesel pump price (GAS). 

The average household size and the number of cars registered per 
1000 inhabitants were collected from the Urban Audit Database 
(Eurostat, 2021). The metropolitan land area, total population, unem-
ployment rate, population density, and GDP per capita were collected 
from the Regions and Cities Statistical Atlas (OECD, 2021a) of the 
Organisation for Economic Co-operation and Development (OECD). The 
age dependency ratio was calculated as the ratio between the population 
not included in the labour force (aged 0 to 14 years and over 65 years) 
and the population included in labour force (aged between 15 and 64) 
available in the same database. The values of the GDP per capita are 
expressed in 2015 constant prices (USD) and constant purchasing power 
parities. Since the OECD database only includes data up to the year 
2018, for systems with observations related to 2019 and 2020, a 
regression was performed to find these values as well as to complete the 
missing values. 

The diesel pump prices are national average values obtained by 

averaging all price observations related to the year under consideration 
reported in the Oil Bulletin Price History database (European Commis-
sion, 2021). These values are then adjusted to the reference year 2015 by 
means of the GDP deflator values of the different countries (World Bank, 
2021). In the World Bank database, Poland and Romania’s deflators 
were referred to 2010 and 2005 base years, respectively. For this reason, 
Poland’s results were additionally adjusted to the reference year 2015 
by dividing them by the respective deflator published in the GeoBook 
dataset (OECD, 2021b). On the other hand, for Romania’s values the 
prices were adjusted using the European Union (EU) average, due to 
data unavailability. 

Finally, as a general procedure, any data not available in the OECD 
Statistical Atlas was sought in the Eurostat Urban Audit database or in 

Table 1 
Mean values of the variables characterizing metro systems.  

System Number Years NL NS NT NC NE 

Barcelona 1 2000–2019 97 126 148 734 3323 
Berlin 2 2002–2020 147 172 259 1294 5267 
Bilbao 3 2001–2019 40 37 42 179 674 
Brescia 4 2013–2018 13 17 18 54 131 
Brussels 5 2006–2019 40 69 75 320 1792 
Bucharest 6 2008–2019 69 51 71 308 4192 
Budapest 7 2000–2011 31 40 78 389 1671 
Glasgow 8 2012–2019 11 15 14 41 277 
Hamburg 9 2003–2019 102 90 233 800 2905 
Helsinki 10 2001–2020 25 18 32 129 277 
Lausanne 11 2015–2019 14 29 38 76 386 
Lisbon 12 2000–2019 38 49 110 335 1605 
London 13 2002–2006, 2010–2019 405 271 607 4174 17,848 
Madrid 14 2000–2019 260 272 411 2037 6539 
Milan 15 2000–2005, 2012–2019 83 96 169 861 2904 
Munich 16 2003–2011, 2019 91 94 99 595 2470 
Oslo 17 2015–2019 85 101 115 345 614 
Paris 18 2000–2011,2013–2019 218 300 701 3573 12,181 
Porto 19 2003–2018 56 68 79 238 387 
Prague 20 2002–2011, 2013–2019 59 56 144 718 2762 
Rome 21 2001–2011, 2013–2019 43 55 85 512 2508 
Toulouse 22 2016–2019 27 38 116 232 840 
Turin 23 2006, 2008–2019 11 19 28 56 176 
Warsaw 24 2015–2019 29 28 75 450 2441 
Wien 25 2013–2016, 2018–2019 80 106 135 882 4127  

Table 2 
Mean values of CARKM and PASS.  

System Number CARKM PASS 

(thousands) St. Dev (thousands) St. Dev 

Barcelona 1 77,467.4 12,392.7 362,120.0 32,070.3 
Berlin 2 125,616.7 6138.5 516,586.7 42,445.7 
Bilbao 3 18,008.3 3466.2 82,618.0 9412.0 
Brescia 4 5051.7 661.3 15,924.7 2203.3 
Brussels 5 23,997.4 7062.7 135,471.4 11,709.9 
Bucharest 6 36,320.9 8162.7 175,452.3 4190.8 
Budapest 7 29,766.6 582.6 294,298.8 22,018.9 
Glasgow 8 3525.0 138.9 12,462.5 776.3 
Hamburg 9 80,752.6 7884.3 206,960.6 29,629.9 
Helsinki 10 – – 62,166.7 10,995.8 
Lausanne 11 3576.4 316.1 43,862.0 2518.2 
Lisbon 12 22,940.2 2779.1 169,918.7 15,397.9 
London 13 530,338.6 40,437.2 1,194,898.1 158,219.1 
Madrid 14 169,293.7 26,727.6 613,696.5 48,992.7 
Milan 15 56,848.6 5200.2 324,525.8 21,764.4 
Munich 16 62,428.8 3824.8 350,444.4 34,975.4 
Oslo 17 42,460.0 4505.3 112,000.0 11,291.6 
Paris 18 237,931.7 17,414.4 1,431,457.9 110,281.3 
Porto 19 17,991.9 5782.6 46,301.2 18,282.2 
Prague 20 51,258.4 6878.1 500,266.6 61,405.8 
Rome 21 37,878.0 6417.2 269,748.5 53,698.5 
Toulouse 22 – – 111,975.0 4273.5 
Turin 23 9570.8 1857.3 36,727.1 11,302.8 
Warsaw 24 36,034.5 1097.9 185,416.0 8984.9 
Wien 25 82,783.3 3150.5 445,266.7 13,302.0  

L. Castagna et al.                                                                                                                                                                                                                               



Research in Transportation Business & Management 53 (2024) 101102

5

the publications of national statistic offices. 
Moreover, the presence of other metro-like and tram systems in the 

same metropolitan area is depicted by the dummy variable OUR which is 
set equal to 1 when at least one of these systems exists. 

3. Model description 

3.1. Gross effectiveness 

In the first modelling stage, a gross effectiveness measurement to 
account for factors that are beyond the short-medium term management 
control was carried out using a stochastic frontier regression based on 
the Cobb-Douglas production function. The stochastic frontier method-
ology approach, introduced by (Aigner, Lovell, & Schmidt, 1977) and 
(Meeusen & Van Den Broeck, 1977), allows us to distinguish between 
efficient and inefficient production and to estimate the degree of in-
efficiency (Brons et al., 2005). Differently from the deterministic ones, 
stochastic production frontiers state that some firms fail to achieve their 
production frontier, and the inefficiencies cannot be fully explained by 
measurable variables (Oum et al., 1999). For this study, the stochastic 
frontier approach has been chosen because it allows us both to estimate 
technical efficiency and to test hypothesis on inputs’ coefficients. 

Following the principles highlighted in (Coelli et al., 2005), the 
functional form of the stochastic production frontier is given by: 

ln y = βX + v–u (1)  

where:  

• y is the output produced;  
• X is the vector containing the logarithms of inputs;  
• β is the vector of unknown parameters, the inputs’ coefficients;  
• v is the symmetric random error that accounts for statistical noise 

(can be positive or negative);  
• u is the one-sided distribution error. 

As stated in (Coelli et al., 2005), the statistical noise arises from the 
inadvertent omission of relevant variables from the vector X, as well as 

from measurements errors and approximation errors associated with the 
choice of the functional form. The noise term has the same probability of 
being favourable or not to the production, thus it takes the form of a 
normal and symmetric distribution, giving the random (i.e., stochastic) 
nature to the production frontier exp(βX + v) (Lobo & Couto, 2016). As a 
result, the stochastic frontier output can lie above or below the deter-
ministic frontier defined by exp(βX). 

u is a non-negative random variable associated with technical in-
efficiency. Specific distributions for u explored in the literature are 
exponential, half-normal, truncated normal and gamma (De Borger 
et al., 2002). In this study, it is assumed that error u follows an expo-
nential distribution. Finally, the model is estimated using the Maximum 
Likelihood (ML) method. 

Fig. 1 clarifies the concept of the stochastic production frontier for 
two firms A and B that use a given input level xi to produce the output yi 
(i = A, B); the same figure makes it possible to specify the concept of 
technical efficiency (TE) (Eq. (2)), which is defined as the ratio between 
the observed output for each firm i and the relative stochastic frontier 
output. It measures the actual output produced by firm i with a given 
input level, compared with the output that a fully efficient firm could 
produce with the same input vector. 

TEi =
yi

exp(βXi + vi)
=

exp(βXi + vi − ui)

exp(βXi + vi)
= exp( − ui) (2) 

So far, we have discussed about technical efficiency, although this 
concept assumes different meanings depending on whether the output 
variable expresses supply or demand. Since in this paper, as it will be 
described below, the number of passengers carried per year, i.e., a de-
mand variable, is used as an output, it is appropriate to refer to effec-
tiveness rather than efficiency. 

In this study, the Cobb-Douglas production function is the functional 
form used to express the relationship between inputs and outputs, as 
required by stochastic frontier methodologies. 

This function is expressed, for n inputs, as: 

y = β0⋅
∏N

n=1
xβn

n (3) 

The econometric software NLOGIT 5 used for the estimations 

Fig. 1. Stochastic production frontier from (Lobo & Couto, 2016) based on the work of (Coelli et al., 2005).  
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requires a linearized form of the Cobb-Douglas equation (Eq. (4)) and 
returns, for each observation, the expected value E(ui|εi). 

lny = lnβ0 +
∑N

n=1
βn⋅lnxn (4) 

E(ui|εi) corresponds to the mean of the conditional distribution f 
(u|ε), estimated following the approach described by (Jondrow, Lovell, 
Materov, & Schmidt, 1982). It corresponds to the punctual estimate of 
the error u for each observation, allowing us to apply Eq. (2) to obtain 
the gross effectiveness (GE) of each firm i (Eq. (5)). 

GEi = e− E(ui |ϵi) (5)  

3.2. Net effectiveness 

To understand how the day-to-day management affects the produc-
tion, in this stage the net effectiveness is derived by considering the 
factors associated to long-term (strategic) management decisions and 
the socio-economic context. In this sense, an exponential multiple 
regression is performed starting from the gross effectiveness results of 
the first stage, which may be expressed as: 

ln GEi = lnβ′
0 +

∑J

j=1
βj⋅lnxj,i +

∑K

k=1
βk⋅lnxk,i + ϵ′

i (6)  

where GEi are the gross effectiveness values obtained in the previous 
stage, xj,i are factors related to long-term decisions about the network 
(network length, number of stations and coaches), xk,i are factors related 
to the socio-economic context of the cities where metro systems operate, 
β are coefficients that have to be estimated and ϵ′

i is the random error 
term of the regression. 

The elasticities βj obtained using the exponential multiple regression 
are used for evaluating the net effectiveness, by removing positive or 
negative contributions to gross effectiveness due to the identified “long 
term” factors. The effectiveness attributed to the long-term factors is 
removed from the gross effectiveness, such as the net effectiveness (NE) 
is given by: 

NE = exp

(

ln GEi −
∑J

j=1
βj⋅lnxj,i

)

(7) 

The socio-economic context variables can be considered as inherent 
to the definition of effectiveness, and for this reason their effects are not 
removed. Otherwise, the obtained measure would be representative of a 
net efficiency, i.e., it would stem exclusively from inward company 
effects. 

4. Model application and results 

4.1. Gross effectiveness 

In a first stage, a gross value of effectiveness is calculated by 
regressing the output passengers carried per year (PASS) against proxies 
that represent the yearly consumption of the inputs to produce that 
output. 

The Cobb-Douglas function’s input variables are the number of em-
ployees, the network wear, the fleet wear and tear and a time-trend 
variable. The number of employees (NE) is introduced as a proxy of 
the labour costs that each firm has to face to produce the service. The 
network wear (NETW) is introduced as the ratio between the car- 
kilometres produced in each year and the total length of the network. 
It represents the total number of coaches that are crossing a 1-km section 
of the network in one year. This ratio is a proxy for the consumptions 
related to the wear and tear of the infrastructure: the higher this ratio, 
the higher is the wear and tear of the network. The fleet wear and tear 
(FLEETW) is defined as the ratio between the car-kilometres produced in 
each year and number of coaches in the fleet. This ratio is a proxy of 

consumptions related to the rolling stock and it represents the total 
number of kilometres travelled every year by each coach in the fleet. In 
this sense, the NETW and FLEETW variables are proxies of consumptions 
by representing the wear and tear of the infrastructure and fleet, and 
therefore the maintenance, depreciation and energy expenses. The time 
trend variable (YR) aims to capture potential gains of expertise and 
know-how, as well as the technological progress throughout the years. 

As the reports on Helsinki and Toulouse metro systems do not 
include the car-kilometres production, the respective observations were 
discarded from the database. The same was done for all observations 
with missing values for the CARKM and PASS variables. As a result, the 
final database consists of 264 observations. 

Based on Eq. (4), the econometric software NLOGIT 5 estimates the 
optimal frontier and returns the input elasticities βn and E(ui|εi) for each 
observation. The estimated input elasticities are presented in Table 4. 

Eq. (5) makes it possible to obtain the effectiveness for each obser-
vation starting from the value of E(ui|εi). Fig. 2 shows the average gross 
effectiveness’ values for each firm, ordered from the most to the less 
effective. About half of the firms are characterized by a gross effec-
tiveness score that is higher than 80%, with Oslo, Munich and Prague 
achieving values higher than 90%. Instead, only the Warsaw and Glas-
gow systems reach gross effectiveness values lower than 50%. 

4.2. Net effectiveness 

As previously stated, the effectiveness obtained through the previous 
method could be influenced and constrained by context effects, as well 
as by long-term strategic decisions that metro operators are not able to 
change, at least in the short term, or that are, in many cases, political 
decisions. Following a similar approach to the one defined by (Oum & 
Yu, 2004), a regression analysis was performed to evaluate the effects of 
each input on the gross effectiveness and compute the net effectiveness, 
i.e., the effectiveness that is related with short- to medium-term man-
agement decisions, after removing the long-term factors. The considered 
factors depending on long-term decisions are related to the fleet size 
(NC) and to the network size, namely the network length (NL) and the 
number of stations (NS). Due to the significant differences in size of the 
metro systems considered in this analysis, the NS and NC variables were 
introduced in the model divided by the network length NL (variables ns 
and nc). The context effects are represented by the socio-economic fac-
tors of the cities where systems operate (see Table 3), which may impact 
the effectiveness by providing a favourable or unfavourable operational 
context. 

The exponential multiple regression is defined as in Eq. (6), where in 
its linearized form, the natural logarithm is applied to all input variables 
except for the dummy variable OUR. Table 5 shows the β coefficients of 
the un-discarded (significant) variables included in the model: NL, ns, 
nc, OUR and PD. Since the NS and NC variables were divided by NL, the 
elasticity of the network length βNL is given by βNL − (βns + βnc). 

The R-Squared value obtained is 0.285, and following the principles 
highlighted in (Oum & Yu, 2004), it is possible to conclude that only 
28.5% of the total variation in the gross effectiveness index can be 
explained by the variables included in the regression. This, in turns, 
implies that the remaining 71,5% of the variation can be assigned to 
differences in technical efficiency and to additional factors that are not 
included in this analysis. 

Eq. (7) makes it possible to calculate the net effectiveness values, 
whose average results are reported in Fig. 3. The results show that, 
taking apart the long-term constraints, the most effective systems are 
Prague, Budapest and Bilbao and, in general, smaller networks have 
higher net effectiveness scores than larger ones. 
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5. Discussion 

5.1. Input effects 

The results from the stochastic frontier model used to estimate the 
gross effectiveness (Table 4) show that increasing the number of em-
ployees (NE) has a positive impact on the demand: this could be 
explained considering that having a higher number of employees makes 
it possible to increase the quality level of system service and customer 

care, thus improving user experience. Also, the NETW variable has a 
positive impact on the demand and a possible interpretation could be 
that a higher value of NETW implies a higher number of trains running 
on the network and therefore a higher level of service and attractiveness 
for the users, who can benefit from higher service frequency. Finally, 
FLEETW has a negative effect on the demand: a higher wear and tear of 
the vehicles could result in a reduction of the level of service due to 
increased need for extraordinary maintenance, service disruption and 
lower levels of comfort and user experience. The time-trend variable was 

Fig. 2. Average gross effectiveness scores.  

Table 3 
Socioeconomic factors of the cities (mean values).  

System Number AREA [km2] POP DEPDEM AHS UR PD [inh. /km2] CREG GDP (USD) DPP (EUR) OUR 

Barcelona 1 2626 4,747,969 0.47 3 0.13 1808 418 41,039.61 1.069 1 
Berlin 2 17,453 5,051,211 0.46 2 0.11 289 359 39,680.74 1.244 1 
Bilbao 3 1345 1,004,164 0.49 3 0.12 747 425 42,115.74 1.145 1 
Brescia 4 603 478,193 0.57 2 0.08 793 613 35,898.41 1.472 0 
Brussels 5 4818 2,532,996 0.52 2 0.09 526 529 72,000.07 1.276 1 
Bucharest 6 1754 2,278,718 0.39 3 0.05 1299 461 49,644.29 1.038 1 
Budapest 7 6395 2,855,789 0.44 2 0.04 447 353 37,271.75 1.397 1 
Glasgow 8 3365 1,810,745 0.49 2 0.07 538 374 34,991.88 1.544 0 
Hamburg 9 7192 3,188,037 0.49 2 0.06 443 422 57,503.14 1.238 0 
Helsinki 10 4688 1,368,375 0.46 2 0.07 292 398 57,645.39 1.241 1 
Lausanne 11 775 412,921 0.46 2 0.07 539 364 69,417.67 1.623 0 
Lisbon 12 4321 2,893,187 0.52 2 0.11 670 543 39,086.30 1.166 1 
London 13 6968 11,538,565 0.47 3 0.06 1656 374 62,948.53 1.538 1 
Madrid 14 7883 6,328,381 0.44 3 0.16 803 515 46,806.10 1.150 1 
Milan 15 3115 4,755,904 0.52 2 0.06 1527 572 59,044.43 1.348 1 
Munich 16 5495 2,620,845 0.46 2 0.05 477 517 75,051.78 1.263 1 
Oslo 17 7403 1,362,465 0.48 2 0.04 184 493 66,937.30 1.839 1 
Paris 18 17,584 12,390,631 0.49 2 0.10 705 391 63,327.21 1.181 1 
Porto 19 953 1,303,434 0.46 3 0.14 1368 559 27,515.75 1.312 1 
Prague 20 5757 2,064,350 0.44 2 0.03 359 547 51,588.65 1.167 1 
Rome 21 6162 4,093,786 0.51 2 0.09 664 657 52,764.67 1.337 1 
Toulouse 22 6216 1,408,199 0.53 2 0.08 227 587 48,312.00 1.302 1 
Turin 23 1702 1,745,045 0.57 2 0.09 1025 634 43,141.92 1.447 1 
Warsaw 24 8599 3,156,590 0.52 3 0.03 367 672 61,198.00 1.077 1 
Wien 25 9617 2,881,827 0.47 2 0.08 300 376 54,433.37 1.207 1  
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not statistically significant at the 5% level, thus it was dropped from the 
model. This may be due to the fact that the urban rail sector has 
consolidated fairly well in terms of technological evolution over the last 
20 years. It is important to highlight that these results have to be 
interpreted in relation to the number of passengers carried per year, 
considered as output in the analysis, i.e., in relation to their contribution 
to the service effectiveness. Different results could be obtained if the 
analysis was performed under a production efficiency (e.g., considering 
car-kilometres as output) or cost perspectives. 

Regarding the net effectiveness model estimations (Table 5), the 
network length (NL) has a slightly negative coefficient, reflecting the 
fact that increasing the network length while keeping all the other 
variables (i.e., NS, NC) constant brings no benefits in terms of effec-
tiveness. This would result in a drop in the frequency and therefore 
decrease the attractiveness of the service. The coefficient of the number 
of stations (ns) is positive, since networks with a higher number of sta-
tions are supposed to be more effective in attracting more users as they 
increase the accessibility of the network. The number of coaches (nc) has 
a negative coefficient. This could be explained by the fact that increasing 
the number of coaches in the fleet, and so the number of trains, while 
keeping the other variables constant could result in a congestion of the 
network with a consequent decrease in frequency and speed. Moreover, 
an increase in the number of coaches without interventions in other 
variables could result in lack of personnel to operate them. Both situa-
tions lead to a reduction in the attractiveness of the service and, as a 
consequence, to a reduction in the number of passengers. Focusing 
instead on the factors related to the socio-economic environment, the 
dummy variable OUR significantly has a positive coefficient. The reason 
may be that, as this variable deals with effectiveness and effectiveness is 
demand-related, the presence of different systems, which are usually 
complementary to each other and favour multimodality and accessi-
bility to the different parts of a city, increases the attractiveness of the 
whole public transport network, metro included. 

The coefficient of the population density of the metropolitan area 
(PD) is slightly negative. An increase of the population in the area may 
lead to an increase in demand which could exceed the capacity of the 
service, thus leading to overcrowded vehicles and congestion. When the 
AREA and POP variables are introduced instead of PD, they are both 
found not to be statistically significant. Metro systems are high- 
frequency transport systems tailored for high density urban areas, and 
for this reason, what is relevant for effectiveness is how dense its pop-
ulation is and not the absolute size of the urban area. 

Fig. 3. Average net effectiveness scores.  

Table 4 
Results of the stochastic frontier regression.  

Variable β Standard Error p-value 

CONSTANT 4.309 0.386 0.000 
NE 0.711 0.241 0.000 
NETW 0.685 0.680 0.000 
FLEETW − 0.361 0.074 0.000  

No. of observations = 264 
Log-likelihood = − 76.886 
σu = 0.324 
σv = 0.168  

Table 5 
Results of the exponential multiple regression.  

Variable β St. Error p-value 

β0′ − 0.429 0.223 0.0555 
NL − 0.012 0.023 0.0000 
ns 0.297 0.071 0.0000 
nc − 0.109 0.043 0.0116 
OUR 0.240 0.045 0.0000 
PD − 0.099 0.032 0.0021  

R-Squared = 0.285 
No. of observations = 264  
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The results show that the other socio-economic variables introduced 
are not statistically significant. This could be due to two main reasons. 
The first is related to database limitations or unobserved external factors 
that are not related to the collected ones and may still have an important 
impact on effectiveness. The second is that European metro systems are 
generically well adjusted to the socio-economic environment where they 
operate, since the context variables do not seem to have a relevant 
impact on their effectiveness. 

The DEPDEM, AHS, UR and GDP variables are not statistically sig-
nificant because they may be capturing contradictory effects with 
respect to the usage of metro systems. DEPDEM reflects the percentage of 
the total population of two different age groups that may be charac-
terized by different mobility patterns: the youngers tend to move more, 
they do not have a driving license and therefore they have to rely on 
public transport. Elderly groups tend to move less, especially as they get 
older, and this is also reflected in their usage of public transport. In turn, 
higher values of AHS may imply a reduction in the car availability per 
person and usually imply a higher percentage of non-drivers (e.g., 
children) who have to rely on public transport. Lower AHS values may 
lead to an increase in the car availability per person. UR may also be 
capturing contradictory effects between the fact that unemployed peo-
ple have less possibilities to afford a car on their own but still need to 
move for their daily routines and seeking a job, and the fact that, by 
definition, unemployed people do not need to commute. In countries or 
cities with higher GDP per capita, people may be wealthier and afford to 
buy and maintain cars, but at the same time public transport is usually 
more efficient and attractive in these cities. The CREG variable includes 
both people that exclusively use private cars for their trips and people 
that can actually use it as a complementary transport mode to access the 
public transport network (e.g., park-and-ride). Finally, DPP mostly af-
fects car owners (although it may also affect public transport fares). 
Those who already own a car may be less sensitive to fuel price changes, 
which may explain a negligible impact of DPP on travel mode choice. 

5.2. Effectiveness scores 

In this study, the average gross effectiveness values range between 
32% and 94%, with all firms having scores higher than 50%, except for 
Warsaw and Glasgow which reach average values of 39% and 32%, 
respectively. Oslo, Munich and Prague are the top three systems in terms 
of gross effectiveness, reaching 94%, 92% and 91%, respectively. These 
findings are in line with the ones of (Lobo & Couto, 2016), where 
effectiveness values ranged between 41% and 95% (without considering 
the Turin metro, which at the time obtained a very low score because 
data was only available for its opening year). Despite using a non- 
parametric method, (Tsai et al., 2015) determined values of efficiency 
ranging between 43% and 88% using a bootstrapped DEA methodology 
to assess the relative (cost) efficiency of 20 urban rail transit operators in 
Asia, Australia, Europe and North America between 2009 and 2011. 
Continuing with non-parametric methods, (Jain et al., 2008) used DEA 
to assess the technical and scale efficiency of 15 urban rail transit sys-
tems and found technical efficiency scores ranging between 35% to 
100%. As reported by (De Borger et al., 2002), among studies that 
performed international comparison, (Gathon, 1989) used a determin-
istic translog production frontier to benchmark 60 urban transit firms in 
Europe for the year 1984. The results highlighted technical efficiency 
scores ranging between 58% to 100%. (Wunsch, 1994, 1996) performed 
an international comparison of European transit firms between 1988 
and 1993, finding technical efficiency scores ranging from 43% to 100% 
using a Free Disposal Hull method and from 26% to 100% using DEA. 
Fig. 4 aggregates the average gross and net effectiveness scores esti-
mated in this analysis. 

As previously mentioned, the net effectiveness results highlight that 
transit firms operating smaller networks tend to have higher net effec-
tiveness values compared to larger ones. However, this should be not 
taken as a proof that these firms are better than the ones operating larger 
networks, as the net effectiveness does not consider, for example, 
technical advancement, rolling stock quality and economies of scale, 
which are mainly affected by large, long-term investments. The net 

Fig. 4. Average gross and net effectiveness scores.  
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effectiveness results should be interpreted as a ranking of technical ef-
ficiency not considering the long-term decisions that still have an in-
fluence in the short-term production outcomes. The good performance 
of smaller networks in the net effectiveness could be explained by the 
fact that the day-to-day management of a smaller network is simpler and 
more flexible than that of a larger network. Adjusting the operating 
schedule and the service frequency according to the demand could be 
easier in an automated and single-line system like Turin than in a dense 
system like Madrid. It should also be added that, for the firms at the top 
of the net effectiveness ranking, which is dominated by smaller systems 
like Prague, Budapest and Bilbao (see Fig. 3), the network, fleet and 
labour consumption in the short-term are better proportioned to their 
output. 

Looking at the gross effectiveness ranking, it is observed that it is 
more heterogeneous in the sense that it alternates between larger and 
smaller systems. In fact, regarding the gross effectiveness, there are 
much more factors to consider, including the favourable or unfavourable 
socio-economic context, the abovementioned potential advantages of 
operating a large network, but also the possibility that large networks 
are less flexible to cope with inefficiencies due to operational, legal or 
policy issues. 

5.3. Closing remarks 

The goal of this study was the benchmarking of the technical effi-
ciency of European metro systems in a production perspective. The final 
database used for the analysis is a panel data from 23 metro systems 
covering the period from 2000 to 2020. The developed model consists of 
two stages: in the first one, gross values of effectiveness are estimated for 
each firm considering the number of carried passengers per year as 
output, while in the second stage the net effectiveness is calculated. The 
gross effectiveness analysis allows us to assess the impact of factors 
beyond firm’s control on the short-medium term. Then, the effectiveness 
attributed to the long-term factors is removed from the gross effective-
ness to obtain the net effectiveness. Additionally, the developed models 
allow us to rank metro systems in terms of gross and net effectiveness. 

Gross effectiveness estimates, obtained through a stochastic frontier 
regression, found that about half of the metro systems reaches scores 
higher than 80%, with Oslo, Munich and Prague achieving values higher 
than 90%. These gross effectiveness estimates could be influenced by 
external factors that are beyond the control of transit operators in the 
short- and medium-term, but which have an impact on operations. 
However, the results from the second stage, in which the obtained 
effectiveness scores were regressed against the long-term and context 
factors, show that most of those context factors are not significant, 
except for the population density and the presence of other urban rail 
system in the same metropolitan area. This could be due to several 
reasons, such as errors in the database, unobserved external factors that 
may still have an impact on the effectiveness, or the possibility that 
European metro systems are well suited to the urban socio-economic 
context where they operate. Finally, the obtained results highlight that 
transit firms operating smaller networks tend to have higher net effec-
tiveness values compared to larger ones, with Prague, Budapest and 
Bilbao reaching the best performances. The better performance of small 
networks in relation to net effectiveness can be related to an increased 
flexibility of small firms to cope with inefficiencies through simple day- 
to-day management decisions compared to larger firms, provided that 
their network is well suited to the size and context of the cities where 
they operate. 

The main limitation of this study stems from the fact that, under the 
scope of this work, it was not feasible to collect costs data, and for this 
reason, it was decided to use a production function instead of a cost 
function for this benchmarking exercise. Nevertheless, data scarcity on 
the expenses of metro systems, different reporting criteria and the ag-
gregation of costs with other transport modes operated by the same 
firms are severe constraints for a benchmarking of this transport sector. 

By considering proxies for the firms’ consumptions derived from inputs’ 
quantities, this work provides a valuable effort to overcome these issues. 

Focusing on future research directions, a further investigation is 
planned about the factors beyond current management control that 
currently affect the performances of metro operators. This additional 
investigation aims to assess if there are other external factors currently 
not included in our analysis that affect the performance of metro systems 
and try to understand whether and to what extent they influence the 
system’s effectiveness. 

Moreover, the same initiative also envisages the further development 
of this analysis through the collection and integration of data related to 
revenues and expenses which will allow to integrate an important aspect 
of firms’ operations. The described issues concerning different reporting 
criteria and levels of detail will have to be addressed, which could lead 
to the use of a more straightforward methodology. 
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