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Abstract—Chest X-Ray (CXR) is one of the most common di-
agnostic techniques used in everyday clinical practice all around
the world. We hereby present a work which intends to investigate
and analyse the use of Deep Learning (DL) techniques to extract
information from such images and allow to classify them, trying
to keep our methodology as general as possible and possibly
also usable in a real world scenario without much effort, in the
future. To move in this direction, we trained several β-Variational
Autoencoder (β-VAE) models on the CheXpert dataset, one of
the largest publicly available collection of labeled CXR images;
from these models, latent features have been extracted and used
to train other Machine Learning models, able to classify the
original images from the features extracted by the β-VAE. Lastly,
tree-based models have been combined together in ensemblings
to improve the results without the necessity of further training or
models engineering. Expecting some drop in pure performance
with the respect to state of the art classification specific models,
we obtained encouraging results, which show the viability of our
approach and the usability of the high level features extracted
by the autoencoders for classification tasks.

Index Terms—machine learning, medical images classification,
autoencoders

I. INTRODUCTION

Fuelled by the developments of Convolutional Neural Net-
works (CNNs) [1], deep learning proved to be a successful
approach to tackle challenging problems involving image
classification and understanding [2]. Thus, the application of
these techniques to medical imaging is attracting an increasing
amount of interest in the last few years [3], [4] with the
promise of reducing the time and the cost of medical practices.
Unfortunately, to successfully apply deep learning to medical
imaging, we still need to deal with many challenges, such has
the limited amount of public dataset, the need of expensive
computational resources, and the heterogeneity in data acqui-
sition processes. On the other hand, a major benefit of deep
learning over other machine learning approaches is its capabil-
ity of learning effective representations directly from raw data,
instead of relying on feature engineering processes specific
for each problem. Accordingly, in this work we investigate
the application of deep learning approaches to extract useful

features from medical images that can be later exploited to
train classification, segmentation, localisation, and prediction
models using eventually more simple and less computationally
expensive techniques. Following the same approach of [5], we
focused on the problem of chest X-ray (CXR) interpretation,
that represents perhaps the most frequent imaging examination
performed for screening, diagnostic purposes, and manage-
ment of many life threatening diseases. For this reason, in
the last few years, several large dataset have been made
available for this problem, such as the CheXpert dataset [6],
which includes more than 200k CXR labeled images and has
been used for a scientific competition on automated CXR
interpretation [7].

In this paper, inspired by our previous work [5], we trained
several β-Variational Autoencoder (βVAE) models on the
CheXpert dataset to compute compact image embeddings, i.e.,
to extract a set of high-level features from the images. Then,
these image embeddings have been used to train several classi-
fiers (Random Forest, Gradient Boosting, Extremely Random-
ized Trees and K-Nearest Neighbours) on the problem of find-
ing the five major thoracic diseases (Enlarged Cardiomegaly,
Edema, Consolidation, Atelectasis, and Pleural Effusion) in
the CXR dataset. Finally, similarly to what found in [8] and
in [5], we showed that ensemble strategies can be employed
to effectively combine several models – trained with image
embeddings computed using different autoencoders – in order
to improve the classification performances. Our results are
promising and show that these models can achieve reasonable
performances with respect to the ones achieved by CNNs
trained specifically to classify the same images, resulting in a
decrease of the AUROC that ranges from around 5% to 9%.
These results show that the image embedding models, although
not specifically trained to extract features useful to classify
the CheXpert images, are nonetheless able to extract relevant
and general features of the images that allow to identify the
different diseases.

The paper is organised as follows. In Section II we discuss
the most relevant related works. In Section III we provide
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an overview of the approach proposed in this paper. Then,
Section IV we describe the experimental design employed
and in Section V we illustrate the results obtained. Finally in
Section VI we draw some conclusions and we discuss about
possible further developments.

II. RELATED WORKS

Along with the availability of large dataset and with the
rise of several related challenges [6], [9], [10], several au-
thors successfully applied deep learning and convolutional
neural network to chest CXR image understanding. In [11],
Rajpurkar et al. introduced CheXNet, a DenseNet-121 [12]
network trained on the ChestX-ray14 dataset [10], achieving
state-of-the-art performance on the classification of the 14
thoracic diseases while also outperforming expert radiologists
on the detection of pneumonia. Later, Rajpurkar et al. [13]
extended their previous work introducing CheXNeXt improv-
ing CheXNet and achieving a performance similar to expert
radiologist on 10 thoracic diseases. Other notable works,
that exploited the ChestX-ray14 dataset, include the work of
Kumar et al. [14], who trained cascaded CNNs to diagnose all
the 14 thoracic diseases and the work of Lu et al. [15], who
exploited evolutionary algorithm to search for the best CNN
architecture to classify the images. An additional notable work
is the one of Ye et al. [16] that proposed Probabilistic-CAM
(PCAM), an extended version of Class Activation Mapping
(CAM) [17], that allows to localize thoracic diseases on the
ChestX-ray14 dataset in a semi-supervised fashion; moreover,
their localization model has been also successfully applied to
image classification, outperforming some of the approaches
previously introduced in the literature. Recently, two very
large datasets have been released: CheXpert [6] and MIMIC-
CXR [9], consisting of respectively 224000 and 350000 im-
ages. Exploiting these datasets, Irvin et al. [6] designed a
classifier based on a 121-layer DenseNet trained with different
strategies to deal with uncertainty that is present in the labels
of CheXpert dataset. This model achieved a performance level
comparable to that of an expert radiologist on the classification
of the 5 most representative thoracic diseases. Rubin et al. [18]
introduced DualNet, which consists of two CNNs jointly
trained on frontal and lateral chest radiography, included in
the very large MIMIC-CXR dataset [9]. Their results suggest
that classifiers trained on two types of images (i.e., either
frontal or lateral), like DualNet, are able to outperforms state-
of-the-art classifiers trained separately on a single type of
image. Instead, Pham et al. [8] trained several CNNs on
the CheXpert dataset, showing the benefits of exploiting the
conditional dependencies among the labels, resulting from
their hierarchy, in the training as well as the possibility of
exploiting classifiers ensembles to achieve better performances
than the one achieved by a single classifier.

Finally, in one of our previous works [5] we trained several
CNNs on the CheXpert dataset and used them to extract image
embeddings that could be later exploited as input for simpler
(e.g., tree-based) classifiers. Our results showed that image
embeddings do contain relevant information about the images

Class Positive(%) Uncertain(%) Negative(%)
No findings 16974 (8.89) 0 (0.0) 174053 (91.11)
Enlarged Card. 30990 (16.22) 10017 (5.24) 150020 (78.53)
Cardiomegaly 23385 (12.24) 549 (0.29) 167093 (87.47)
Lung Opacity 137558 (72.01 2522 (1.32) 50947 (26.67)
Lung Lesion 7040 (3.69) 841 (0.44) 183146 (95.87)
Edema 49675 (26.0) 9450 (4.95) 131902 (69.05)
Consolidation 16870 (8.83) 19584 (10.25) 154573 (80.92)
Pneumonia 4675 (2.45) 2984 (1.56) 183368 (95.99)
Atelectasis 29720 (15.56) 25967 (13.59) 135340 (70.85)
Pneumothorax 17693 (9.26) 2708 (1.42) 170626 (89.32)
Pleural
Effusion 76899 (40.26) 9578 (5.01) 104550 (54.73)

Pleural Other 2505 (1.31) 1812 (0.95) 186710 (97.74)
Fracture 7436 (3.89) 499 (0.26) 183092 (95.85)
Support
Devices 107170 (56.1) 915 (0.48) 82942 (43.42)

TABLE I: CheXpert classes distribution

and allows to train tree-based classifiers with performances
similar or better than the ones achieved by CNNs.

III. METHODOLOGY

A. CheXpert

CheXpert [19] is the largest collection of CXR images
labeled and publicly available. Put together by the personnel
of the Stanford Hospital between 2004 and 2017, it contains
more than 200000 images from over 65000 patients. Two
different PNG formats are provided, high and normal quality,
with the former being 16-bit while the latter only 8-bit. A
14 class label accompanies each image, identifying what is
in the image according to the radiology report. The main
peculiarity of CheXpert is the automatic labeling method used,
able to interpret the radiology report and extract the relevant
information to assign the correct classes. Positive, negative and
uncertain are the possible values, according to the confidence
level of the labeler, which are encoded in a vector of 14
elements, respectively, 1, 0, u. The main type of images
available is frontal images, with the possibility, usually where
the report was uncertain and therefore an uncertain value for
the label is more likely, to find also lateral ones. Together with
the vast number of automatically labeled images, the authors
provide a smaller set of 200 images annotated by hand by
expert radiologists, originally intended for test or validation
purposes of the models.

In Table I can be found the distribution of the data. It is
important to notice that the labels are not mutually exclusive
and more than one label can be present in the same image,
making the classification problem a multi-label one; in addi-
tion, the labels in Table I features a hierarchical structure. In
order to obtain the best model possible, all these characteristic
should be taken care of. To deal with the uncertain labels
included in [19] dataset, several policies have been proposed.
The most simple one consists of assuming all the uncertain
labels as either positive or negative. However, this strategy
intuitively results in several wrongly labeled examples and
might negatively affect the training. This issue was discussed
in detail in [20] where a different strategy has been proposed,



following an approach called Label-Smoothing Regularisation
– originally introduced in [21] – which consists of mapping
the uncertain labels to random values sampled from a uniform
distribution X ∼ U(α, β) with β > α > 0.5. This spares the
model from using wrongly labeled examples with excessive
confidence during the learning process.

B. Embeddings extraction

β-VAE, introduced in [22] are an evolution of VAE in
which β is introduced as hyperparameter in order to bal-
ance more effectively the effect of the two components of
the loss function, the reconstruction and the regularisation
(actually, in this way, VAE become a particular case of β-
VAE with β = 1); it is usually used to push the latent
space in the direction of a more disentangled representation
of the input distribution. β-VAE are composed of an encoder,
which learns the latent representation, and a decoder, which
reconstructs the input data. In this work we chose some of the
most popular CNN architectures, similarly as done in [5], as
backbones to build the encoders, trying to understand if the
differences in architectures, number of parameters and charac-
teristics significantly affect the results. The model choices are
: DenseNet121, DenseNet169, DenseNet201 [23], Xception
[24] and InceptionResNetv2 [25]. The encoder has been built
cutting the backbone after a Global Average Pooling (GAP)
layer, hence without its densely connected layers, which have
been substituted by the mean and standard deviation of the
learned distribution. The weights, up until the GAP layer, are
the same of the models in [5], pre-trained on CheXpert, and
are not updated during the training; only the weights after the
GAP in the encoder and the decoder ones are learned. Two
sizes of the latent space have been tested: 100 and 200 unit
vectors. The decoder is built in the same way for each model,
in order to better compare the results, and features an initial
512 units densely connected layer which is then reshaped
and passed through seven convolutional blocks composed of
convolution (with a number of filters halved after each block,
starting from 256) and upsampling. Neither fine tuning nor any
transfer learning is applied to any decoder, weights are learned
from scratch for each encoder. Autoencoders are trained in an
unsupervised way because they are able to learn the relevant
feature to reconstruct the input data, therefore labels are not
considered. In this sense, the main idea of using β-VAE is
basically to enhance the use of CNN as universal feature
extractors, so that the extracted features are both informative
and general.

C. ML Models and Ensembles

Once the features have been extracted, another model is
used to classify them in order to demonstrate how informative
they are. To serve this purpose, four ML kind of models have
been tested : Random Forest (RF) [26], Gradient Boosting
(GB) [27], Extremely Randomized Trees (XRT) [28], which
are all tree-based, and K-Nearest Neighbours (KNN) [29].
The choice has gone in the direction of finding something
which does not requires extensive training sessions or powerful

hardware to be trained, but is still able to achieve good
performances. In this respect, tree based classifier ensembles
have been proved to be of great value. Moreover, the prediction
have been combined to improve the classification results, in
two ways which follow what done in [5]:
• Simple Average: the prediction are evenly averaged;

being yi(xxx) the probabilities from a certain ML model
trained on the embeddings extracted from a single β-VAE
i, the final predictions are:

ỹ(xxx) =
1

N

N∑
i=1

yi(xxx) (1)

• Entropy-Weighted Average: the probabilities are averaged
with weights representing the confidence in such predic-
tions. A possible approach to compute such confidence, is
based on entropy, which in Information Theory is defined
as the uncertainty of the outcomes of random variables.
Therefore, modeling the prediction of each classifier as a
random variable following a Bernoulli distribution (the
disease is either present or not), we can consider the
entropy of such variable as a direct measure of the
confidence of the classifier in that prediction; setting pi,k
as the prediction for classifier i (as before) and class k,
we have that :

Hk(yi,k) = −yi,klog2(yi,k)−(1−yi,k)log2(1−yi,k) (2)

Here, Hk(yi,k) is the uncertainty linked to classifier i
for label k, therefore we can see 1 − Hk(yi,k) as the
confidence in prediction yi,k. The natural use of this, is
as weight for averaging the single classifier prediction,
so that predictions which the model is mode sure of are
weighted more while lowest scores are considered less:

ỹ(xxx) =
1

N

N∑
i=1

(1−Hk(yi,k))yi,k (3)

Another option would be to consider stacking [30], but in [5]
it has been evidenced how it actually yields worse predictions
compared to the simpler ensemble strategies described above.

IV. EXPERIMENTAL DESIGN

A. Preprocessing

We trained our β-VAE only on the frontal images included
in CheXpert because they are the vast majority and, usually,
are the only exam performed; lateral images are there to help
solve some uncertainties in the diagnosis, therefore using them
would make the approach less general. Dataset has been split
as follows:
• Training : 90% of the dataset (N = 189116 examples)
• Validation : 10% of the dataset(N = 1911 examples)
• Test : an additional small dataset provided together with

CheXpert [19], composed of N = 202 examples of
images manually annotated by experts

All the additional data other than the frontal images and their
labels have been ignored in this work. Images have been



Fig. 1: A block scheme of the β-VAE built for our work

resized to 256x256, then a template matching has been applied
in order to crop them and keep the relevant part only, trying to
exclude artifacts and non-random noise, such as texts usually
printed together with the radiography; the final image size is
then set to 224x224 and two channels have been added to make
them actually 224x224x3 to make them compatible with the
backbones used for the β-VAE. Contrarily to what has been
done in [5] and [20], since we are not starting the training from
ImageNet [31] weights, the images have not been normalized
with ImageNet mean and standard deviation.

B. β-VAE training

As described in III-B , five pre-trained backbones have
been used to build and train the β-VAE models, retaining
the convolutional layers and discarding the densely connected
classification layers, substituted by the ones yielding the mean
and the logarithm of the standard deviation (it is common to
use the logarithm to avoid getting too small values).

A scheme of the whole models can be found in Figure 2.
Tensorflow 2.0 API [32] has been used to build and train the
models, with the built-in Keras modules [33]. Hyperparameters
and other relevant training details used for the training are
described below.

Loss function. In β-VAE the loss is composed by two compo-
nents. The first component is the reconstruction loss computed
as the sum of the absolute difference between the reconstructed

and the original input (zzz = g(xxx) and xrecxrecxrec = f(zzz)), defined
as:

Lrec(φ) = −Ez∼qφ(zzz|xxx)logpθ(xxx|zzz)

=

N∑
i=1

|xi − fθ(gφ(xi))|.
(4)

The second component is the regularization, that use Kullback-
Leibler divergence to force the learned distribution to fit a
Normal one:

LKL(β) = βDKL(qφ(zzz|xxx)||pθ(zzz))

= −0.5
N∑
i=1

(1 + log(zσi)− z2µi − elog(zσi)),
(5)

where zzzµ is the mean of the latent distribution and zzzσ is the
logarithm of its standard deviation. Thus, Equation (4) and
Equation (5) are combined through β:

L(φ, θ) = Lrec + βLKL (6)

Coefficient βββ. After several trials with different values, we
found that it is better to use a scheduler that progressively
increases its value, in order to allow the models to learn
to reconstruct the data without being overwhelmed by the
otherwise dominant latent loss, which forces the model to
fit a normal distribution which does not have any value for
reconstruction. The schedule starts with three epochs with
β = 0, increasing its value progressively as 0.005 ∗ 1.2epoch.

Optimizer. Adam algorithm [34] has been used to optimize the
weights after each forward pass, with the default parameters
from the Tensorflow built in module.

Learning rate. We used a decreasing learning rate schedule
when the validation loss function, computed over the valida-
tion set described in IV-A at the end of each epoch, stopped
decreasing, starting from 7.5 ∗ 10−4 and halving whenever
needed.

Epochs. We fine tuned our models for 10 epochs each.

C. ML Classifiers training
After training the β-VAE they have been used to extract

embeddings on which ML models would be trained. To do so,
we passed the validation set to each of VAE to create datasets
made of embeddings, to be fed to the ML models. In order
to tune the many hyperparameters of these models, we used a
grid search approach on several of them. In particular, for tree
based architectures we optimised the maximum depth of the
trees, which balances accuracy and overfitting tendencies; the
minimum number of samples to allow the split of an internal
tree node; the minimum number of samples required for a node
to become a leaf; the number of estimators in the ensembles.

Table II show the results of parameters tuning for tree-
based methods; for KNN we tuned the number of neighbours,
achieving best performances with k = 10 . To train the ML
models, the dataset built from embeddings extracted from the
validation set have been used; the same extraction process has
been applied to the test dataset.To build and train the ML
models, SciKit Learn [35] library has been used.



Model Estimators Max
depth

Min
sample

leaf

Min
sample

split
RF 2000 10 2 2
XRT 2000 10 1 5
GB 1000 3 default default

TABLE II: Parameters used for tree-based classifiers after grid search. Estimators is the
number of estimators in the ensemble; Max depth indicates the maximum depth of the
trees; Min sample leaf is the minimum samples needed to allow a split; Min sample leaf
represents the minimum samples required for a node to become a leaf; Default means
that the default SciKit Learn value has been used

D. Performance Evaluation

Performance of the β-VAE can be difficult to analyze
because it is not always clear how to state what a good
reconstruction is, so a qualitative analysis of the generated
images compared to original ones is often the way to go.
Concerning the classification problems, the metric used is the
Area Under the Receiving Operating Characteristic (AUROC),
computed plotting the True Positive Rate (TPR) against the
False Positive Rate (FPR); for multi-class and multi-label
problems it has to be done in a one-vs-all fashion. In [36]
it is evidenced how values > 0.7 are considered acceptable
for the medical field, > 0.8 point to very good results and
> 0.9 an outstanding indicator.

V. RESULTS

In the first part of this section the focus will be on β-VAE,
to show some examples of their reconstruction capabilities; in
the following parts, otherwise, the main topic will shift on the
informative value of the embeddings, showing the capabilities
of the rather simple ML models trained on them; the AUROC
scores have been tested on five classes only (cardiomegaly,
edema, atelectasis, pleural effusion, consolidation) because
they are the most represented in the test dataset while they
are also the same used in other work such as [19], [8] and [5].

A. VAE generated images

As mentioned in IV-D, the main aspect related to the quality
of an autoencoder model, in particular when dealing with con-
volutional models, it is how realistic the reconstructed images
look. In general, images reconstructed from a feature vector in
an autoencoder tend to be blurry and therefore not so realistic
from a human observer standpoint, but the main characteristics
of the original images (shape, color, details) are clearly visible,
meaning that the encoder was able to capture the most relevant
aspects in the feature vector. This is definitely the case for our
models, as it can be seen in fig. 2 where two examples from
CheXpert and their reconstruction through different β-VAE
are shown. It is evident how the output looks exactly like
a blurred, lower definition version of the input, which still
is perfectly recognizable. This makes us think that, at least
for what concern the encoding and decoding capabilities of
our models, they are capable of identifying the main features.
From this first comparison it has to be noted also that passing
from a 100 feature vector to a 200 one does not seem to
improve much the reconstruction. Unexpectedly, DenseNet121
models, despite yielding, as further highlighted in the next

subsection, the far worst features for predictions, do not look
significantly worse for at least three reconstructions, with only
a subtle more blurred effect, which however becomes very
evident in the second example of models with a 100 feature
vector, where the silhouette of the original image is almost
completely lost. This more accentuated blurring, even if very
subtle in most of the images, possibly means a less precise
encoded information, resulting later in poorer classification
capabilities.

B. Predictions from single VAE

Once the VAE have been trained, they have been used to
generate the embeddings on which four kind of ML classifiers
have been trained.

In table III the AUROC scores obtained are shown. It is
evident how there are some very relevant differences on the
performances, with KNN being completely unable to yield
reliable predictions. XRT here looks like the one offering the
best performances, closely followed by RF, while GB, despite
showing an acceptable result according to [36] , performs
significantly worse. Considering the results of RF and XRT,
embedding are proved to be informative enough to be used
for robust classification tasks, with their best performances
steadily above 80% AUROC except for DenseNet201 and
Xception, but only for 100 feature vector. It has to be noted
how DenseNet121 in both cases seems to give significantly
less informative features, causing all the models to achieve
consistently and evidently worse results than both its siblings
169 and 201, but also Inception and Xception; this possibly
means that the 121 architecture is not suited to extract feature
from this kind of images. Label wise, they all seem to follow
the same pattern, with atelectasis being almost always the
class with the worse score, while the models have much better
confidence in spotting consolidation and pleural effusion, often
reaching close to 90%. Differences among other backbones
with the same ML models are not very important as they
remain under 2-3%. If we then consider the different size of
the feature vector, we can observe how, quite predictably, ML
models trained on bigger feature vectors score consistently
better than the other, even though the difference is not large,
again around 2% both for single labels and overall.

C. Ensemble Predictions

To improve the AUROC score virtually for free, meaning
that no further training, feature engineering, or parameters
tuning would be required in a real world scenario, two
ensembling techniques have been tested to combine the results,
as explained in III-C. Again, in table IV the results obtained
are shown. The main advantage about using entropy averaged
prediction is the fact that if models have different strengths
on different classes, these can be captured by the entropy
based weights and yield a better overall result, as it seems
to be happening in [5] which uses the values extracted from
GAP layers of single CNN as embeddings. The results of
these ensembles seems to confirm this observation, since both
averaging methods lead to a consistent improvement on the



Model-100 units Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion Mean
DNet121-GB 0.555 0.669 0.533 0.528 0.612 0.580
DNet121-XRT 0.618 0.706 0.741 0.667 0.753 0.697
DNet121-KNN 0.511 0.681 0.552 0.545 0.649 0.587
DNet121-RF 0.591 0.726 0.702 0.650 0.742 0.682
DNet169-GB 0.634 0.694 0.424 0.607 0.752 0.622
DNet169-XRT 0.798 0.815 0.845 0.735 0.866 0.812
DNet169-KNN 0.587 0.724 0.638 0.598 0.815 0.673
DNet169-RF 0.797 0.815 0.830 0.751 0.864 0.811
DNet201-GB 0.605 0.619 0.637 0.559 0.732 0.630
DNet201-XRT 0.749 0.798 0.863 0.720 0.854 0.797
DNet201-KNN 0.586 0.717 0.585 0.650 0.795 0.667
DNet201-RF 0.732 0.785 0.849 0.722 0.855 0.789
IncResNet-GB 0.615 0.733 0.646 0.604 0.789 0.677
IncResNet-XRT 0.805 0.796 0.862 0.746 0.872 0.816
IncResNet-KNN 0.669 0.752 0.621 0.643 0.809 0.699
IncResNet-RF 0.787 0.801 0.826 0.740 0.873 0.806
Xception-GB 0.656 0.612 0.554 0.615 0.705 0.628
Xception-XRT 0.760 0.820 0.841 0.724 0.819 0.793
Xception-KNN 0.637 0.737 0.640 0.527 0.752 0.659
Xception-RF 0.749 0.816 0.827 0.721 0.818 0.786

Model-200 units Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion Mean
DNet121-GB 0.534 0.592 0.574 0.521 0.701 0.585
DNet121-XRT 0.717 0.708 0.614 0.708 0.754 0.700
DNet121-KNN 0.581 0.511 0.517 0.554 0.598 0.552
DNet121-RF 0.726 0.704 0.618 0.672 0.760 0.696
DNet169-GB 0.534 0.737 0.493 0.498 0.772 0.607
DNet169-XRT 0.799 0.810 0.881 0.772 0.877 0.828
DNet169-KNN 0.617 0.729 0.624 0.637 0.841 0.690
DNet169-RF 0.786 0.801 0.860 0.791 0.878 0.823
DNet201-GB 0.439 0.713 0.432 0.584 0.778 0.589
DNet201-XRT 0.751 0.807 0.880 0.726 0.859 0.804
DNet201-KNN 0.625 0.714 0.668 0.557 0.821 0.677
DNet201-RF 0.725 0.808 0.899 0.709 0.864 0.801
IncResNet-GB 0.529 0.654 0.423 0.517 0.754 0.575
IncResNet-XRT 0.810 0.800 0.897 0.741 0.867 0.823
IncResNet-KNN 0.708 0.771 0.638 0.551 0.863 0.706
IncResNet-RF 0.816 0.803 0.891 0.744 0.868 0.824
Xception-GB 0.470 0.643 0.592 0.513 0.792 0.602
Xception-XRT 0.800 0.816 0.860 0.748 0.852 0.815
Xception-KNN 0.707 0.760 0.581 0.627 0.791 0.693
Xception-RF 0.799 0.814 0.843 0.728 0.851 0.807

TABLE III: AUROC scores obtained from ML models trained on embeddings extracted form single β-VAE, considered label-wise and as an average (Mean column), rounded to
the third decimal; the first and second half shows results obtained on models with respectively 100 and 200 units latent vector; the best result for the single β-VAE for a specific
class is underlined, the best overall for models with the same feature vector size is in bold.

Model 100 Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion Mean
Avg-GB 0.722 0.751 0.539 0.640 0.802 0.691
Entropy Avg-GB 0.722 0.752 0.539 0.640 0.800 0.690
Avg-RF 0.782 0.817 0.858 0.757 0.855 0.814
Entropy Avg-RF 0.776 0.801 0.858 0.752 0.852 0.808
Avg-XRT 0.797 0.815 0.865 0.744 0.855 0.815
Entropy Avg-XRT 0.795 0.800 0.865 0.744 0.852 0.811

Model 200 Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion Mean
Avg-GB 0.623 0.786 0.526 0.544 0.840 0.664
Entropy Avg-GB 0.623 0.785 0.526 0.544 0.839 0.663
Avg-RF 0.814 0.813 0.883 0.773 0.878 0.832
Entropy Avg-RF 0.815 0.802 0.884 0.776 0.880 0.831
Avg-XRT 0.819 0.814 0.895 0.775 0.871 0.835
Entropy Avg-XRT 0.818 0.804 0.894 0.777 0.872 0.833

TABLE IV: AUROC scores obtained from ML models ensembling, split for feature vector (100 above, 200 below). Again, single class and overall results are presented. The best
value in the column is highlighted in bold for both the halves.



Fig. 2: Output images from β-VAE with 100 (1st and 3rd row) and 200 (2nd and 4th row) units latent space, given as input the same two images. The label identifies the
backbone used for the encoder. It can be noted that the images have subtle differences between them but they all clearly are a blurred and less detailed version of the original image

single scores, but there is little to no difference between
entropy weighted and simple average; as noted in the previous
section, it is evident how the ML models trained on single VAE
embeddings seem to have the same strengths and weaknesses
and this cancels any advantage of using such a weighting strat-
egy. Perhaps, more sophisticated ensemble strategies might
help to improve this result, but this is beyond the scope of this
work. Once again, exactly like on single models, ensembles
on bigger feature vectors have a better AUROC, matching the
improvements.

VI. CONCLUSION

In this work we trained β-Variational Autoencoders on the
frontal CXR images from the CheXpert public dataset, using
several different CNN architectures as base building block.
Our interest was to automatically extract the most general
possible high level features containing sufficient information
to be used to classify them according to the disease present in
the original image. We used Machine learning tree-based and
neighbours-based models to classify such images, in order to
assess the usability of the feature extracted for such a task. The
results obtained are very promising because, despite being in-
ferior to state of the art classifiers trained specifically for clas-
sification, because they still output very reliable predictions,
according to their AUROC scores. Model ensembling, based
on averaging the prediction with or without weights, have been
used to improve the results without the necessity to undergo
further training, model tuning or feature engineering, with
consistent success over both single classes and overall results.
In conclusion, our results suggest that the features extracted

by the autoencoders are indeed highly informative and allow
to classify the images. Nonetheless, further investigations will
be necessary to test if these features are general enough to
be used also on slightly different tasks with the respect to the
one considered in this work, in particular evaluating them on
images or dataset from different sources and with different
classes. Also, more specific experiments on the feature vector
size should be conducted to find the optimal dimension able
to capture the necessary information to achieve even better
classification performances while keeping the encoding capa-
bilities general. Finally, despite simpler ensembling methods
based on averaging the predictions proved successful in our
experimental analysis, more sophisticated approaches, such as
stacked generalization, might be evaluated as well in future
works.
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