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Abstract 

The recent widespread of the COVID-19 pandemic has created major disruptions in global supply 

chains. Events like COVID-19 pose enormous challenges in the movement of people, raw material, 

and finished products. Companies find it difficult to manage business continuity under supply 

uncertainties and disruptions. This paper deals with the problem of the optimal ordering policy of 

the retailer who faces stochastic demand and risks of supply uncertainty and disruption in a single 

period. The existing literature has suggested that dual sourcing is the best strategy to mitigate the 

risks of disruptions. In line with this, we consider a two-echelon supply chain consisting of a single 

retailer and two suppliers (i.e., the main supplier and the backup supplier). The retailer faces the 

risks of random yield and disruption from the main supplier who provides the product at a cheaper 

cost. In contrast, the backup supplier is perfectly reliable or has no probability of failure, but is 

relatively expensive. This paper develops an analytical model using contract-based mechanisms 

considering the risks of demand uncertainty, random yield, and supply disruption. We consider 
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two typologies of contracts with suppliers, namely risks sharing contract with the main supplier 

for over-production and under-production due to the random yield —and buyback contract with 

the backup supplier. A numerical experiment and sensitivity analyses are performed to validate 

the analytical model and explore the impacts of the major parameters on the decision variables and 

profits of the supply chain’s members. The results provide guidelines for managers regarding how 

sourcing decisions are influenced by the risks of supply disruption, random yield, and demand 

uncertainty. 

 

Keywords: Supply disruption; COVID-19; random yield; demand uncertainty; buyback contract; 

ordering policy; risk-sharing contracts. 

 

 

1. Introduction 

With the intensification of globalization and the rise of India and China as global outsourcing hubs, 

many firms desire to tap into the cheap resources of these emerging economies. Today’s supply 

chains are therefore longer, complex, and more supplier’s dependent than ever, which has exposed 

the firms to a broader spectrum of supply chain risks. The recent rapid and wide spread of COVID-

19 has created significant disruptions in global supply chains. Because of COVID-19, many 

countries around the world have imposed lockdown, which has disrupted the movement of people, 

raw material, and finished goods (such as automotive parts, optical-electronics, medical 

equipment, electronic parts, and consumer goods) from different parts of the world (Financial 

Times, 2020). This type of disruptive events considerably challenges global supply chains.  

Over the years, outsourcing has helped improve various aspects of product and supply 

chain performances; however, it has also increased several types of risks. Two such important risks 

are the random yield and supply disruption. Under the risks of random yield, the suppliers cannot 

provide a certain portion of the demand (Burke et al., 2008). It is common knowledge that the 

yield of most of the production processes is not deterministic, and it varies widely from one 

industry to another. For example, in the agriculture industry, it is challenging to predict the exact 

yield, as it is greatly affected by weather, insects, and parasitic attacks. 
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Similarly, in many developing countries, the availability of inputs like water for irrigation, 

power, and credit is quite uncertain. The issue of random yield is also associated with many of the 

hi-tech manufacturing processes as they are still highly sensitive to ambient conditions and minor 

fluctuations in process parameters (one such example is microchip fabrication). The random yield 

can be viewed as uncertainty in the delivery volume, which means that the delivered quantity is 

not the one that was ordered by the retailer, even though the supplier may be able to provide the 

goods (Hou et al., 2010).  

On the other hand, under the risk of supply disruption, the supplier completely fails due to 

the occurrence of disruptive events and cannot provide a single unit order quantity (Hou et al., 

2010; Meena et al., 2011; Meena and Sarmah, 2013). As today’s supply chains are expanding 

globally, natural calamities, pandemics like the COVID-19, currency fluctuation, piracy, and other 

human-made events are increasing the disruption risks in the supply chain. Supply disruption risks 

are infrequent or rare but have a high impact on the entire supply chain (Ellis et al., 2010; Meena 

and Sarmah, 2016; Duffin, 2020). Several examples highlight the shortcomings of the single-

sourcing and show the benefits of the dual sourcing for mitigating the risks of supply disruption. 

This phenomenon is quite common in off-shoring scenarios (Warburton and Stratton, 2005; Sawik, 

2018; Venkatesan et al., 2018). For example, in 2000, a fire at the plant of the Nokia’s and 

Ericsson’s common chip supplier in Albuquerque caused $400 million lost for Ericsson’s. Nokia 

managed the shortage of chips within just three days thanks to the alternative suppliers. Ericsson, 

however, could not avoid production shutdown as it relied only on a single supplier (The 

Economist, 2006). Recently, the COVID-19 global pandemic has disrupted supply chains and 

brought a shortage of materials around the world — especially affecting those companies that rely on 

a dense network of foreign suppliers (e.g., it is estimated that 92% of US companies have a tier-1 

supplier in COVID-19 affected regions; Financial Times, 2020). It is expected that, because of the 

COVID-19, the global gross domestic product (GDP) will decrease by 2.9% in 2020 (Duffin, 

2020).  Many studies exist in the literature on supply disruption risks, and also one can predict 

such risks with certain accuracy. On these bases, this paper studies a two-echelon supply chain 

consisting of a retailer and two suppliers (the main and the backup suppliers) and develops an 

analytical model for the optimal ordering policy of the retailer under demand uncertainty and risks 
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of random yield and supply disruption. The main supplier is cheap but exposed to both risks of 

supply disruption and random yield, whereas the backup supplier is reliable but more expensive.  

In line with Bose and Anand (2007) and He and Zhang (2007), we consider different risks 

sharing contracts for random yield between the main supplier and the retailer and evaluate the 

supply chain partners' performance. This paper defines the risk-sharing contract as a mechanism 

where the retailer shares the costs of under-production and over-production due to random yield 

with the supplier. The detailed analytical discussion on how the risk is shared between the retailer 

and supplier is provided in section 3.1. Similar to Inderfurth and Clemens (2014), we also consider 

a buyback contract between the retailer and the backup supplier to cope with demand uncertainty 

and supply disruption. Furthermore, we investigate how the optimal order quantity, buyback 

quantity, and buyback price of the backup supplier varies under diverse conditions. In particular, 

the main contribution of this paper is to develop contracts-based mechanisms considering multiple 

suppliers with different risk profiles in a single model—incorporating three types of supply chain 

risks, namely, demand uncertainty, random yield, and supply disruption. This paper investigates 

how different parameters of contracts influence the ordering policy and the profits of the retailer, 

the main supplier, and the backup supplier. Several numerical studies and sensitivity analyses are 

performed to test our model and investigate the impact of major parameters on the profits of each 

supply chain member. 

The rest of the paper is organized as follows. The review of the relevant literature is 

discussed in section 2. The problem description and the mathematical model are presented in 

section 3. A numerical study and sensitivity analyses are conducted in section 4. Finally, 

conclusions and scope for future works are provided in section 5. 

 

2. Literature Review 

In this section, we review the existing literature about (i) sourcing decisions under demand 

uncertainty, random yield, and supply disruption risks, and (ii) buyback and risk sharing contracts 

mechanisms. 

2.1 Sourcing decisions under risks 

Parlar and Wang (1993) study a random yield problem for two suppliers with different pricing as 

per the reliability of the supplier. They analyze the diversification in supplies, the economic 
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ordering quantity (EOQ) model, and the newsvendor problem under random yield. Yano and Lee 

(1995) review the issue of lot-sizing under the risk of random yield and discuss different 

approaches to model costs and random yield. Swaminathan and Shanthikumar (1999) study 

demand diversification under supply uncertainty. They find that, under sufficient capacity, it is 

optimal to purchase a larger share of the supplies from the expensive supplier who is more reliable. 

Kazaz (2004) analyzes the impact of random yield in olive oil production and demonstrates how 

to reduce the random yield risks using the spot market purchases. Babich at al. (2007) discuss the 

trade-off between the single-sourcing and diversification under supplier default risk. Snyder and 

Shen (2006) find that failing to plan for supply disruptions has more significant implications than 

that for demand uncertainty. They show how multiple decentralized stocking locations can be 

beneficial to minimize the risk of supply uncertainty. Chopra et al. (2007) focus on the decoupling 

of recurrent supply risk and disruption risk when risk aversion strategies are planned. They find 

that a firm should utilize more its reliable suppliers if most of the supply risk growth comes from 

increasing disruption probabilities. Federgruen and Yand (2008) develop analytical models for 

solving the problem of supplier selection and demand diversification under random yield risk to 

minimize the total cost. Yu et al. (2009) formulate the sourcing decision problem where the 

manufacturer chooses between the single and the dual sourcing under disruption risk. Tomlin 

(2009) provides some crucial insights into disruption risk aversion tactics. He investigates the 

effect of three strategies, namely supplier diversification, contingent sourcing, and demand 

switching on the risk exposure and expected profits.  

Meena et al. (2011) analyze the problem of selecting the optimal number of suppliers 

considering different probabilities for the disruption risks, different capacity, and the presence of 

compensation for suppliers who do not fail. Meena and Sarmah (2013) develop a mixed-integer 

nonlinear programming model to determine the optimal ordering policy for multiple sourcing 

under different types of disruption risks. Gurnani et al. (2014) analyze the dual sourcing problem 

under disruption risks. They provide the optimal situation to use the single-sourcing strategy and 

conclude that, in practice, companies prefer to diversify. Meena and Sarmah (2016) study the 

sourcing decision (i.e., supplier selection and order allocation) problem under disruptions risks and 

quantity discounts. In recent years, many studies (e.g., Ledari et al., 2018; Namdar et al., 2018; 

Sabouhi et al., 2018; Sawik, 2019) have been conducted to determine the best sourcing strategies 
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under different types of risks. We refer the interested reader to the study of Hosseini et al. (2019), 

who provides an excellent review on analytical studies conducted for mitigating supply chain risks. 

2.2 Risk sharing and buyback contracts 

Several studies exist in the literature on the design and implementation of buyback contracts in 

different supply chain configurations. A buyback contract is defined as “a commitment by the 

supplier to buy the unsold inventory of the goods back at the end of the selling season to induce 

the retailer to order more from the supplier” (Mantrala and Raman, 1999). Lau and Lau (1999) 

consider a scenario where the manufacturer sets the selling price to the retailer and the return price 

for the returned items. After observing the manufacturer’s strategy, the retailer sets the order 

quantity to the manufacturer. They also investigate the risk attitude of other supply chain members. 

Yao et al. (2005) discuss a manufacturer–retail supply chain consisting of a mix of a traditional 

retail channel and direct channel and determine how the manufacturer designs its return policy 

under direct channel option.  

Bose and Anand (2007) discuss different types of buyback contracts to cope with supply 

chain risks under diverse settings. Ding and Chen (2008) analyze a three echelon supply chain 

with a buyback contract between each of its members. Hou et al. (2010) study a buyback contract 

with the backup supplier under supply disruptions. Zhao et al. (2010) investigate a supply chain 

coordination problem using a contract option approach, where, at the beginning of the period, the 

retailer reserves a quantity paying the supplier the option price. Based on this, the supplier 

determines his production quantity Q, and, during the selling season, the retailer purchases a 

quantity up to Q, paying the supplier the exercise price. They show how to achieve a Pareto optimal 

situation with a numerical study. Lee et al. (2016) analyze and compare a vendor-managed 

inventory system (where supplier and customer share the stockout cost) with the integrated 

supplier-customer system. Their results show the equivalence of the two approaches “if and only 

if the supplier’s reservation cost is equal to the minimum supply chain total cost of the integrated 

system.” Ji et al. (2017) study a supply chain problem under demand disruption and show that a 

transshipment-before-buyback contract generates higher benefits (for the entire supply chain) than 

a traditional buyback contract. Zhao et al. (2018) develop a model to capture the interaction 

between the retailer and the manufacturer, where the retailer designs a risk-sharing contract with 

the manufacturer under random yield. They find that the retailer cannot benefit from risk-sharing 
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under symmetric information of the random yield. Interestingly, under asymmetric information, 

the risk-sharing benefits not only the manufacturer but also the retailer under certain conditions.   

Peng and Pang (2018) investigate the supply chain coordination problem under yield 

uncertainty and budget constraints. They propose buyback and risk sharing contracts, where the 

retailer shares random yield risks with the supplier by purchasing the overproduced quantities at 

the end of the production period, and the supplier buys back the unsold quantities from the retailer 

at the end of the period. Their results show that, for the budget-constrained supply chain with 

random yield, it can be coordinated if the risks of random yield and demand uncertainty are shared 

between the supplier and the retailer. Chakraborty et al. (2018) study a supply chain consisting of 

a retailer and two suppliers, where suppliers are exposed to disruption risks. They investigate the 

impact of two coordination strategies, namely emergency supplier and backup supplier options on 

supply disruption risks and supply chain performance. Their results show that, under supply 

disruption, even with lower probabilities, the retailer prefers the backup supplier option. They also 

find the optimal reserve quantity increases with disruption probabilities. Recently, Zare et al. 

(2019)  investigate a supply chain that includes a supplier who faces random yield risk and multiple 

downstream retailers dealing with stochastic demands. They analytically analyze the impacts of 

risk-sharing mechanisms on the retailers' optimal order decisions and the supplier's production 

decisions under demand uncertainty and random yield. 

This paper differs from the existing literature in the following ways. First, we develop an 

analytical model for the retailer’s ordering decisions considering three types of risks 

simultaneously, namely demand uncertainty, random yield, and supply disruptions. To the best of 

our knowledge, there is a dearth of studies that consider all these risks together. Second, we design 

two supply chain contracts (risk-sharing and buyback) mechanisms between the retailer and 

suppliers (i.e., the main and the backup) to maximize the supplier’s and the retailer’s profits. This 

paper contributes to the ordering policy literature by proposing supply chain contracts in the 

presence of three supply chain risks together. 

 

3. Problem definition and mathematical formulation 

A single-period two-echelon decentralized supply chain problem is considered, with one retailer 

and two suppliers, namely the main supplier and the backup supplier. The main supplier is cheaper 
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but prone to the risks of disruption (and, in such case, becomes completely unavailable), while the 

backup supplier is more expensive but perfectly reliable. All the supply chain players are profit 

maximizers. For ease of exposition, we summarize the notation used in the model in Table 1. 

 

Table 1: Notation 

Symbol Notation 

q 

I 

Q  
 

Order quantity to the main supplier (units), the decision variable 

Order quantity to the backup supplier (units), the decision variable  

The main supplier’s production quantity (units), the decision variable 
 

c  

cb 

ce 

cr 

cu 

i 

 

p 

s 

sb 

w 

wb 

wr 

The main supplier’s unit production cost ($/unit)  

The backup supplier’s unit production cost ($/unit) 

Emergency production cost ($/unit) 

Unit return cost of the retailer ($/unit) 

Unit stockout cost of the retailer ($/unit) 

Node for supply chain player 

R: the retailer; S: the main supplier; B: the backup supplier 

Supply disruption probability at the main supplier 

Unit sales price of the retailer ($/unit) 

Unit salvage value of the backup supplier ($/unit) 

Unit wholesale price from the main supplier ($/unit) 

Unit wholesale price from the backup supplier ($/unit) 

Unit return price offered by the backup supplier ($/unit) 

w2  Discounted price for over-production ($/unit)  

D Average demand 

F(.)  The distribution function of the main supplier’s delivery quantity, with f(.) as its density 

function  

G(.)  

U 

X 

The distribution function of the demand, with g(.) as its density function  

Random yield distribution variable 

Random demand at the retailer 

𝛽 

𝜆 

Percentage of emergency production cost paid by the retailer 

Buyback fraction of the backup supplier’s order 

𝚷𝒅
𝒊    Expected profit under disruption for player i 

𝚷𝒏𝒅
𝒊    Expected profit under no disruption for player i 
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3.1 The risk sharing and buyback contract mechanism 

The retailer places an order of q units from the main supplier at the beginning of the period, and 

then the main supplier decides his production quantity Q. The main supplier is subject to the risks 

of disruption (with probability p) and random yield. The main supplier is required to deliver at 

least q units. However, in the case of under-production because of random yield or disruption, he 

obtains the shortfall units from other emergency sources. In this paper, we consider a risk sharing 

contract between the retailer and the main supplier to share the risk of the under-production and 

over-production units.  

 In the case of under-production, the retailer’s service level will be affected. Therefore, the 

retailer may choose to share the emergency production cost with the main supplier for the shortfall 

units. Similar to He and Zhang (2008), we assume the emergency production cost ce to be higher 

than the main supplier’s production cost (ce > c). As per the risk sharing contract, a fraction β 

(0<β<1) of emergency production cost (ce) is paid by the retailer, and the remaining 1−β by the 

main supplier. If random yield results in over-production, the retailer and the main supplier share 

the extra cost. In this case, the retailer purchases all units from the main supplier, but pays a unit 

price w for the first q units and a unit price w2 for the overproduced ones (to avoid triviality, we 

assume w2 < w, µw2 < ce, and w2 < c).  

Let U be the random variable with distribution function F(u), density function f(u), and 

E[U] = µ, and let UQ be the yield from the production. Following He and Zhang (2008), the 

production quantity Q is independent of the yield distribution F(u). Let X be the random demand 

at the retailer, with distribution function G(x), density function g(x), and E[X] = D. We assume 

that f(u) and g(x) are positive except at the boundaries of their domains. In order to mitigate the 

risk, the retailer purchases I units (which is a portion of the average demand D) from the backup 

supplier at a unit wholesale price wb. If, after the delivery from the main supplier, it turns out that 

the retailer does not need all the I units, she can return part of them (the maximum of which is λI, 

0<λ<1) at a unit return cost cr, and is paid back a unit return price wr (wr < wb). The backup supplier 

resells the unsold items to a secondary market at a unit salvage price sb (sb < cb). Following Hou 

et al. (2010), we assume that the main supplier’s wholesale price, w, satisfies w ≤ wr − cr, i.e., the 

main supplier has a strong incentive to be the retailer’s first choice. Once the backup supplier 

determines his prices wb and wr, the retailer decides the value of I. In our model, the retailer and 
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the main supplier negotiate three parameters: the wholesale price w, the discounted price for over-

production w2, and the percentage of emergency cost β shared in the case of under-production. 

The retailer and the backup supplier negotiate two parameters: the buyback price wr and the 

maximum portion of buyback items λ. 

3.2    Analytical formulation 

Consider the backup supplier’s expected profit under disruption:  

𝛱𝑑
𝐵 = 𝑤𝑏𝐼 − (𝑤𝑟 − 𝑠𝑏)𝐸𝑥𝑚𝑖𝑛{(𝐼 − 𝑥)

+, 𝜆𝐼} − 𝑐𝑏𝐼.                          (1) 

The first term is the revenue of the backup supplier, the second term is the loss when excess 

quantities are returned by the retailer, and the third term represents the production cost. Similarly, 

under no disruption, the backup supplier’s expected profit is: 

𝛱𝑛𝑑
𝐵 = 𝑤𝑏𝐼 − (𝑤𝑟 − 𝑠𝑏)𝐸𝑢,𝑥𝑚𝑖𝑛{𝑚𝑎𝑥((𝐼 + 𝑢𝑄 − 𝑥)

+, (𝐼 + 𝑞 − 𝑥)+) , 𝜆𝐼} − 𝑐𝑏𝐼.                     (2) 

The terms in equation (2) represent the same quantities as in expression (1), adjusted to the case 

of no disruption. Since the disruption probability is p, the backup supplier’s expected total profit 

is given by: 

𝛱𝐵 = 𝑝𝛱𝑑
𝐵 + (1 − 𝑝)𝛱𝑛𝑑

𝐵 .                 (3) 

 

The main supplier only generates a profit in case of no disruption (in case of disruption, he becomes 

completely unavailable). The main supplier’s expected profit is given as: 

𝛱𝑆 = 𝛱𝑛𝑑
𝑆 = (1 − 𝑝)[𝑞 𝑤 + 𝑤2𝐸𝑢 [(𝑢𝑄 − 𝑞)

+] −  𝑐𝑒(1 − 𝛽)𝐸𝑢 [(𝑞 − 𝑢𝑄)
+]] − 𝑐 𝑄.              (4) 

The first term represents the revenue of the main supplier, the second term is the additional revenue 

in the case of over-production, the third term is the shared emergency cost incurred due to under-

production, and the last term is the production cost. The main supplier maximizes his profits, 

subject to the constraint ПS>0. We can now formalize the main supplier’s optimal decision, its 

properties, and its relation to the order quantity q.  

Proposition 1: Under demand uncertainty and yield randomness, the main supplier’s expected 

profit function 𝚷𝑺 : 

(i) is concave in Q, and the optimal value Q*(q) satisfies 

∫ 𝑢𝑓(𝑢)𝑑𝑢 =
𝑐−𝜇𝑤2(1−𝑝)

(𝑐𝑒(1−𝛽)−𝑤2)(1−𝑝)

𝑞

𝑄

0
;                (5) 

(ii) Q*= Kq, where K is a constant determined by c, 𝑤2, ce, β, p and f(.); 
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(iii) K increases with ce , and decreases with c, β, and p. Furthermore, if 𝜇 <
𝑐

(𝑐𝑒(1−𝑝)(1−𝛽))
 then 

K decreases with 𝑤2; otherwise, it increases with w2.  

Proof of Proposition 1 is provided in Appendix A1.  

Proposition 1 reveals that the main supplier’s production quantity Q* is a linear function 

of the order quantity q and does not depend on the wholesale price w —because the retailer always 

pays a unit price w for the first q units, independently on the random yield. Furthermore, when the 

emergency cost is higher, it is more convenient for the main supplier to increase production. We 

also observe that the production quantity decreases with the production cost and with the 

percentage of the emergency cost paid by the retailer (if the percentage of emergency cost allocated 

to the retailer increases, the main supplier is less affected by under-production cost). Similarly, as 

the disruption probability increases, the main supplier’s chances to become unreliable increases, 

and therefore the optimal production decreases. 

 

In case of disruption, the retailer can rely exclusively on the backup supplier. The retailer’s 

expected profit under disruption is given by: 

𝛱𝑑
𝑅 = 𝑠𝐸𝑥𝑚𝑖𝑛( 𝐼, 𝑥) − 𝑐𝑢𝐸𝑥(𝑥 − 𝐼)

+ + (𝑤𝑟 − 𝑐𝑟)𝐸𝑥𝑚𝑖𝑛{(𝐼 − 𝑥)
+, 𝜆𝐼} − 𝑤𝑏𝐼.               (6) 

The first term is the sales revenue, the second term is the stockout cost, the third term is the net 

revenue generated by the units returned to the backup supplier, and the fourth term is the 

procurement cost from the backup supplier. The retailer’s expected profit under no disruption is 

given by: 

𝛱𝑛𝑑
𝑅 = 𝑠𝐸𝑢,𝑥𝑚𝑖𝑛{𝑚𝑎𝑥( 𝑞 + 𝐼, 𝑢𝑄 + 𝐼), 𝑥} − 𝑤𝑞 − 𝑤2𝐸𝑢[(𝑢𝑄 − 𝑞)

+] 

             −𝑐𝑒𝛽𝐸𝑢[(𝑞 − 𝑢𝑄)
+] − 𝑤𝑏𝐼 − 𝑐𝑢[𝐸𝑢,𝑥𝑚𝑖𝑛{(𝑥 − 𝑢𝑄 − 𝐼)

+, (𝑥 − 𝑞 − 𝐼)+}]                    (7) 

             +(𝑤𝑟 − 𝑐𝑟)𝐸𝑢,𝑥𝑚𝑖𝑛{𝑚𝑎𝑥[(𝑢𝑄 + 𝐼 − 𝑥)
+, (𝑞 + 𝐼 − 𝑥)+] , 𝜆𝐼}.    

The first term is the sales revenue, the second term is the procurement cost from the main supplier, 

the third term is the additional procurement cost from the main supplier in case of over-production, 

the fourth term is the additional shared procurement cost from the main supplier in case of under-

production, the fifth term is the procurement cost from the backup supplier, the sixth term is the 

stockout cost, and the seventh term is the net revenue generated by the units returned to the backup 

supplier. The retailer’s total expected profit is given by: 

𝛱𝑅 = 𝑝𝛱𝑑
𝑅 + (1 − 𝑝)𝛱𝑛𝑑

𝑅 .                                                                                                           (8) 



13 

 

Maximizing the retailer’s profit function with respect to the two decision variables q and I, we 

derive the following Proposition for optimality: 

Proposition 2: The optimal ordering decision for the retailer (q*, I*) satisfies the following 

conditions: 

(i) If ПS>0, the optimal value of q and I can be obtained by simultaneously solving the 

following two equations: 

(1 − 𝑝)

[
 
 
 
 
 
 
 
 

(𝑠 + 𝑐𝑢) {∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢 +∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢
∞

𝑞+𝐼

1
𝑘

0

∞

𝑢𝑘𝑞+𝐼

∞

1
𝑘

}

+(𝑤𝑟 − 𝑐𝑟)

{
 
 

 
 ∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢 +

𝑢𝑘𝑞+𝐼

𝑢𝑘𝑞+(1−𝜆)𝐼

∞

1
𝑘

𝜆∫ ∫ 𝑓(𝑢
𝑢𝑘𝑞+(1−𝜆)𝐼

0

∞

1
𝑘

)𝑔(𝑥)𝑑𝑥𝑑𝑢

+∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢 +
𝑞+𝐼

𝑞+(1−𝜆)𝐼

1
𝑘

0

𝜆∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢
𝑞+(1−𝜆)𝐼

0

1
𝑘

0 }
 
 

 
 

]
 
 
 
 
 
 
 
 

    

(9𝑎) 

 +𝑝

[
 
 
 
 (𝑠 + 𝑐𝑢)∫ 𝑔(𝑥)𝑑𝑥

∞

𝐼

+(𝑤𝑟 − 𝑐𝑟) (∫ 𝜆 𝑔(𝑥)𝑑𝑥
(1−𝜆)𝐼

0

+ ∫ 𝑔(𝑥)𝑑𝑥
𝐼

(1−𝜆)𝐼

)
]
 
 
 
 

= 𝑤𝑏 ;                                      

 

(𝑠 + 𝑐𝑢)

[
 
 
 
 
 ∫ ∫ 𝑢𝑘𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢

∞

𝑢𝑘𝑞+𝐼

∞

1
𝑘

+∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢
∞

𝑞+𝐼

1
𝑘

0 ]
 
 
 
 
 

+ (𝑤𝑟 − 𝑐𝑟)

[
 
 
 
 
 ∫ ∫ 𝑢𝑘𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢

𝑢𝑘𝑞+𝐼

𝑢𝑘𝑞+(1−𝜆)𝐼

∞

1
𝑘

+∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢
𝑞+𝐼

𝑞+(1−𝜆)𝐼

1
𝑘

0 ]
 
 
 
 
 

 

                                                                                                                                                                        (9𝑏) 

 = 𝑤 + 𝑤2 [∫ (𝑢𝑘 − 1)𝑓(𝑢)𝑑𝑢
∞

1/𝑘

]+c𝑒𝛽 [∫ (1 − 𝑢𝑘)𝑓(𝑢)𝑑𝑢
1/𝑘

0

].              

           
 

(ii) If ПS<0, then we set q*=0 and calculate the value of I* from equation (9b).  

 

Proof of Proposition 2 is provided in Appendix A2.  
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We now consider the case where the demand and the random yield are uniformly distributed over 

[a,b] and [c’,d], respectively. We apply the results of Proposition 2 and obtain the following 

solution:  

𝐼∗ =
𝑏1𝑐2 − 𝑏2𝑐1
𝑎1𝑏2 − 𝑎2𝑏1

 

                                                      (10) 

𝑞∗ =
𝑎2𝑐1 − 𝑎1𝑐2
𝑎1𝑏2 − 𝑎2𝑏1

 

    

with 

𝑎1 =
𝑘[𝜆(𝑤𝑟 − 𝑐𝑟) − (𝑠 + 𝑐𝑢)]

2(𝑏 − 𝑎)(𝑑 − 𝑐′)
(𝑏2 − 2

𝑎

𝑘
+
1

𝑘2
) 

𝑏1 =
𝑘2(𝑠 + 𝑐𝑢)

3(𝑏 − 𝑎)(𝑑 − 𝑐′)
(𝑏3 − 3

𝑎

𝑘2
+
2

𝑘3
) 

𝑐1 =
𝑑 𝑘(𝑠 + 𝑐𝑢)

2(𝑏 − 𝑎)(𝑑 − 𝑐′)
(𝑏2 − 2

𝑎

𝑘
+
1

𝑘2
) − 𝑤 −

𝑤2𝑘 (𝑏 −
1
𝑘)

2

2(𝑏 − 𝑎)
−
𝑐𝑒𝛽𝑘 (

1
𝑘 − 𝑎)

2

2(𝑏 − 𝑎)
 

𝑎2 =
(2 − 𝜆)𝜆(𝑤𝑟 − 𝑐𝑟) − (𝑠 + 𝑐𝑢)

𝑑 − 𝑐′
 

𝑏2 =
𝑘(1 − 𝑝)[𝜆(𝑤𝑟 − 𝑐𝑟) − (𝑠 + 𝑐𝑢)]

2(𝑏 − 𝑎)(𝑑 − 𝑐′)
(𝑏2 − 2

𝑎

𝑘
+
1

𝑘2
) 

𝑐2 =
[(𝑠 + 𝑐𝑢)𝑑 − 𝜆(𝑤𝑟 − 𝑐𝑟)𝑐′]

𝑑 − 𝑐′
−𝑤𝑏  

These results will be used in the next session in order to build our numerical study. 

 

4. Numerical study and discussion 

In this section, a numerical study is conducted to illustrate our results and investigate the properties 

of the risk-sharing and buyback contracts. In particular, we analyze the effect of (i) the disruption 

probability on the retailer’s ordering policy and expected profit; (ii) the combined effect of demand 

uncertainty, supply uncertainty, and disruption probability on the retailer’s ordering policy and on 

the three player’s expected profits; (iii) the decision parameters of the risk-sharing contract with 

the main supplier; and (iv) the decision parameters of the buyback contract with the backup 

supplier. We set the values of the basic input parameters based on He and Zhang (2008) and Hou 
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et al. (2010) studies. The base numerical values considered in the numerical study are shown in 

Table 2. 

Table 2: Values of the different input variable 

c ce 𝛽 s w w2 cr cu wb cb sb λ 

15 50 0.2 100 55 13 2 10 80 20 10 0.6 

 

Moreover, we let p taking values ranging from 0 to 1. According to the parameters above, we 

examine the values of wr within the range of [58, 80] that satisfies the assumptions defined in 

section 3.1. Demand varies uniformly between 0 and 100, with an average of 50 units. 

 

4.1    The impact of disruption probability on the ordering policies 

We start analyzing how different levels of disruption probabilities affect our results, in particular 

with reference to the ordering policies and the players’ profits. In Figure 1, we represent how the 

optimal order quantities change according to different levels of disruption probability. Initially, at    

a low disruption probability, most of the order is placed with the main supplier, and a very small 

or negligible order is placed with the backup supplier. As the probability of disruption increases, 

the optimal profit zone starts shifting towards the x-axis (i.e., the order to the backup supplier), 

and, for high values of p, it transcends to a state where onwards almost the entire order is placed 

with the backup supplier. Therefore, the higher the probability of disruption, the bigger the order 

to the backup supplier, and the smaller the order to the main supplier. 
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Figure 1: The impact of the disruption probability p on the optimal order quantities I* and q* 

 

 

4.1.1    The impact of different risks on the ordering policies and profits  

We next explore the effect of the three simultaneous risks (i.e., supply uncertainty, demand 

uncertainty, and supply disruption) on: (i) the order quantity to the main supplier q*, (ii) the order 

quantity to the backup supplier I*, (iii) the retailer’s profit ΠR , (iv) the backup supplier’s profit 

ΠB , and (v) the main supplier’s profit ΠS . We let disruption probability (p) vary from 0.1 to 0.9; 

p=0.1                                                                                                  p=0.3 

p=0.6                                                                                                    p=0.9 
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demand uncertainty (DU) varies in a way that DU[0,100] represents the largest uncertainty and 

DU[40,60] the smallest uncertainty; supply uncertainty (SU) varies in a way that SU[0.1, 1.9] 

represents the largest uncertainty and SU[0.9, 1.1] the smallest uncertainty. We report the results 

in Table 3.  

 

Table 3: The impact of demand uncertainty (DU), supply uncertainty (SU), and disruption risk 

(p) on the ordering policy and profits 

DU[a,b]  SU[a,b] q* I* 𝚷𝑹  𝚷𝑩  𝚷𝑺  

DU [0,100] 

  [0.1,1.9] 35.65 0 1,230.93 0 1,055.64 

p=0.1 [0.5,1.5] 40.51 0 1,236.91 0 1,312.50 

  [0.9,1.1] 48.78 0 872.92 0 1,668.00 
         

  [0.1,1.9] 33.11 20.89 627.03 904.15 638.02 

p=0.3 [0.5,1.5] 36.03 18.09 660.97 786.19 762.98 

  [0.9,1.1] 35.68 22.56 579.14 974.47 823.43 
       

  [0.1,1.9] 19.91 43.33 419.25 1,865.78 207.76 

p=0.5 [0.5,1.5] 22.17 41.78 435.88 1,801.06 247.60 

  [0.9,1.1] 24.14 40.75 447.60 1,757.66 294.41 
  

      

  [0.1,1.9] 13.82 50.00 371.30 2,213.40 42.08 

p=0.7 [0.5,1.5] 15.00 50.00 377.20 2,206.77 39.63 

  [0.9,1.1] 17.50 49.79 389.74 2,187.55 32.41 
  

      

  [0.1,1.9] 0 50.00 339.00 2,343.00 0 

p=0.9 [0.5,1.5] 0 50.00 339.00 2,343.00 0 

  [0.9,1.1] 0 50.00 339.00 2,343.00 0 
        

DU [20,80] 

  [0.1,1.9] 32.65 0.2 1,565.13 8.78 967.11 

p=0.1 [0.5,1.5] 37.57 0 1,624.14 0 1,217.46 

  [0.9,1.1] 47.76 0 1327.33 0 1,633.30 
         

  [0.1,1.9] 26.25 31.78 1,020.24 1,322.61 505.93 

p=0.3 [0.5,1.5] 28.28 29.87 1,049.47 1,248.2 599.07 

  [0.9,1.1] 29.34 32.09 988.25 1,334.7 677.33 
         

  [0.1,1.9] 17.75 48.26 821.34 2,022.79 185.23 

p=0.5 [0.5,1.5] 19.11 47.33 835.99 1,985.95 213.33 

  [0.9,1.1] 20.42 46.70 846.14 1,960.56 249.02 
         

  [0.1,1.9] 15.62 50.00 753.81 2,272.53 47.57 

p=0.7 [0.5,1.5] 16.32 50.00 760.35 2,265.90 43.11 

  [0.9,1.1] 17.79 50.00 773.51 2,253.50 32.00 
         

  [0.1,1.9] 0 50.00 685.00 2,505 0 

p=0.9 [0.5,1.5] 0 50.00 685.00 2,505 0 

  [0.9,1.1] 0 50.00 685.00 2,505 0 
        

DU [40,60] 

  [0.1,1.9] 20.58 25.86 1,456.88 900.41 609.52 

p=0.1 [0.5,1.5] 26.64 19.19 1,598.52 715.27 862.98 

  [0.9,1.1] 37.1 16.59 1500.33 634.34 1,268.65 
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  [0.1,1.9] 19.34 42.69 936.64 1416.67 373.83 

p=0.3 [0.5,1.5] 20.55 41.66 967.02 1,393.72 435.17 

  [0.9,1.1] 23.02 41.64 937.65 1393.36 531.25 
         

  [0.1,1.9] 17.54 50.00 664.15 1,963.25 183.05 

p=0.5 [0.5,1.5] 17.79 50.00 678.30 1,950.34 198.65 

  [0.9,1.1] 18.34 50.00 688.46 1,940.13 223.61 
         

  [0.1,1.9] 17.43 50.00 471.87 2,568.24 53.07 

p=0.7 [0.5,1.5] 17.63 50.00 479.07 2,561.57 46.59 

  [0.9,1.1] 18.19 50.00 492.70 2,549.54 33.67 
         

  [0.1,1.9] 0 50.00 215.00 3,315 0 

p=0.9 [0.5,1.5] 0 50.00 215.00 3,315 0 

  [0.9,1.1] 0 50.00 215.00 3,315 0 

  

When DU increases, the retailer increases the order quantity to the main supplier for low values of 

p. However, when SU increases, the main supplier’s order quantity decreases. When considering 

the simultaneous effect of increasing DU and SU, the order quantity to the main supplier increases, 

except for very low values of p. When p becomes high, the main supplier’s order quantity starts to 

fall with the increase of DU. This result becomes even more evident for the combined effect of 

increased DU and SU.  

The backup supplier’s order quantity decreases as both DU and SU increase (since the 

retailer places a higher order with the main supplier). However, for high p, it becomes maximum: 

independently on DU and SU, the main supplier becomes unreliable, and the retailer mainly relies 

on the backup supplier. For the combination of higher p, DU, and SU, the retailer orders the 

maximum quantity from the backup supplier (to face the high p)—plus a negligible or small 

quantity from the main supplier (to face the high DU).  

Considering the profits of the supply chain members, we observe that, under higher p, the 

backup supplier’s profit increases; however, the retailer’s and the main supplier’s profits decrease. 

Further, the retailer’s profit is concave in DU. For low and moderate values of p, the main 

supplier’s profit increases with DU, and for high values of p, it falls with DU. The backup 

supplier’s profit decreases with high DU. For low values of p, the retailer’s profit is concave in 

SU; for moderate and high values of p, it decreases with SU. For low and moderate values of p, 

the main supplier’s profit is decreasing with SU, and then, for high values of p, it increases with 

SU. The backup supplier’s profit is convex in SU for lower values of p; then, for moderate and 

high values of p, it increases with SU.  
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We conclude that, for moderate and high p, the backup supplier benefits from higher SU 

because the retailer places a higher order with him, and, consequently, his profit increases. 

Furthermore, for very high p, the main supplier cannot produce and the retailer’s profit is not 

affected anymore by the SU since she only relies on the backup supplier.  

Overall, under simultaneous higher p, DU, and SU,  the retailer’s and the main supplier’s 

profits are minimum. On the contrary, the backup supplier’s profit is maximum since the retailer 

mainly relies on the backup supplier to face the risks and uncertainties. On the other hand, under 

simultaneous lower p, DU, and SU, the retailer’s and the main supplier’s profits are maximum, 

whereas the backup supplier’s profit is minimum. 

 

4.2     The buyback contract mechanism between the retailer and the backup supplier 

In this section, we analyze the mechanism of the buyback contract between the retailer and the 

backup supplier, and how the decision parameters influence the retailer’s ordering policy and the 

profits. 

4.2.1    The return price wr  

We investigate the impact of the buyback price wr on the backup supplier’s order quantity I* 

(Figure 2) and on the backup supplier’s expected profit (Figure 3) to support him determining the 

optimal return price. 

 

Figure 2: The impact of the return price wr on the order quantity I* 

Figure 2 shows that the backup supplier’s ordering quantity is an increasing function of wr. In 

particular, for a very low probability of disruption p, the order to the backup supplier remains 
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negligible. At moderate values of p, the order quantity starts increasing significantly with wr, and, 

for high values of p and wr, the order quantity reaches its maximum (represented by the average 

demand). 

 

Figure 3: The impact of the return price wr on the backup supplier’s profit 

Figure 3 shows that the backup supplier’s expected profit is a concave function in wr: as the return 

price increases, the expected profit also increases, up to a maximum value and after that, it 

decreases again. This is because a higher return price increases the backup supplier’s order from 

the retailer (as shown in Figure 2) and, consequently, his profit. However, after a certain point, it 

becomes prohibitive for the backup supplier to further raise wr because the increased margin is not 

able to compensate anymore for the higher price to pay back to the retailer. Moreover, we notice 

that such behavior is more evident for higher values of the disruption probability: as the probability 

of disruption increases, the optimal return price decreases. Since, in the case of high disruption, 

the retailer mainly relies on the backup supplier, there is no need for the backup supplier to offer 

a very high return price to become more attractive. We can conclude that, depending on the domain 

in which the business is operating, the backup supplier can strategically set the value of the 

buyback price that maximizes his profit.  

 

4.2.2     The buyback supplier’s wholesale price wb  

We now consider the effect of the wholesale price on the retailer’s ordering policy. Figure 4 

indicates that, as the buyback supplier’s wholesale price decreases, the optimal order quantity to 

the backup (main) supplier increases (decreases).  
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Figure 4: The impact of the main supplier’s wholesale price wb on the main supplier’s order 

quantity q* (a) and on the backup supplier’s order quantity I* (b). 

However, it can be observed that, if the disruption probability is very low, then the effect of wb on 

the optimal quantities is negligible since, in this case, the retailer relies on the main supplier. For 

high values of p and low values of wb, the order quantity to the backup (main) supplier reaches its 

maximum (minimum). It is worth noting that the order quantity to the main supplier, although 

minimal, never reaches zero. We can conclude that, even when the disruption probability is very 

high, the retailer may still find it convenient to place an order with the main supplier. In this case, 

one of the driving components is the tradeoff between the backup supplier’s wholesale price and 

the main supplier’s wholesale price.  

4.2.3     The buyback quantity λ  

Next, we study the effect of the buyback quantity λ on the retailer and backup supplier. Figure 5 

indicates that the backup supplier’s order quantity is increasing with λ: the more quantity the 

retailer is allowed to return, the more quantity she orders from the backup supplier. 
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Figure 5: The impact of the buyback quantity λ on the backup supplier’s order quantity 

However, we also notice that, in the case of low disruption probability, the retailer only places an 

order to the backup supplier if the buyback quantity is extremely high: if disruption is most likely 

not going to happen, the retailer has no incentive to place an order with the much more expensive 

backup supplier, unless this can guarantee to buy back most of the ordered quantities. Figure 6a 

shows that the backup supplier’s profit is a concave function in the buyback quantity λ: when λ 

increases, the backup supplier’s order quantity also increases (as already observed in Figure 5), 

which consequently increases his profit.  

(a)        (b) 

       

Figure 6: The impact of the buyback quantity on the backup supplier’s (a) and the retailer’s (b) 

profits 

It means that the backup supplier can easily increase his profit offering a larger buyback quantity. 

However, after a specific threshold value of λ, the cost bared by the backup supplier (to pay back 

the high quantity of returned products) becomes prohibitive and, therefore, his profit starts to 

decrease again. We can observe that such threshold point decreases for higher values of disruption 

probability: as previously discussed in section 4.2.1, when the disruption probability is high, the 

backup supplier’s order quantity increases anyway, and therefore there is no need for the backup 

supplier to offer a high buyback quantity to become more attractive. For low values of the 

disruption probability, the retailer’s profit is slightly sensitive to the variation of λ (Figure 6b), and 

only starts to increase for high values of p. We also observe that the retailer’s profit decreases with 

increasing values of p since, in case of disruption also, the retailer’s probability to fulfill the final 

customer’s demand decreases. 
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4.3    The risk sharing contract mechanism between the retailer and the main supplier 

In this section, we analyze the mechanism of the risk sharing contract between the retailer and the 

main supplier, and how the decision parameters influence the retailer’s ordering policy and the 

profits. We recall that the retailer and the main supplier share the risk due to under-production by 

sharing the emergency production cost ce. The retailer pays a percentage 𝛽 of ce, and the main 

supplier the remaining 1- 𝛽. Similarly, the retailer shares the risk due to over-production with the 

main supplier by purchasing the extra units at a cost w2 (lower than the wholesale price w). Since 

our model does not allow for a closed-form expression of the optimal 𝛽 and the optimal w2, we 

recur to the sensitivity analysis and study the impact of 𝛽 and w2 on the optimal order policy and 

profits. Before proceeding with the risk sharing parameter analysis, we first present the results for 

the main supplier’s wholesale price w. 

 

4.3.1    The main supplier’s wholesale price w 

We study the effects of the main supplier’s wholesale price w on the main supplier’s order quantity, 

the main supplier’s profit and the retailer’s profit. We observe that the order quantity is a 

decreasing function of w (Figure 7): a higher wholesale price leads to a lower order quantity (we 

notice that the values of q* set at zero correspond to a negative backup supplier’s profit).  

  

Figure 7: the impact of the main supplier’s wholesale price (w) on the main supplier’s order 

quantity 

While the retailer (Figure 8a) always benefits from a lower w (except for p=0.9, when it is not 

affected by w since the main supplier’s order quantity is null), the main supplier’s profit is a 

concave function in w (Figure 8b): if the wholesale price increases, the supplier gets a higher 
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margin from selling his products to the retailer. However, after a certain value of w, the profit 

starts to decrease because the order placed from the retailer also decreases. As expected, we also 

notice that the main supplier’s profit is decreasing with the disruption probability since, as p 

increases, the retailer  places an increasing portion of the order with the backup supplier.  

(a)        (b) 

    

Figure 8: The impact of the main supplier’s wholesale price (w) on the retailer’s (a) and the main 

supplier’s (b) profits 

 

4.3.2     The effect of sharing under-production and over-production risk  

In this section, we study the variation of the ordering policy in accordance with the emergency 

production cost-sharing factor 𝛽 and the over-production cost w2. As per the definition of risk 

sharing contract given in section 3.1, the higher 𝛽, the higher the percentage of emergency cost 

incurred by the retailer. Furthermore, from the assumptions defined in section 3.1 and the 

parameters’ values set at the beginning of this section, it follows that 𝛽< 0.74.  Figure 9 shows 

that, as 𝛽 increases, the main supplier’s order size decreases (this is always true except for very 

low values of disruption probability) and the order quantity to the backup supplier increases—the 

more expensive the emergency cost is for the retailer, the more she recurs to the backup supplier.         

                                                    (a)              (b) 
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Figure 9: The impact of sharing the emergency production cost on the ordering policy 

The retailer’s profit decreases with increasing 𝛽 and becomes constant as the maximum portion of 

the order is placed with the backup supplier (Figure 10a). On the other hand, the main supplier’s 

profit increases with a higher value of 𝛽 for low disruption probabilities and stabilizes for very 

high disruption probabilities (Figure 10b).  

                                                          (a)                                                                                                      (b)     

    
 

Figure 10: the impact of sharing the emergency production cost on the retailer’s profit (a) and on 

the main supplier’s profit (b) 

 

   

We also investigate the ordering policy with respect to the over-production cost w2, i.e., the 

discounted price at which the retailer purchases the overproduced quantities. From the assumptions 

defined in section 3.1 and the parameters’ values defined at the beginning of this section, it follows 

that w2 < 15. In Figure 11, we see that the ordering policy shows little sensitivity to variations of 

w2, except for low values of the disruption probability: in such cases, order quantities of both the 

main supplier and the backup supplier are decreasing with w2. That is because, in the case of low 
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disruption, the retailer mostly relies on the main supplier, and therefore is more affected by the 

price for over-production.  

        

Figure 11: The impact of w2 on the ordering policy 

Similarly, the profit functions only show significant sensitivity to w2 for low values of the 

disruption probability (Figure 12). In this case, the main supplier’s profit decreases as w2 

approaches the production cost, while the retailer’s profit increases with w2. 

     

Figure 12: The impact of w2 on the main supplier’s profit (a) and on the retailer’s profit (b) 

 

5.    Conclusions and managerial insights  

In this paper, we have investigated two typologies of contract mechanisms—a risk sharing contract 

between the retailer and the main supplier — and a buyback contract between the retailer and the 

backup supplier—when supply disruption risk, uncertain demand, and random yield are considered 

simultaneously. While the existing research has compared the optimal strategies under demand 

uncertainty and supply disruption only, we investigate the effect of the contract parameters under 

the combination of supply uncertainty, demand uncertainty, and supply disruption. In particular, 
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we consider SU in the form of random yield, and DU in the form of uncertain demand. This paper’s 

results reveal that the combination of these risks leads to different strategic decisions for the retailer 

(in terms of ordering policy) and for the main supplier (in terms of quantity produced). 

Furthermore, a set of important managerial parameters are negotiated between the retailer and the 

main supplier (the wholesale price, the discounted price for over-production, and the percentage 

of emergency cost-shared) and between the retailer and the backup supplier (the buyback price 

and the maximum portion of buyback items). 

 This paper presents the conditions for optimality for the retailer’s order quantities to the 

main and backup suppliers, and the main supplier’s production quantity. Furthermore, our results 

show a linear relationship between the main supplier’s optimal production quantity and the  

optimal order quantity to the main supplier. Our analysis also indicates that, as the disruption 

probability increases, then the backup supplier’s profit increases, while the main supplier’s and 

retailer’s profits decrease. This follows from the fact that, as p increases, the main supplier’s order 

quantity decreases and the backup supplier’s order quantity increases. Even when the disruption 

probability is high, the retailer may still find it convenient to place a small order with the main 

supplier. In this case, one of the driving components results to be the wholesale price of the backup 

supplier versus the wholesale price of the main supplier. Considering SU and DU, the result 

highlights that (i) the main supplier’s profit is maximum when the disruption probability is low 

and the DU is high or the SU is low; (ii) the retailer’s profit is maximum when the disruption 

probability is low and the DU is moderate or the SU is moderate; and (iii) the backup supplier’s 

profit is maximum when the disruption probability is high and the DU is low or the SU is high. 

Concerning the buyback contract between the retailer and the buyback supplier, our results 

show how the buyback supplier can strategically set the return price and return quantity to 

maximize his profit. When the disruption probability is very low, then the backup supplier needs 

to offer a very high return price and/or return quantity to become attractive for the retailer, since, 

in this situation, the retailer normally relies on the main supplier, which is economically more 

convenient. Also, the higher the disruption probability is, the more negotiation power the backup 

supplier has, which implies that he doesn’t need to offer a very high return price and/or return 

quantity to optimize his profit. With respect to the risk sharing contract between the retailer and 
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the main supplier, our results determine the wholesale price that the main supplier has to offer the 

retailer to maximize his profit.  

For the emergency cost-sharing, the main supplier needs to consider that the more portion 

of the cost is allocated to the retailer, the more this latter finds the backup supplier attractive (except 

for very low values of the disruption probability). Similarly, an increase in the over-production 

cost drives the retailer to increase the order to the backup supplier. However, it is also noticed that 

the retailer is sensitive to the over-production cost only in the case of low disruption probability 

since, in the case of higher disruption probability, the main supplier becomes unreliable.  

This work can be extended in the following ways. First, it will be interesting to include in 

the analysis the lead times of the two suppliers and investigate whether the difference in delivery 

times of the main supplier and the backup supplier plays a significant role for the retailer. Second, 

one could extend the existing model to a multi-period, multi-product setting. Third, in the 

numerical analysis, demand and supply uncertainty could be modeled according to different 

probability distributions. Fourth, a detailed analytical study on the trade-off between the buyer and 

the supplier is an interesting scope for future research. Lastly, it would be of interest to consider 

the possibility for the retailer to choose from multiple primary suppliers. 
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Appendix  

 

A1. Proof of Proposition 1 

The proof follows He and Zhang (2008). 

(i)  For optimality, we apply the first-order conditions to expression (4): 

𝜕𝛱𝑠

𝜕𝑄
= (1 − 𝑝) [𝑤2 ∫ 𝑢𝑓(𝑢)𝑑𝑢

∞
𝑞

𝑄

+ 𝑐𝑒(1 − 𝛽) ∫ 𝑢𝑓(𝑢)𝑑𝑢

𝑞

𝑄

0
] − 𝑐     (A1) 

       = (1 − 𝑝) [𝑤2∫ 𝑢𝑓(𝑢)𝑑𝑢
∞

0

− 𝑤2∫ 𝑢𝑓(𝑢)𝑑𝑢 +

𝑞
𝑄

0

𝑐𝑒(1 − 𝛽)∫ 𝑢𝑓(𝑢)𝑑𝑢

𝑞
𝑄

0

] − 𝑐 = 0. 

 

Rearranging the terms in equation (A1) and recalling that 𝜇 = ∫ 𝑢𝑓(𝑢)𝑑𝑢
∞

0
, it follows that 

 ∫ 𝑢𝑓(𝑢)𝑑𝑢 =
𝑐−𝜇𝑤2(1−𝑝)

(𝑐𝑒(1−𝛽)−𝑤2) (1−𝑝)

𝑞

𝑄

0
   (A2) 

We then apply the second-order conditions for optimality to expression (4): 
𝜕2𝛱𝑠

𝜕𝑄2
= −(1 − 𝑝)(𝑐𝑒(1 − 𝛽) − 𝑤2)

𝑞2

𝑄3
𝑓 (

𝑞

𝑄
) < 0, (A3) 

which implies 𝑐𝑒(1 − 𝛽) > 𝑤2, i.e., the over-production cost paid by the retailer should be less 

than the under-production emergency cost. This makes sense in reality since, otherwise, the retailer 

would prefer the emergency source versus the main supplier.  
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(ii)  We show that 𝑍(𝑦) =  ∫ 𝑢𝑓(𝑢)𝑑𝑢
𝑦

0
 is a monotone function of y. Since  

𝜕𝑍(𝑦)

𝜕𝑦
= 𝑦𝑓(𝑦) > 0, it 

follows that equation (5) has a unique solution and q/Q is a constant. 

(iii)  The proof follows from (1), (2), and from taking the first derivative (with respect to 𝑤2) to 

the right-hand side of expression (5), resulting in  
−𝑐+(𝛽−1)𝑐𝑒𝜇(𝑝−1)

(𝑝−1)((𝛽−1)𝑐𝑒+𝑤2)
2 . This latter is positive when 

𝜇 <
𝑐

(𝑐𝑒(1−𝑝)(1−𝛽))
. 

 

A2. Proof of Proposition 2 

We apply the first-order condition to expression (8) and take the first derivatives to the retailer’s 

profit function with respect to I and q and setting them at zero: 

𝜕𝛱𝑅

𝜕𝑞
= 𝑠(1 − 𝑝) ∗ 

∗

[
 
 
 
 
 ∫ 𝑓(𝑢) (

𝑑(𝑢𝑘𝑞 + 𝐼)
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(𝑢𝑘𝑞 + 𝐼)𝑔(𝑢𝑘𝑞 + 𝐼) +∫ 𝑢𝑘𝑔(𝑥)𝑑𝑥 −

𝑑(𝑢𝑘𝑞 + 𝐼)

𝑑𝑞
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which gives 
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𝜕𝛱𝑅
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𝑢𝑘𝑞+(1−𝜆)𝐼

0

∞

1
𝑘

𝑢𝑘𝑞+𝐼

𝑢𝑘𝑞+(1−𝜆)𝐼

∞

1
𝑘

+∫ ∫ 𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢
𝑞+𝐼

𝑞+(1−𝜆)𝐼

1
𝑘

0

)

+∫ ∫ 𝜆𝑓(𝑢)𝑔(𝑥)𝑑𝑥𝑑𝑢
𝑞+(1−𝜆)𝐼

0

1
𝑘

0

]                                                                                          (𝐴7)

+  𝑝 [(𝑠 + 𝑐𝑢)∫ 𝑔(𝑥)𝑑𝑥 + (𝑤𝑟 − 𝑐𝑟)(∫ 𝜆𝑔(𝑥)𝑑𝑥 +
(1−𝜆)𝐼

0

∫ 𝑔(𝑥)𝑑𝑥
𝐼

(1−𝜆)𝐼

)
∞

𝐼

] = 𝑤𝑏. 

 

We then apply the second-order conditions for optimality and take the second-order derivatives: 



36 

 

𝜕2𝛱𝑅

𝜕𝑞2
= −(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)(1

− 𝑝)(∫ 𝑢2𝑘2𝑓(𝑢)𝑔(𝑢𝑘𝑞 + 𝐼)𝑑𝑢
∞

1
𝑘

+∫ 𝑓(𝑢)𝑔(𝑞 + 𝐼)𝑑𝑢

1
𝑘

0

)                                                           (𝐴8)

− (𝑤𝑟 − 𝑐𝑟)(1 − 𝑝)(∫ 𝑢2𝑘2𝑓(𝑢)𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑑𝑢 +
∞

1
𝑘

∫ 𝑓(𝑢)𝑔(𝑞 + (1 − 𝜆)𝐼)𝑑𝑢

1
𝑘

0

) < 0, 

 

 
𝜕2𝛱𝑅

𝜕𝐼2
= −𝑝[(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)𝑔(𝐼) + (𝑤𝑟 − 𝑐𝑟)(1 − 𝜆)

2𝑔((1 − 𝜆)𝐼)] −                                                                 

 (1 − 𝑝)

[
 
 
 
 
 
 
(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)(∫ 𝑓(𝑢)𝑔(𝑢𝑘𝑞 + 𝐼)𝑑𝑢 +

∞

1
𝑘

∫ 𝑓(𝑢)𝑔(𝑞 + 𝐼)𝑑𝑢

1
𝑘

0

)

+(𝑤𝑟 − 𝑐𝑟)(1 − 𝜆)
2(∫ 𝑓(𝑢)𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑑𝑢 +

∞

1
𝑘

∫ 𝑓(𝑢)𝑔(𝑞 + (1 − 𝜆)𝐼)𝑑𝑢

1
𝑘

0

)

]
 
 
 
 
 
 

< 0,

(𝐴9) 
 

and 

 
𝜕2𝛱𝑅

𝜕𝑞𝜕𝐼
= −(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)(1 − 𝑝) [∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 + ∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1/𝑘

0

∞

1/𝑘
]  (A10) 

−(𝑤𝑟 − 𝑐𝑟)(1 − 𝑝)(1 − 𝜆) [∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢 + ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

∞

1
𝑘

]. 

We still need to verify that ∆=
𝜕2Π𝑅

𝜕𝐼2
∗
𝜕2Π𝑅

𝜕𝑞2
− (

𝜕2Π𝑅

𝜕𝐼 𝜕𝑞
)
2

> 0. 
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∆= 𝑝[(𝑠 + 𝑐𝑢 − 𝑤𝑟 + 𝑐𝑟)𝑔(𝐼) + (𝑤𝑟 − 𝑐𝑟)(1 − 𝜆)
2𝑔((1

− 𝜆)𝐼)] [(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)(1

− 𝑝)(∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 +∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

 
∞

1
𝑘

)

+ (𝑤𝑟 − 𝑐𝑟)(1

− 𝑝)(∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢 + ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

 
∞

1
𝑘

)] +  

(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)
2(1

− 𝑝)2 [∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 ∗ ∫ 𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 
∞

1
𝑘

∞

1
𝑘

+(∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

)

2

+∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 ∗ ∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 

1
𝑘

0

+ ∫ 𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 
∞

1
𝑘

∞

1
𝑘

∗ ∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

 ] + (𝑠 + 𝑐𝑢 − 𝑤𝑟 + 𝑐𝑟)(𝑤𝑟 − 𝑐𝑟)(1

− 𝑝)2 [(∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢 + ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

 
∞

1
𝑘

)

∗ (∫ 𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 
∞

1
𝑘

+∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 

1
𝑘

0

) + (1

− 𝜆)2 (∫ 𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢 +∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

 
∞

1
𝑘

)

∗ (∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢 +∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

 
∞

1
𝑘

)] 

 

+(1 − 𝑝)2(1 − 𝜆)2(𝑤𝑟 − 
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−𝑐𝑟)
2 ∗

[
 
 
 
 
 
 
∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢 ∗ ∫ 𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢 +

∞

1
𝑘

(∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

)

2
∞

1
𝑘

(∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

+∫ 𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

) ∗ ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0 ]
 
 
 
 
 
 

 

−(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)
2(1

− 𝑝)2 [(∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

)

2

+ (∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

)

2

+ 2∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

∗ ∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

] 

−(𝑤𝑟 − 𝑐𝑟)
2(1 − 𝑝)2(1 − 𝜆)2

[
 
 
 
 
 
 
(∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

)

2

+ (∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

)

2

+2∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

∗ ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0 ]
 
 
 
 
 
 

 

−2(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)(𝑤𝑟 − 𝑐𝑟)(1 − 𝑝)(1

− 𝜆)

[
 
 
 
 
 
∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

∗ ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

+∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

∗ ∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

+∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

∗ ∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

+∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

∗ ∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘 ]

 
 
 
 
 

. 

 

 

𝛥 = 𝑝{(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)𝑔(𝐼) + (𝑤𝑟 − 𝑐𝑟)(1 − 𝜆)
2𝑔((1 − 𝜆)𝐼)}

∗

[
 
 
 
 
 
 
 
 

(𝑠 + 𝑐𝑢 − 𝑤𝑟 + 𝑐𝑟)(1 − 𝑝)

[
 
 
 
 ∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

∞

1/𝑘

+∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
1/𝑘

0 ]
 
 
 
 

+(𝑤𝑟 − 𝑐𝑟)(1 − 𝑝) [∫

𝑢2𝑘2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

+∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
1/𝑘

0

∞

1/𝑘

]

]
 
 
 
 
 
 
 
 

 

+(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)
2(1 − 𝑝)2

[
 
 
 
 ∫ (𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼))2𝑓(𝑢)𝑑𝑢 − (∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

∞

1/𝑘

)

2∞

1/𝑘

+∫ (𝑢𝑘 − 1)2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1/𝑘

∗ ∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
1/𝑘

0 ]
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+(1 − 𝑝)2(1 − 𝜆)2(𝑤𝑟

− 𝑐𝑟)
2

[
 
 
 
 ∫ (𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼))2𝑓(𝑢)𝑑𝑢 − (∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

∞

1/𝑘

)

2∞

1/𝑘

+∫ (𝑢𝑘 − 1)2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1/𝑘

∗ ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
1/𝑘

0 ]
 
 
 
 

 

             + (𝑤𝑟 − 𝑐𝑟)(𝑠 + 𝑐𝑢 −𝑤𝑟 + 𝑐𝑟)(1

− 𝑝)2

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{∫ (𝑢𝑘 − 1 + 𝜆)2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

∞

1
𝑘

∗ ∫ 𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

}

+{∫ 𝜆2𝑔(𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

∗ ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

}

+

{
 
 
 

 
 
 ∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

∞

1
𝑘

∗ ∫ 𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

+(1 − 𝜆)2∫ 𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

∗ ∫ 𝑢2𝑘2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

+2(1 − 𝜆)∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

∗ ∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘 }

 
 
 

 
 
 

+{∫ (𝑢𝑘 − 1 + 𝜆)2𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

∗ ∫ 𝑔(𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢

1
𝑘

0

}

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

We recall that wr>cr , s+cu-wr+cr > 0 and, by Jensen’s inequality, it results:  

∫ {𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)}2𝑓(𝑢)𝑑𝑢 ≥ (∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + (1 − 𝜆)𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

)

2
∞

1
𝑘

 and   

∫ {𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)}2𝑓(𝑢)𝑑𝑢 ≥ (∫ 𝑢𝑘𝑔(𝑢𝑘𝑞 + 𝐼)𝑓(𝑢)𝑑𝑢
∞

1
𝑘

)

2

.
∞

1
𝑘

 

 

Since all the remaining terms are positive, it results that Δ > 0 and we can conclude that the solution 

to (9a) and (9b) corresponds to the optimal main supplier’s order quantity and backup supplier’s 

order quantity. If the solution is out of feasible space, then the variable value which is infeasible 

is set at the domain boundary and the other variable is calculated from equation (2).  
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