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ABSTRACT
Throughput is an important parameter to evaluate production 
system performance. It is typically constrained by one or more 
resources referred to as ‘throughput bottlenecks’. To start improve
ment actions, the first step is to identify throughput bottlenecks. 
Consequently, several bottleneck detection methods were devel
oped in the literature. But this literature remains largely unstruc
tured, which makes it difficult for practitioners to select an 
appropriate method. To generate clarity and to consolidate the 
field, a systematic literature review was conducted. The review 
identified 14 different bottleneck detection methods that are clas
sified according to the information used: queue states, process 
states, or combined queue and process states. It further identified 
three different modes used to operationalize the different bottle
neck detection methods: gemba walk, discrete event simulation, 
and data science. This study further presents important research 
issues, identifies contingency factors for method application, and 
discusses important guidelines for the choice of operationalization 
mode in practice.
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1. Introduction

Increasing throughput is one of the important goals of many manufacturing companies 
and a key objective of Lean Production and Operational Excellence (Hopp & Spearman, 
2008). One way to increase throughput is to resolve the throughput bottleneck (Roser 
et al., 2015, Pehrsson et al., 2016, Wu et al., 2016)), which can be defined as the work
station (or resource) that has the largest impact on overall system performance. This 
study focuses on these throughput bottlenecks, which will also be referred to simply as 
bottlenecks. In order to resolve the bottleneck, one first needs to identify the bottleneck. 
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Failure to identify the bottleneck correctly will lead to wasted improvement efforts. 
Quickly and accurately identifying throughput bottlenecks is specifically important in 
contexts where throughput bottlenecks shift, causing throughput fluctuations across 
production runs. For example, a throughput fluctuation between 475 and 800 production 
batches was reported in a real-world semiconductor manufacturing line (Wang et al., 
2019). Practitioners need to correctly identify throughput bottleneck to control these 
fluctuations and eventually improve throughput.

In response to this practical need, scholars and practitioners have been developing 
different scientific methods to identify throughput bottlenecks in production systems, 
and demonstrated possible operationalization modes of these methods (Betterton & 
Silver, 2012 , Kuo et al., 1996, Li, 2018). Over the last 30 years, this has resulted in 
a broad range of academic literature. Meanwhile, the authors of this study observed that 
practitioners are increasingly showing interest in implementing the different throughput 
bottleneck detection methods in real-world factories. But before implementation, they 
need to identify different scientific methods from the vast academic literature, and 
carefully analyze the methods in the specific context of their factory. Practitioners are 
left largely alone in this endeavor, which motivated this study.

Although there have been previous literature reviews, these reviews remain rather 
restricted. For example, (Li et al., 2009) focuses on analytical methods that construct 
recursive equations based on Markovian and Bernoulli assumptions. How well these 
methods fit the real-world production system depends on the extent to which the 
Markovian and Bernoulli assumptions are satisfied, which is something that can only 
be empirically determined i.e. by using real-world production system data. 
Unfortunately, there are only few attempts to validate these assumptions and to study 
the impact of deviations. In contrast, a large number of throughput bottleneck detection 
methods were developed that directly use production system state information, which 
makes them more relevant for practice. Meanwhile, (Subramaniyan et al., 2021) focuses 
on the implementation method, reviewing how bottleneck detection methods can be 
implemented using artificial intelligence. Bottleneck detection methods itself are not 
reviewed. There exist only some convenience-based literature surveys on detection 
methods that use system state information. For example (Betterton & Silver, 2012; 
Roser & Nakano, 2015; Yu & Matta, 2016), (Yong-Cai Wang, Qian-Chuan Zhao, 
Wang et al., 2005) (Rocha & Lopes, 2022), and (Lima et al., 2008) identified a subset of 
available bottleneck detection methods to be included in their simulations. According to 
the authors’ best of knowledge, no systematic, transparent, and thorough literature 
review of different bottleneck detection methods has been conducted to date.

This study systematically reviews the literature and synthesizes the current knowledge 
on throughput bottleneck detection methods. This provides three main contributions. 
First, it classifies existing throughput bottleneck detection methods into three categories 
based on the information about the production system it uses (information derived from 
queue state, process state, and system state). Second, it classifies the operationalization 
modes of these throughput bottleneck detection methods based on how a method can be 
implemented on the shop floor (gemba walk, discrete event simulation (DES) approach, 
and data science approach). Third, it provides a range of promising future research 
directions and practical recommendations that can support further advancement of the 
throughput bottleneck research field.
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The remainder of this article is structured as follows. In Section 2 an overview of the 
fundamentals of throughput bottlenecks using an illustrative serial production line is first 
provided. The methodology behind the systematic literature review is then presented in 
Section 3. In Section 4, results of the analysis of the set of articles identified through the 
systematic search process are presented. In Section 5 results are discussed, areas for 
future research highlighted, and guidance for application in practice provided. The 
conclusions are summarized in Section 6.

2. Fundamentals of throughput bottlenecks

This section outlines the authors understanding of throughput bottlenecks in production 
systems. A production system consists of resources, such as machines, robots, resources 
for material transportation, and humans, and inventory buffers. All must work together 
to produce products from raw material. Consider an example of a serial production line 
with two shifting bottlenecks that has five machines (M1, M2, . . . , M5) and four limited 
input/output buffers (B1, B2, . . . B4), as shown in Figure 1.

In the real world, every machine in the production system exhibits stochastic behavior 
that is caused by stochastic random events, such as breakdown, variations in the proces
sing times, or variations in the setup times (Wu et al., 2016). These events itself have 
different time durations. As the processes are connected in the production system 
(Goldrat & Cox, 1990), every time a random event occurs on a machine, its effects may 
be propagated to the upstream and downstream machines in the form of blockage and 
starvation. For example, an undesirable event on M3 May cause M1 and M2 to be 
blocked from delivering the products to M3. Similarly, M4 and M5 May become starved. 
This affects the dynamics of the whole production system (Li et al., 2011). As a result, 
individual machine throughput fluctuates over time, causing the final throughput from 
the production system to fluctuate. Eliminating throughput bottlenecks reduces these 
fluctuations and increases the throughput of the production system. This is also called the 
‘law of bottlenecks’ (Schmenner & Swink, 1998)(p.101).

(Goldrat & Cox, 1990) further argues that stochastic effects of a set of machines in the 
production system create larger fluctuations in the system throughput than other 
machines. These sets of machines are called ‘throughput bottlenecks’ (Goldrat & Cox, 
1990). In general, there will be less inventory downstream of a bottleneck than upstream 
of a bottleneck. But there will be no increase in upstream inventory if buffers are not 
limited and thus blocking introduced. With limited buffers upstream blocking may occur 
leading to a loss in production rate at upstream machines and consequently increased 

Figure 1. Illustration of throughput bottlenecks in a serial production line.
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inventory build-up. Downstream of the bottleneck starvation will always occur, leading 
to a reduction in inventory.

Since there are fluctuations, i.e. changes over time, (Roser et al., 2002a) and 
(Subramaniyan et al., 2016) further distinguished between three types of throughput 
bottleneck: momentary throughput bottleneck, average throughput bottleneck, and 
shifting throughput bottleneck. These types of throughput bottlenecks are based on the 
time period of reference. Machines that are throughput bottlenecks at a specific time 
instance are called momentary throughput bottlenecks. Machines that are throughput 
bottlenecks for a major time interval are called average throughput bottlenecks. 
Meanwhile, time intervals where the momentary throughput bottleneck is shifting 
from one machine to another machine are called shifting time periods, and both 
machines are called shifting throughput bottlenecks. Shifting bottlenecks are mainly 
due to the inherent variability in the duration of stochastic random events and the 
actions taken by practitioners to resolve the throughput bottleneck. Both change the 
production system dynamics giving rise to new throughput bottlenecks in the production 
system (Li et al., 2011). To a certain degree every station may become the momentary 
bottleneck. But managers are very often interested in the average bottleneck, which can 
be defined as the station that has the most significant impact on the throughput during 
a time period (Roser et al., 2015).

The identification and elimination of throughput bottlenecks is a continuous process 
by practitioners that needs to be pursued until the required throughput levels are 
reached. But to resolve throughput bottlenecks, one needs appropriate methods to 
identify throughput bottlenecks quickly and reliable, specifically in dynamic systems 
and when bottlenecks shift. But there is no universal definition of a bottleneck. Authors 
use different definitions, and this leads to different measures and methods. In response, 
this article provides a review of state-based bottleneck detection methods and their 
operationalization modes.

3. Methodology – systematic review of the literature

A systematic review of the literature (following (Tranfield et al., 2003)) has been 
conducted. The three subsections below outline the approach adopted for sourcing, 
screening, and analyzing of the articles. The screening process of the articles is also 
summarized in Figure 2.

3.1. Sourcing the articles

To ensure the sample is representative, and to avoid any partiality of the authors, 
a systematic sampling procedure was applied. There are, arguably, three major abstract 
and citation databases: Google Scholar, Scopus, and the Web of Science. Google Scholar 
was excluded because of its low data quality, which raises questions about its suitability 
for research. Meanwhile, Scopus has a broader coverage than the Web of Science. In 
general, the number of journals in the Web of Science not covered by Scopus is about 5% 
and the number of Scopus articles not covered by the Web of Science is about 50%. 
Scopus was therefore chosen. Scopus was queried in October 2022 using the terms: 
‘bottleneck detection’, ‘bottleneck identification’, ‘bottleneck diagnosis’, ‘bottleneck 
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prognosis’, and ‘bottleneck prediction’. The term ‘bottleneck’ was not used as a search 
term since this resulted in an unmanageable number of results. To still capture a broad 
range of articles, the search was broadened by considering terms related to detection, 
such as identification, diagnosis, prognosis, and prediction. The title, abstract, and key
words of articles were searched, whilst the document type was limited to ‘articles’ and 
‘articles in press’ to ensure the quality of the sources held in the database. Only peer- 
reviewed articles were considered. Note that it is recognized that there is also literature in 
form of books and white papers; however, it is assumed that relevant methods that are 
presented in books are also published as an article. The search was further restricted to 
articles from the Engineering, Decision Sciences, and Business Management fields, and 
articles in English. There was no restriction on the year of publication. For this search, 
a total of 412 articles was retrieved.

3.2. Screening the articles

The original sample of 412 articles was reduced to 79 articles by excluding unrelated 
articles, for example, related to traffic congestions, computer science, or genetics. After 
reading these articles, a further 64 articles were excluded because of the following 
reasons. First, articles did not focus on the manufacturing domain, which is the focus 
of this study. Second, articles were concerned with recursive mathematical models (an 
extension of the work reported in (Li et al., 2009)), did not propose new throughput 
bottleneck detection methods or operationalization modes, or used optimization 

Figure 2. Systematic sampling process.
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techniques to optimize the performance of bottlenecks after identification. Third, dupli
cate publications were produced as conference and journal articles. To ensure that 
relevant articles were not missed, the references in the 15 remaining articles were cross- 
checked. From this process, 12 additional relevant articles were retrieved. Most were 
conference articles, not included in the initial search to ensure the quality of the database. 
Since these articles were highly cited and the conferences subject to a peer review process, 
they were included in the review. This approach of supplementing the set of articles that 
had been mechanically retrieved helped to ensure that the list of articles was complete. 
The final sample of analyzed full papers was thus 27 articles. Table 1 presents the 
distribution of journals and conferences where the 27 articles of the sample were 
published. Finally, note that only the articles that are referred to directly in this study 
are listed in the references at the end of this article, but a full reference list is available 
from the corresponding author upon request.

3.3. Analyzing the articles

This stage involved extracting and documenting information from each of the 27 articles. 
To minimize subjectivity, the authors: (i) cross-checked results; and, (ii) conducted 
regular meetings to resolve any emerging inconsistencies in interpreting the results. 
The major research vehicle was content analysis. As a template for data collection, 
a simple matrix was used where for each article (row) two questions (column) were 
asked: What bottleneck detection methods are used? How are they operationalized? 
Results from this analysis process will be presented next.

4. Results

Bottleneck detection methods that emerged from the systematic literature review will 
first be introduced. The focus then shifts on how these methods were operationalized.

4.1. Bottleneck detection methods

Out of the sample, 14 articles presented new bottleneck detection methods. The remain
ing articles mainly focused on new operationalization procedures for existing methods or 
compared different methods. One way to classify bottleneck detection methods is 
according to the bottleneck definition adopted by an author. For most studies bottleneck 

Table 1. Distribution of publications across journals/ 
conferences.

Journal/Conference Name Count

Proceeding of the Winter Simulation Conference 5
International Journal of Production Research 4
Journal of Manufacturing Systems 2
Computers and Industrial Engineering 2
Production and Operations Management 2
Journal of Manufacturing Systems and Engineering 2
Other journals (8 different journals) 8
Other conferences (2 different conferences) 2
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definition and measure used to detect the bottleneck overlap. This is typically the case if 
the bottleneck is simply defined in terms of a measure, such as utilization, work in queue, 
or the time a station is active. While this is practical, other studies provide rigorous 
mathematical definitions of bottlenecks. Since it is difficult to directly apply these 
definitions, indirect methods based on measurable data are then introduced, and it is 
shown how these methods approach the mathematical definition. This study is motivated 
by a practical need. The classification is therefore focused on the type of measurable data 
used. The 14 different bottleneck detection methods are classified into three distinct 
categories: methods that focus on the queue state, methods that focus on the process 
state, and methods that focus on both queue and process state (i.e. the system state). 
These categories are based on real-world practice, where it is common for practitioners to 
identify throughput bottlenecks by observing queues, the processes at stations, or by 
combining queue and process-based observations. Each category will be discussed next 
before a critical discussion of the different categories is presented.

4.1.1. Bottleneck detection methods focusing on the queue state
There are two types of throughput bottleneck detection methods proposed in the 
literature that use queue information: (1) queue length method, and (2) waiting time 
method.

The Queue Length Method measures the queue lengths Qs,t of each station s, with the 
momentary bottleneck being the station with the maximum queue length at a given time 
instant, that is max Q1;Q2; . . . ;Qnð Þ at that time instant, with n stations (Lawrence & 
Buss, 1994), assuming that the queue limit is never reached. The average throughput 
bottleneck would be the station that on average has the maximum queue length for 
a given time period.

The Waiting Time Method measures the waiting time (measured in time units) of jobs 
in a station queue (Roser et al., 2001). This method can be used to identify average 
throughput bottlenecks. The station with the maximum average waiting time is the 
throughput bottleneck station, assuming that the queue limit is never reached.

While the above two methods appear similar, they are different. The queue length is an 
aggregate measure whereas the waiting time is associated with individual flow items.

4.1.2. Bottleneck detection methods focusing on the process state
This category includes detection methods that focus on the information about the 
process states to identify the throughput bottlenecks. A state represents an activity 
performed on a station e.g. producing, repair, setup, etc. A timeline representing process 
states is shown in Figure 3.

Figure 3. Process states of the station during a production run (adapted from (Roser et al., 2001)).

PRODUCTION & MANUFACTURING RESEARCH 7



Nine different throughput bottleneck detection methods have been proposed in the 
literature that uses process state information: (1) utilization method, (2) active period 
percentage method, (3) average active period method, (4) longest current active period 
method, (5) shifting bottleneck method, (6) inactive period method, (7) inter-departure 
time variance method; (8) arrow method, and (9) turning point method. Each of these 
methods is described below.

The Utilization Method measures the utilization Us, with the bottleneck being the 
station with the largest utilization, that is max U1;U2; . . . ;Unð Þ, with n stations (Hopp 
et al., 2007). The utilization method includes the producing and breakdown states of 
a station.

The Active Period Percentage Method presented by (Roser et al., 2001) distinguishes 
between a station being active, i.e. station states when the station is not waiting for 
products from another station (e.g. producing, down, or setup, as illustrated in Figure 3 
above), and a station being inactive, i.e. station states when the station is waiting for jobs 
from another station (e.g. blockage, starvation, or waiting). To determine the bottleneck 
the active period percentage is calculated as the time a station is active during a given 
time period divided by the time period. The station with the largest active period 
percentage is identified as the throughput bottleneck.

The nomenclature of the active period percentage and utilization method are not 
standardized in the literature. For example (Roser et al., 2002a), uses the term utilization 
percentage to refer to the active period percentage method. But referring to the active 
period percentage as utilization or workload percentage can be misleading. Utilization 
percentages follow the busy concept of a station as defined by (Law & Kelton, 1991). They 
only include a subset of the active states, mainly producing and down. But reflecting on 
the original definition of the active state by (Roser et al., 2001), the active state should 
include all activities towards increasing the production system throughput, such as 
repair, service and set up activities. (Lima et al., 2008) includes this aspect and defines 
the utilization percentage of a machine as the percentage of time the machine is working, 
and the active period percentage as the percentage of time the machine is active.

The Average Active Period Method also uses the active state information of a station. 
But rather than calculating the percentage, it calculates the average length of the active 
durations for each station in the production system. The station with the longest average 
active period is considered to be the average bottleneck, as this station is the least likely to 
be interrupted by other processes and thus dictates the overall system output (Roser et al., 
2001). The active period method records the active periods as for the analyzed time 
horizon for each station s, that is as;1; as;2; . . . as;t

� �
being as;i the duration of the active 

period i of station s. It then calculates the average duration for a station s, being the 
station with the highest average active duration the throughput bottleneck.

The Longest Current Active Period Method is a method that specifically focuses on 
momentary bottlenecks (Roser et al., 2002a, Subramaniyan et al., 2016). At any given 
time, the process with the longest active period is the momentary bottleneck for this 
method.

The Shifting Bottleneck Detection Method calculates the time periods in which a station 
is a momentary or a shifting bottleneck using the active period method. The momentary 
bottleneck is the station with the longest uninterrupted active duration. Shifting 
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bottlenecks occur when there is a large overlap between the two longest active periods of 
stations. There is no clear definition on how overlap is defined, and the method relies on 
parametrization. The throughput bottleneck is then identified as the station that was the 
longest time momentary of shifting bottleneck (Roser et al., 2002b). also presented 
a method that seeks to link process state (working, repair, etc.) to bottleneck occurrence, 
thereby enhancing this method.

Above introduced methods that use the different active states (such as producing, 
downtime, etc.) of the stations to identify throughput bottlenecks. The next set of 
methods focuses on the inactive states such as blocking and starvation states.

The Inactive Period Method identifies the bottleneck as the station with the minimum 
of the sum of the blocked state time and the starved state tim (Sengupta et al., 2008) e, 
that is station b is the bottleneck if TBb þ TSb <TBb� 1 þ TSb� 1 (1< b< n) and 
TBb þ TSb <TBbþ1 þ TSbþ1 (1< b< n), with TBs being the blockage time for the station 
s over a time period, and TSs being the starvation time for station s over a time period. It 
is further assumed that b is a natural value. Note that (Sengupta et al., 2008)use the inter- 
departure time as measure to operationalize the procedure, which is also the focus of the 
next method.

The Inter-departure Time Variance Method identifies the station with the smallest 
work-in-process inter-departure time variance as the bottleneck (Betterton & Silver, 
2012). Since the bottleneck is argued to have a higher active time than other stations, it 
will cause upstream stations to be blocked and downstream stations to be starved. The 
increased blocking and starving at non-bottleneck stations will cause their inter- 
departure time variance to be larger, and the lower blocking and starving at the bottle
neck will cause its inter-departure time variance to be smaller (Betterton & Silver, 2012).

In above studies the definition of the bottleneck and the measure/method used to 
identify the bottleneck overlap. Bottlenecks are defined in terms of utilization and active/ 
inactive periods of stations. A mathematical rigorous approach for defining bottlenecks 
in serial production lines was adopted by (Kuo et al., 1996, Chiang et al., 2000), who used 
a partial derivative notation to reflect dependence on two or more independent variables, 
and (Li et al., 2009) (Li, 2009), who used the delta notation that is mostly used in limit 
expressions to approach zero and evaluate the slope. According to definition, authors 
outline different detection methods based on measurable data that result in identifying 
the same bottleneck as identified by the mathematical definition.

The Arrow Method draws arrows pointing left or right to show which stations have 
a higher frequency of being blocked and starved compared to adjacent stations (Kuo 
et al., 1996, Chiang et al., 2000). (Kuo et al., 1996) calculated the frequency in terms of 
time slots meaning that the arrow method measures the duration of starvation and 
blockage in a time period. If the frequency of blocking of station s is greater than the 
frequency of starvation for station s + 1, then the bottleneck is downstream of station s. If 
the frequency of starvation of station s is greater than the frequency of blocking for 
station s-1, then the bottleneck is upstream of station s. This is indicated by arrows, with 
the bottleneck being the station that has arrows pointing towards it from both sides.

The Turning Point Method proposed in (Li et al., 2009) and (Li, 2009) identifies the 
bottleneck station as the station that experiences a change (turning point), i.e. a scenario 
where the blockage is higher than starvation should change to a scenario where starvation 
is higher than the blockage. So, station b is the turning point during a time period if: 

PRODUCTION & MANUFACTURING RESEARCH 9



TBi � TSið Þ> 0 : i 2 1; . . . ; b � 1½ �; b�1; b�n 

TBi � TSið Þ< 0 : i 2 bþ 1; . . . ; n½ �; b�1; b�n 

TBb þ TSb <TBb� 1 þ TSb� 1; b�1; b�n 

TBb þ TSb <TBbþ1 þ TSbþ1; b�1; b�n 

In addition: 

b=1: TB1 � TS1ð Þ> 0 and TB2 � TS2ð Þ< 0 and TB1 þ TS1 <TB2 þ TS2
b=n: TBn� 1 � TSn� 1ð Þ> 0 and TBn � TSnð Þ< 0 and TBn� 1 þ TSn� 1 >TBn þ TSn 

For the special case that no turning point can be found, i.e. where each station’s 
starvation is higher than its blockage, the first station is considered to be the bottleneck; 
else if the station’s blockage is higher than its starvation, the last station is the bottleneck 
(Li et al., 2009) (Li, 2018) later extended this method by proposing that, for a typical serial 
production line with n stations and n-1 buffers, station b is the bottleneck during a time 
period if the following relations hold: 

For the general case 1< b< n: 

TBi � TSi > 0 for i< b and TBi � TSi < 0 for i > b;
TUPb � TBb <TUPb� 1 � TSb� 1 or TUPb � TSb <TUPbþ1 � TBbþ1;
For the special case b ¼ 1:
TB1 � TS1 > 0 and TB2 � TS2 < 0 and TUP1 <TUP2 � TB2;
For the special case b ¼ n:
TBn� 1 � TSn� 1 > 0 and TBn � TSn < 0 and TUPn� 1 � TSn� 1 >TUPn; 

Where TUPs, TBs and TSs are the up, blockage, and starvation time, respectively, for 
station s over the analyzed time horizon.

4.1.3. Bottleneck detection methods focusing on the system state
Three throughput bottleneck detection methods proposed in the literature were found 
that use a combination of queue state and process state information. These methods were 
categorized as focusing on the system state. They are (1) bottleneck walk method, (2) 
bottleneck index method, and (3) sensitivity of the system method.

The Bottleneck Walk Method is similar to the arrow method described above but adds 
information on the queue state (Roser et al., 2015). It provides a different means to 
identify the same bottleneck as identified by the mathematical definition. For the process 
states (waiting, starved, and blocked), the following three rules are applied: (i) whenever 
the process is waiting, it cannot be the bottleneck; (ii) if a process is waiting for parts 
(starved), then the bottleneck must be upstream; and, (iii) if a process is waiting for 
transport (blocked), then the bottleneck must be downstream. For all other process states 
(working, breakdown, set-up, maintenance, scheduled break, etc.) the station may be the 
bottleneck and the queue state needs to be consulted.
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There are three rules for the queue states: (i) if the buffer between two processes is full 
or rather full, the bottleneck is probably downstream (where the parts go to); (ii) if the 
buffer is empty or rather empty, the bottleneck is probably upstream (where the parts 
came from); and if the buffer is neither rather full nor rather empty but somewhere in the 
middle the bottleneck direction is unknown. Probably means that it is not certain. To 
reliably find the momentary bottleneck, one would have to take the first derivative of 
inventories. i.e. it is not important if the buffer is large or small, but rather if it is getting 
larger or smaller. However, this is difficult to observe reliably, and in practice above 
assumptions works well according to (Roser et al., 2015). Arrows are used to indicate the 
direction of the bottleneck, with the momentary bottleneck being the station that has 
arrows pointing towards it from both sides. To indicate the average bottleneck, the 
bottleneck walk needs to be replicated in periodic time intervals. In this sense the 
bottleneck walk is different from the arrow method, which focuses on time durations 
and thus average bottlenecks.

The Bottleneck Index Method uses the utilization of a station and the number of jobs in 
the buffer preceding the station to calculate the bottleneck index (Huang et al., 2019). 
This calculation is performed for every station. The station with the highest bottleneck 
index is identified as the throughput bottleneck.

The Sensitivity of The System Method uses the ratio of change in the system state to 
determine the bottleneck (Kuo et al., 1996, Chang et al., 2007). The ratio is defined by the 
production rate ps and queue Qs of each station in the system divided by the change in the 
production rate of each station. A station i is a bottleneck if it has the system’s largest 
ratio, that is: 

@PR p1; p2; . . . ; pn;Q1;Q2; . . . ;Qn� 1ð Þ

@pi
>
@PR p1; p2; . . . ; pn;Q1;Q2; . . . ;Qn� 1ð Þ

@pb
;"i�b 

Even though the sensitivity of the system method can be considered a definition of 
a throughput bottleneck, it is also classified as a throughput bottleneck detection method 
in this paper. This is because, in real-world practice, practitioners can test improvements 
on every machine to identify the throughput bottleneck. Note that (Li et al., 2009) (Li, 
2009) introduced a similar definition but using the delta notation.

4.1.4. Summary of bottleneck detection methods
Table 2 summarizes the 14 different bottleneck detection methods identified through the 
systematic literature review. It can be observed that only the queue length, the longest 
current active period method, and the bottleneck walk can be used to identify momentary 
throughput bottlenecks.

The two methods that focus on the queue state described in Section 4.1.1 are similar, 
and consequently share similar drawbacks. First, differences in the number of products in 
different queues may be small or non-existent if the measure used is very discrete, such as 
the number of jobs or batches (Roser et al., 2001). In this case, no clear identification of 
the bottleneck can be obtained. Second, if the size of the queue in front or after a station 
(input or output buffer) is limited, then the method may become inaccurate. If a method 
uses average queue states, then it will be difficult to detect shifting bottlenecks.

PRODUCTION & MANUFACTURING RESEARCH 11



Meanwhile, also all the methods that focus on the process state described in 
Section 4.1.2 share similar shortcomings. First, differences across stations may be 
small, especially at high utilization levels. In this case, no clear bottleneck can be 
identified. Second, if the system contains queues with no explicit limit, then the method 
may become inaccurate since no blocking occurs. If the methods rely on long term 
averages, such as the utilization method, then the results may become incorrect for 
shifting bottlenecks.

The Bottleneck Walk Method presented in Section 4.1.3 overcomes the major short
coming of methods that use process state information if there is no blocking, i.e. a station 
upstream of the bottleneck that produces 100% of the time but is only filling its down
stream queue would be identified as the bottleneck. The bottleneck walk method iden
tifies this station as working; but since its downstream queue is full, the bottleneck is 
likely to be downstream of this station. However, it remains largely inconclusive for 

Table 2. Summary of different bottleneck detection methods identified from the literature review.
Focus Name Description Capability

Queue State Queue Length Method 
(Lawrence & Buss, 1994)

The station whose queue has the largest 
number of jobs is the bottleneck

Momentary 
bottleneck, 
average 
bottleneck

Waiting Time Method (Roser 
et al., 2001)

The station for which jobs in the queue have 
the longest waiting times is the bottleneck

Average 
bottleneck

Process state Utilization Method (Hopp et al., 
2007)

The station with the highest utilization is the 
bottleneck

Average 
bottleneck

Active Period Percentage Method 
(Roser et al., 2001)

The station with the highest active state time 
duration in a time period is the bottleneck

Average 
bottleneck

Average Active Period Method 
(Roser et al., 2001)

The station with the longest average active 
duration is the bottleneck

Average 
bottleneck

Shifting Bottleneck Detection 
Method (Roser et al., 2002a)

The station being the longest time momentary 
of shifting bottleneck during a time period 
is the bottleneck

Average 
bottleneck

Longest Current Active Period 
Method (Roser et al., 2002a, 
Subramaniyan et al., 2016)

At any given time, the process with the 
longest active 
duration is the bottleneck

Momentary 
bottleneck

Inactive Period Method 
(Sengupta et al., 2008)

The station with the minimum sum of the 
blocked state time and the starved state 
time is the bottleneck.

Average 
bottleneck

Inter-departure Time Variance 
Method (Betterton & Silver, 
2012)

The station with the smallest work-in-process 
inter-departure time variance is the 
bottleneck

Average 
bottleneck

Arrow Method (Kuo et al., 1996) Uses blocking and starvation information to 
indicate whether the bottleneck is 
upstream or downstream

Average 
bottleneck

Turning Point Method (L. Li et al., 
2009) (Li, 2009)

In addition to the condition that a station’s 
blockage and starvation are smaller than its 
neighboring stations, the bottleneck station 
should be a ‘turning point’.

Average 
bottleneck

Queue and 
Station (or 
System) 
State

Bottleneck Walk Method (Roser 
et al., 2015)

Uses blocking and starvation information 
together with information on buffer 
inventory levels to indicate whether the 
bottleneck is upstream or downstream

Momentary 
bottleneck, 
average 
bottleneck

Bottleneck Index Method (Huang 
et al., 2019)

Uses a composite measure of utilization and 
the number of jobs in the queue to identify 
the bottleneck.

Average 
bottleneck

Sensitivity of the System Method 
(Chang et al., 2007)

The station with the largest ratio of change in 
the system state is the bottleneck

Average 
bottleneck
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a broad set of process states (working, breakdown, set-up, maintenance, scheduled break, 
etc.) where a station may be the bottleneck.

Finally, the Sensitivity of The System Method is arguably the best method since it 
directly reflects the definition of a bottleneck in terms of the system state. However, it has 
one major shortcoming: it is based on counterfactuals. In other words, one would have to 
systematically introduce changes and evaluate the impact using experiments and what-if 
analysis. This is different from the other measures discussed in this section, which are 
purely observational.

Overall, it can be concluded that there is limited scientific evidence reported in the 
literature on the suitability of different throughput bottleneck detection methods for 
different production contexts. There are contingency factors that determine applicability 
that should be considered by managers when choosing a method. These will be discussed 
further in Section 5. Next, this study discusses how bottleneck detection methods were 
operationalized in the literature.

4.2. Operationalization of bottleneck detection methods

There are different ways to classify operationalization approaches. In this paper, the 
approaches used in the literature to operationalize bottleneck detection method were 
classified into three categories: gemba walk, DES approach, data science approach. These 
categories were again chosen based on real-world practice. Each category will be dis
cussed next before a critical discussion of the different categories is presented.

4.2.1. Gemba walk
This approach is based on human shop floor observations. Ideally, all the 14 throughput 
bottleneck detection methods can be implemented manually, i.e. by manually collecting 
the shop floor data and subsequent manual analysis of that data. However, out of all the 
methods in the existing literature, only the bottleneck walk (as proposed by (Roser et al., 
2015)) was reportedly operationalized using a gemba walk. Two types of observations are 
collected during the bottleneck walk: machine activities and queue information. 
Thereafter, these two observations are used to identify the momentary and shifting 
throughput bottlenecks.

4.2.2. DES approach
DES models allow for the analysis of the time-dependent behavior of production systems, 
which is often too complex for manual analysis. In this context, a DES model of 
a production system is built using simulation software such as GAROPS Analyser 
(Roser et al., 2001), Extend (Faget et al., 2005), Simul8 (Lima et al., 2008), or Arena 
(Yu & Matta, 2016). The model is run for the desired time interval and the necessary data 
on the queue and machine states are extracted. This data is then analyzed to identify the 
throughput bottleneck in the production system.

Simulation is widely used to evaluate the different throughput bottleneck detection 
methods in the literature. For example, (Lima et al., 2008) use DES to demonstrate 
how the utilization method, queue length method, and waiting time method can be 
operationalized. Similarly, (Roser et al., 2001) use DES to demonstrates how the active 
period percentage method and the average active period method can be 
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operationalized. Meanwhile, (Roser et al., 2002a, Roser et al., 2003) and (Roser & 
Nakano, 2015) use DES to demonstrate how the shifting and sole active period 
method can be operationalized, whilst (L. Li et al., 2009) and (Li, 2018) demonstrate 
with DES how the turning point method can be operationalized. Finally (Chang et al., 
2007), shows how the sensitivity of the system method can be operationalized 
using DES.

There also exists a broad set of studies using generalized simulation models to 
compare bottleneck detection method performance. Meanwhile (Rocha & Lopes, 
2022), assessed the performance of 11 bottleneck prediction methods using a DES 
model of a real-life production line. In general, real-world industrial cases using DES 
models for analyzing throughput bottlenecks are scarce (Kuo et al., 1996) present some 
indication that the arrow method was implemented via DES in an automotive compo
nent plant, whilst (Faget et al., 2005) analyzed the throughput bottlenecks in the body 
shop production system at Volvo Cars Corporation in Sweden via the active period 
method by building a DES model of the production system in Extend simulation 
software.

4.2.3. Data science approach
Most recent literature focuses on the development of data science approaches to support 
the detection of throughput bottlenecks. Data science refers to a multi-disciplinary 
approach to extract meaningful insights from (potentially) large amounts of real-life 
data. It is distinguished from the Gemba walk in terms of size of data and from 
simulation in terms of being real-life data rather than data created through a model. 
This includes procedures where production system data is directly collected from the 
shop floor, and then analyzed using data processing and learning techniques (such as 
statistics, machine learning, deep learning, graphical models etc. (Hutson, 2017)). For 
example (Yu & Matta, 2016), propose a statistical framework using hypothesis testing 
techniques that can be coupled with any throughput bottleneck detection method based 
on process states to identify the throughput bottleneck directly from real-time data 
(Subramaniyan et al., 2020). propose an unsupervised machine learning-based clustering 
framework, that can also be coupled with any process state-based bottleneck detection 
method to identify throughput bottleneck clusters (Subramaniyan et al., 2016) and 
(Subramaniyan et al., 2018) propose statistical algorithms to operationalize the average 
active period and active period percentage methods using data science methods, whilst 
(Subramaniyan et al., 2016) propose a matrix-based data-driven algorithm to operatio
nalize the shifting bottleneck detection method.

Meanwhile (Subramaniyan et al., 2018), and (Subramaniyan et al., 2019) propose 
a data science approach based on statistical techniques and the active period method to 
predict future throughput bottlenecks (i.e. the expected throughput bottlenecks for 
a future time period) and prescribe actions on them (Li et al., 2011) uses statistical 
techniques to predict the throughput bottlenecks using the turning point method as 
proposed by (Li et al., 2009). (Huang et al., 2019) uses neural networks to predict 
throughput bottlenecks using the bottleneck index method (Cao et al., 2012) uses 
adaptive neuro-fuzzy inference systems (ANFIS) to predict throughput bottlenecks 
using the utilization method.
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4.2.4. Summary of operationalization approaches of bottleneck detection methods
Although being the simplest method, the gemba walk is one of the least reported in the 
literature (Roser et al., 2015). report several advantages of using the gemba walk for 
operationalizing the bottleneck walk method. First, momentary throughput bottlenecks 
can be found quickly just from manual observation without any complicated calculations 
involved. Second, the bottleneck walk is more accurate, especially in discrete flow 
production systems. Finally, as observations are collected on the shop floor, where 
problems occur, determining the root causes of the throughput bottlenecks is facilitated.

The above highlights a first important constraint for the gemba walk as operationa
lization approach: there should be no complicated calculations involved. Simple meth
ods, just observing and recording simple data points, such as the queue length method, or 
methods focusing on direct observable system states, such as blocking and starvation, are 
the most amenable to this approach of operationalization. Meanwhile, for long produc
tion lines with several machines, it is time consuming to walk along the line to detect the 
throughput bottlenecks, whilst it may be challenging with machines that have extremely 
small cycle times and in environments where the throughput bottleneck shifts across 
machines frequently. Finally, human observations are prone to errors and can lead to 
wrong identification of throughput bottlenecks.

Similar, DES is one of the least reported approach for operationalization in the 
literature, although simulation is widely applied to compare bottleneck detection meth
ods in generalized shop models. Generalized models are relatively easy to build and do 
not require data from real-life shops. They thus provide a unique platform to test, verify, 
and validate different throughput bottleneck detection methods. But although DES 
model-based analysis provides substantial value for practitioners, some limitations 
impede the wide application of DES for operationalizing bottleneck detection methods 
in practice. First, building simulation models that accurately represent a real-life produc
tion system, is very costly and time-consuming. Second, the results of the simulation 
model are highly dependent on the level of detail included when building the model. It is 
challenging to simulate all possible noises and factors to mimic the real-world production 
system. As a result, the outputs from simulation models could easily be misinterpreted by 
practitioners. Finally, it is difficult to keep the simulation model updated. But new 
simulation software that allows for easy data integration is likely to overcome many 
obstacles, whilst updating frequency and noises are typically less in more repetitive 
production contexts.

With the limitations of the gemba walk and DES, data science approaches are seen as 
an important alternative for throughput bottleneck detection in the literature. The use of 
data science approaches is enabled by recent advances in information and communica
tion technologies (ICT) in manufacturing, which allow for the collection and the 
management of a larger amount and a wider variety of real-time production system 
data (Wuest et al., 2016). At the same time, advances in the field of data science (e.g. 
machine learning, statistics, etc.) offer a large and increasing number of techniques that 
can be used to handle and process these large amounts of real-time data (Jordan & 
Mitchell, 2015). Many of these techniques can easily be implemented using freely 
available software (such as R and Python), which offers a large potential for developing 
data science approaches for real-time data processing (Wuest et al., 2016). But data 
science remains limited in terms of causal analysis. Data science can predict the 
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probability that a station will be the bottleneck, but it is not able to evaluate counter
factuals. But only evaluating counterfactuals allows for precisely identifying the bottle
neck according to, for example, the mathematical definition given in (Kuo et al., 1996). 
Some modelling needs to be reintroduced into the data analysis process. These and other 
emerging future research directions will be discussed next as part of Section 5.

5. Discussion

5.1. Linking bottleneck detection and operationalization mode

This study identified 14 different throughput bottleneck detection methods from the 
existing literature. This largely extends the sets of methods identified by (Betterton & 

Table 3. Throughput bottleneck detection methods and operationalization modes.

Focus Method

Operationalization modes

Gemba 
Walk DES Data science

Queue State Queue 
Length

(Lima et al., 2008)

Waiting Time (Lima et al., 2008)
Process state Utilization (Lima et al., 2008) Cao et al., 2012) (Yu & Matta, 2016) 

(Subramaniyan et al., 2020)
Active Period 

Percentage
(Roser et al., 

2001Lima et al., 
2008)

(Subramaniyan, Skoogh, Salomonsson, Bangalore, 
Gopalakrishnan, et al., 2018) (Subramaniyan, 
Skoogh, Salomonsson, Bangalore, & Bokrantz, 
2018) (Subramaniyan et al., 2019) (Yu & Matta, 
2016) (Subramaniyan et al., 2020)

Average 
Active 
Duration

(Roser et al., 2001) (Subramaniyan, Skoogh, Gopalakrishnan, & 
Hanna, 2016) (Yu & Matta, 2016) 
(Subramaniyan et al., 2020)

Longest 
Current 
Active 
Period

(Roser et al., 
2002a)

(Subramaniyan, Skoogh, Gopalakrishnan, 
Salomonsson, et al., 2016) (Yu & Matta, 2016) 
(Subramaniyan et al., 2020

Shifting 
Bottleneck 
Detection

(Roser et al., 2002a, 
Roser & Nakano, 
2015)

(Subramaniyan, Skoogh, Gopalakrishnan, 
Salomonsson, et al., 2016) (Yu & Matta, 2016) 
(Subramaniyan et al.,2020)

Inactive 
Period

(Sengupta et al., 
2008)

(Yu & Matta, 2016, Subramaniyan et al., 2020)

Inter- 
departure 
Time 
Variance

(Betterton & Silver, 
2012)

(Yu & Matta, 2016, Subramaniyan et al., 2020)

Arrow (Kuo et al., 
1996Chiang 
et al., 2000)

(Yu & Matta, 2016, Subramaniyan et al., 2020)

Turning Point (L. Li et al., 2009) 
(Li, 2009Li, 
2018)

L. Li et al., 2011) (Lai et al., 2018) (Yu & Matta, 
2016) (Subramaniyan et al., 2020

Queue and 
Station (or 
System) State

Bottleneck 
Walk

(Roser 
et al., 
2015)

Bottleneck 
Index

(Huang et al., 2019)

Sensitivity of 
the System

(Chang et al., 2007)
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Silver, 2012) and (Roser & Nakano, 2015). Table 3, links bottleneck detection methods 
and operationalization mode used in the sample.

From the 14 bottleneck detection methods identified, nine focus on the process state. 
These nine are also the most operationalized via data science approaches. An explanation 
is that the real-time production system data created by ICT is often machine data. The 
increased digitalization of the shop floor often focuses on monitoring the station activ
ities, which makes it relatively easy to obtain the process states and associated timestamps 
as event log data sets from manufacturing execution systems (Subramaniyan et al., 2018, 
Subramaniyan et al., 2018). This has given rise to the development of data science 
procedures to identify throughput bottlenecks. Most operationalizations use active 
period-based methods, such as active period percentage, average active period, and 
shifting bottleneck method. There are two main reasons. First, active periods of 
a station account for all the events that cause blockage and starvation at other stations, 
thus enabling deeper insights on throughput bottlenecks (see e.g. (Subramaniyan et al., 
2019)). Second, active periods are simpler to observe than potential blocking and starva
tion at other stations in the system.

Meanwhile, bottleneck methods that focus on the queue state are often operationa
lized using DES. This can be explained by queue-related measures being standard 
measures in common simulation software. The same holds for other modeling 
approaches, such as standard queueing models (Kuo et al., 1996). In contrast, measuring 
active periods can become quite complex using standard simulation software. Finally, the 
only method of which a manual implementation was reported in the literature, is the 
bottleneck walk.

Table 3 maps the research field on bottleneck detection. It highlights that a broad set of 
methods has been developed, which have been operationalized using several different 
approaches. However, it also highlights several research gaps through its empty cells. 
Other potential venues for future research will be discussed next.

5.2. Future research directions

Out of the insights gained during the review process, and the authors’ own practical 
experience of identifying throughput bottlenecks in manufacturing industries for several 
years, a list of promising future research directions is next provided.

5.2.1. Comprehensive throughput bottleneck detection methods
Existing throughput bottleneck detection methods focus on process and queue states. 
Although these states reveal useful information on the dynamics of a production systems, 
they may not fully capture the system’s dynamics, because there may be several other 
contextual factors that influence the location of throughput bottlenecks. This includes:

● Different production system resources: A production system may consist of several 
resources such as stations, buffers, transport systems, human workers, robots, and 
machines. The existing throughput bottleneck methods in the literature use the 
information only from a subset of these resources to identify throughput bottle
necks. To fully capture and understand the production system dynamics, new 
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throughput bottleneck detection methods are required that considers the informa
tion from all production resources.

● Product information: Existing methods consider an environment where there are 
limited product types, and each product type has similar cycle time profiles (e.g. 
a mass production environment). There is also the assumption that the future 
product types and product mix will be the same as the historical product types. 
However, in modern production systems, there is a risk that these assumptions are 
violated. To reliably detect throughput bottlenecks in environments with variable 
product mix, further research is required to explore how the existing throughput 
bottleneck detection methods can be combined with product information. For 
example, how can the active period method (which currently uses process state 
information) include product mix information to identify throughput bottlenecks?

● Accounting of supply chain information: Merely increasing the throughput of 
a production system without the inclusion of supply chain information may result 
in inventory buildups. Throughput bottlenecks can be better managed if they are 
identified based on a combination of process states, queue states, and contextual 
supply chain information, such as customer due dates, incoming raw material 
information, and backlog information. Research efforts are required to develop 
throughput bottleneck detection methods that also include supply chain 
information.

● Quality information: The existing methods identify throughput bottlenecks from 
a capacity perspective. It is inherently assumed that there are no quality issues, and 
good products are always produced in the system. As a result, when the existing 
methods are used by practitioners on the shop floor, there might be a risk of 
increasing the throughput of defective products. To mitigate such risks, practi
tioners need to include a quality perspective into bottleneck detection. Future 
research efforts are needed to develop methods that combine station, queue, and 
quality information to identify throughput bottlenecks, and eventually increase the 
throughput of good products.

● Complementary outcomes: More demands for complementary outcomes, such as 
sustainability, innovation, and security, are emerging (Van Wassenhove, 2019). 
Bottleneck detection need to reflect this since otherwise demand may become the 
bottleneck. For example, (Silva et al., 2021) include energy efficiency consideration 
into a bottleneck detection framework that extends mere throughput bottleneck 
detection. More research is needed to further extent this line of research given that 
complementary outcomes appear to gain in importance.

5.2.2. Transient state of production systems
Most of the existing literature focused on developing methods to identify throughput 
bottlenecks in a steady-state production system. In contrast, the applicability of these 
methods during the transient behavior (e.g. when the production system starts for a new 
shift) remains relatively unexplored. Transient analysis is also important in real-world 
practice as transient behavior affects throughput. Although (Roser et al., 2002a) qualita
tively argue that the shifting bottleneck method can also be used in a transient state, more 
research is required to determine the suitability of different methods.
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5.2.3. Applicability to complex production systems
The existing literature provides a large set of throughput bottleneck detection methods. 
These methods have been demonstrated and proved effective in detecting throughput 
bottlenecks mainly on serial production lines. However, modern production lines have 
more complex flows (e.g. with parallel machines, re-entrant production lines, shared 
buffers, split flows, moving assembly, etc. (Owen & Huang, 2007)). There is only limited 
support for practitioners to decide which throughput bottleneck detection methods are 
best suited for these more complex contexts. More research is required on comparing 
different bottleneck detection methods, and on studying the applicability of the different 
methods in production systems with different structures and different flows.

It is also important to prove the applicability of different throughput bottleneck detection 
methods in production systems that produce a high variety of products that may require 
varied operation sequences, such as a line flow in which different products uses different 
sequence of operations, different production system configurations (e.g. line flow, job shops, 
lines with closed loops, rework loops, etc.) and a combination of production system config
urations (e.g. a production system where machining and painting are performed in 
a consecutive sequence), which is common in many modern real-world factories. The existing 
throughput bottleneck detection methods were mostly proven to work in production systems 
in which the stations have the same type of operations. For example (Li et al., 2009), 
demonstrates the applicability of the turning point method in an assembly production system, 
in which assembly operations are performed at all stations. Similarly (Subramaniyan et al., 
2020), demonstrated the data science approach of clustering the machines on a machining 
production line. Studying the applicability of throughput bottleneck detection methods for 
varied operation sequences consequently requires further research. This will also help to scale 
the level of analysis of the different methods, from detecting the bottlenecks in the production 
system to detecting the bottlenecks in the entire factory.

5.2.4. Validation of throughput bottleneck detection methods
When developing throughput bottleneck detection methods, it is common for research
ers to use DES to verify and validate the different bottleneck detection methods (as seen 
in Table 3). Thereafter, researchers argue that the throughput bottleneck detection 
methods will also work in the real-world. But how can one be sure that the developed 
methods identify the right throughput bottlenecks in the real-world? One way to answer 
this question is to implement the different bottleneck detection methods in practice and 
to assess the results. For example, when practitioners resolve the throughput bottlenecks 
in the real world, one can assess if the actual production system throughput has 
increased. None of the existing literature provides real-world validation of methods. 
Future research activities are needed to implement the methods and study their effects.

5.2.5. Stochasticity and shifting bottlenecks
Most bottleneck detection methods were developed for stable contexts. But companies in 
most need of bottleneck detection methods are often companies with shifting bottlenecks. 
Bottlenecks are a stochastic phenomenon and identifying bottlenecks quickly and reliably is of 
utmost importance. While the shifting bottleneck method explicitly considers this dynamicity, 
it remains largely unknown how well other methods perform in contexts with shifting 

PRODUCTION & MANUFACTURING RESEARCH 19



bottlenecks. Future research should evaluate the performance of alternative methods, includ
ing the evaluation of response time (quickness of detecting a shift) and accuracy.

5.2.6. Digital Twins for throughput bottleneck detection
Data science was the most followed approach for operationalization in practice. This was 
motivated by advances in technology. But advances in technology also affect simulation. 
A specific form of real-time modeling that has received recent attention is the so-called digital 
twin (e.g (Shao & Helu, n.d..), (Lugaresi & Matta, 2021)). The use of digital twins recognizes 
the need to respond to emerging problems quickly, which makes it specifically suitable for 
shifting bottlenecks. For example, a digital twin of the production system can automatically 
analyze the throughput bottlenecks from the real-time data sets, predict the expected 
dynamics using data science, examine the different scenarios of eliminating the bottlenecks, 
and prescribe actions to resolve these bottlenecks in the real world. Such a type of digital twin 
can continuously evolve using the real-time data of the production system and shop floor 
engineers’ feedback. Future research is required to develop such a twin, and to evaluate how it 
can be operationalized for throughput bottleneck detection and control.

5.3. Practical implications

5.3.1. Guidelines for selecting a throughput bottleneck detection method
Table 2 provides a set of throughput bottleneck detection methods. Choosing a suitable 
throughput bottleneck detection method is highly dependent on the structure of the produc
tion system and the available production system information. For example, a rigorous 
mathematical definition can and should be chosen in serial production lines, and methods 
implemented that are based on this definition. However, in high-variety make-to-order shops 
with complex routing such rigorous definition may not be possible and a simpler more 
intuitive method needs to be adopted. In general, the following guidelines apply.

Methods based on queue states: These throughput bottleneck detection methods can 
only be applied in production systems that have intermediate buffers between the 
stations. The selection of a particular method depends on the capacity of the buffer. If 
the buffer limit is commonly reached, then the waiting time method is more suitable. If 
the buffer limit is never reached, then the queue length method can be used.

Methods based on processes states: These throughput bottleneck detection methods can 
be applied for production systems with or without intermediate buffers. The selection of 
method is highly dependent on the level of complexity that is considered feasible. In 
general, the active period methods (including the active period percentages, average 
active period, longest current active period and shifting bottleneck detection method) 
are more complex than other methods. This is because they consider all stochastic events 
that influence the production system throughput, and all the information about these 
stochastic events needs to be available. In contrast, the turning point method uses only 
the blockage and starvation information. The required level of complexity is best judged 
by practitioner experience and their assessment of the feasibility of a method. Meanwhile, 
the inter departure time method may identify non-bottlenecks instead of bottlenecks if 
the coefficient of variation is the same for bottlenecks and non-bottlenecks (Thürer et al., 
2021). If there is blocking, then the inter departure time method may identify a blocked 
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station as a bottleneck station given the time delay that is necessarily introduced because 
the inter departure time is calculated based on historical data.

Methods based on system states: These throughput bottleneck detection methods can 
also be applied for production systems with or without intermediate buffers. These 
methods are more complex compared to the methods based on the process states since 
they require both queue and station information to detect throughput bottlenecks. These 
methods can be more useful for production systems that have complex flows such as split 
flows, parallel flows etc.

Overall, it must be noted that none of the throughput bottleneck detection methods is 
perfect in a rigorous sense. Every production system is different and generalizing the bottle
neck detection methods is challenging. Practitioners need to use their domain knowledge of 
the specific production system to cautiously evaluate the different methods and only then 
select a method.

Table 4. Operationalization modes: suitability, advantages and challenges.
Modes When to use Advantages Challenges

Gemba 
Walk

● Suitable for non- 
digitalized production 
system.

● Can be used to detect 
throughput bottlenecks 
when practitioners are 
present on the shop floor.

● Needs relatively stable 
production system.

● Can identify momentary 
and average bottlenecks.

● Allows for directly observing 
the production system 
dynamics and identifying 
throughput bottlenecks.

● Facilitates quick decisions.
● Checks and aligns the practi

tioner’s perception on 
throughput bottlenecks with 
reality.

● Considers limited stochas
tic events.

● Needs extensive manual 
efforts and is time 
consuming.

● Limited possibilities to 
detect shifting bottlenecks 
in real-time.

● Lack of predictive 
capabilities.

DES ● Suitable for both non- 
digitalized and digitalized 
production systems.

● Production system data 
should be available 
(either in digital format or 
manual recorded 
observations).

● Suitable for back-office 
analysis of throughput 
bottlenecks.

● Suitable to identify aver
age throughput 
bottlenecks.

● Considers all types of sto
chastic events.

● Can support “what if” analy
sis, i.e. test interventions to 
resolve throughput bottle
necks before 
implementation.

● Time consuming to build 
simulation models.

● Requires high input data 
quality.

● Need of extensive manual 
efforts and expertise (e.g. 
programming) to build and 
verify simulation models.

● Difficult to keep the model 
updated in dynamic 
contexts.

Data  
science

● Suitable for digitalized 
production systems.

● Digital production system 
data should be available 
(e.g. event log data).

● Back-office analysis of the 
throughput bottlenecks.

● Suitable to identify 
momentary, average and 
shifting bottlenecks.

● Considers all stochastic 
events (even disturbances in 
seconds time scale).

● Can identify the throughput 
bottlenecks in real-time.

● Enables quick decisions.
● Can predict future through

put bottlenecks.
● Has the capability to automa

tically learn about changing 
production system dynamics 
(i.e. without much manual 
efforts compared to DES).

● Requires high input data 
quality.

● There may be a bias in the 
input data.

● Limited capability to test 
interventions before imple
mentation in the real- 
world.
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5.3.2. Guidelines on selecting an appropriate operationalization mode
After selecting an appropriate throughput bottleneck detection method, an operationa
lization mode to operationalize the method needs to be determined. The three different 
operationalization modes considered in this study are summarized in Table 4 together 
with their suitability, advantages, and challenges.

If there is no digital production system data available, then gemba walks are the first 
choice. In general, the gemba walk is a good choice if bottlenecks need to be detected less 
frequently, i.e. are stable and less likely to shift. Even though Table 3 may suggest that 
only the bottleneck walk falls under the gemba walk, in real-world practice, most of the 
bottleneck detection methods can also be operationalized using the gemba walk. 
However, during the gemba walk only a limited number of stochastic events can be 
taken into account. The results may therefore not always be accurate.

To increase the accuracy of the results, DES models of the production system can be used. 
DES constitutes a unique approach that enables the simultaneous consideration of a range of 
stochastic events. DES also provides more insights on which stochastic events are truly 
important in influencing the behavior of the throughput bottlenecks and which are presum
ably less so. Moreover, using DES practitioners can test different interventions to resolve 
throughput bottlenecks and select the best strategy for implementation. Despite the benefits of 
DES, the creation of appropriate models is often challenging as it is very time consuming to 
construct the model and to keep the model updated with the changes taking place in the real- 
world production system.

Data science approaches are more suitable for back-office monitoring of a completely 
digitalized production systems. They can directly analyze real-time data and provide real-time 
insights to practitioners. This allows for effective decisions to resolve bottlenecks quickly. Data 
science approaches also have the capability to predict the throughput bottlenecks before 
a production run (e.g. production shift) so that practitioners can start their production run 
with a complete understanding of the expected throughput bottleneck stations for that 
production run. This can help them to act proactively. However, data science approaches 
cannot identify causes and remain entrenched in probabilities. For the same reason they 
remain limited in terms of evaluation of potential interventions. A summary of data science 
approaches together with detailed guidelines for implementation can be found in 
(Subramaniyan et al., 2021).

6. Conclusion

The importance of bottlenecks is widely recognized in the literature and in practice. 
Bottleneck detection is the first step in bottleneck management leading to a large literature 
proposing different bottleneck detection methods. However, to-date no comprehensive 
review of the literature on throughput bottleneck detection has been conducted. This leaves 
practitioners alone in their task to choose an appropriate bottleneck detection method and its 
operationalization for their shop. In response, a systematic literature review was conducted to 
consolidate the field. A total of 14 bottleneck detection methods were identified, which can be 
classified according to the measure applied. This provides a comprehensive set of methods 
and significantly extends existing reviews that only provided limited sets. Meanwhile, three 
modes of operationalization were identified. The literature was mapped along bottleneck 
detection method and operationalization mode, and a series of important research issues 
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outlined. This includes the consideration of other constraining resources, such as workers, 
tooling, or transportations, and the development of a digital twin-based method for bottleneck 
detection and control. Meanwhile, this review identified contingency factors for method 
application and discusses important guidelines for the application of the different operatio
nalization modes. This guides practitioners on which method and operationalization to adopt 
in their shop.
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