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Abstract
We present a novel deep learning-based algorithm to accelerate—through the use of Arti-
ficial Neural Networks (ANNs)—the convergence of Algebraic Multigrid (AMG) methods
for the iterative solution of the linear systems of equations stemming from finite element
discretizations of Partial Differential Equations (PDE). We show that ANNs can be success-
fully used to predict the strong connection parameter that enters in the construction of the
sequence of increasingly smaller matrix problems standing at the basis of the AMG algo-
rithm, so as to maximize the corresponding convergence factor of the AMG scheme. To
demonstrate the practical capabilities of the proposed algorithm, which we call AMG-ANN,
we consider the iterative solution of the algebraic system of equations stemming from finite
element discretizations of two-dimensional model problems. First, we consider an ellip-
tic equation with a highly heterogeneous diffusion coefficient and then a stationary Stokes
problem. We train (off-line) our ANN with a rich dataset and present an in-depth analy-
sis of the effects of tuning the strong threshold parameter on the convergence factor of the
resulting AMG iterative scheme.

Keywords Algebraic multigrid (AMG) · Deep learning · Convolutional neural networks ·
Finite element method · Elliptic PDEs · Stokes problem

Mathematics Subject Classification (2010) 65N55 · 65N30 · 65N22 · 68T01

1 Introduction

In the last thirty years, there has been an increasing demand for computationally efficient
methods to solve sparse linear system of equations stemming from numerical discretiza-
tion of Partial Differential Equations (PDEs). For real-life problems, the typical size of
the resulting algebraic systems makes direct or classical one-level methods impractical and
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hierarchical iterative solvers have been intensively developed and studied. This paper
focuses on the Algebraic Multigrid (AMG) method ([61]) for the iterative solution of the
symmetric and positive definite systems of equations stemming from Finite Element (FE)
approximation ([31, 44, 45]) of elliptic PDEs. One of the main features of AMG is that it
is a purely matrix-based approach, thus it does not make use of any geometric information
and the hierarchy of operators is constructed directly from the system matrix, provided that
the underlying matrix has certain properties, see e.g., [12, 49, 55, 61]. AMG methods can
be advantageous whenever geometric multigrid is not a viable option, e.g., whenever the
sequence of coarser meshes at the basis of geometric multigrid is not available. AMG and
AMG-like approaches have been developed to solve a variety of problems in the context
of PDEs-based simulations; here we mention, for example, the AMG method based on ele-
ment interpolation (AMGe) for solving the discrete equations that arise in Ritz-type finite
element methods, [14, 28], Maxwell’s equations [34], linear elasticity [8], Navier–Stokes’s
equations [60] and multi-phase porous media [16]. In [7, 9, 17, 40], AMGmethods for large-
scale supercomputing architectures are presented. In the paper [61] by Xu and Zikatanov,
AMG methods are presented and analyzed in a unified framework and an abstract theory
for the construction of optimal coarse space as well as quasi-optimal spaces is derived. The
abstract framework of [61] covers most of the existing AMG methods, such as classical
and energy-minimization AMG, unsmoothed and smoothed aggregation AMG, and spectral
AMGe [19]. AMG methods for non-standard FE approximations have been also developed,
for example in the context of discontinuous Galerkin methods [4, 10, 52].

The AMGmethod relies on a set of parameters that defines how to algebraically carry out
the coarsening phase. Often their tuning is based on experience and it could be rather ineffi-
cient in certain situations. In this paper, we propose using Machine Learning (ML) and Deep
Learning (DL) algorithms to make the choice of the AMG parameters fully automatic so as
to improve the efficiency of the method. The approach that we propose is based on the use
of Artificial Neural Networks (ANNs). Artificial Neural Networks are ML and DL models
that are nowadays widely used in several problems in image recognition, speech recognition,
and natural language processing [22]. The introduction of Convolutional Neural Networks
(CNNs) [39] changed modern object recognition process [25, 38, 50]. Today, the most
advanced ANNs in image recognition are variations of CNNs: ResNet [26] and SENet [30].

Nowadays, ML and DL models are increasingly being used in scientific computing [43],
especially for the numerical approximation of ODEs and PDEs [42]. For example, physics-
informed neural networks have been introduced to approximate the solution of PDEs as a
meshless method [46, 47] and ANNs are employed for model order reduction of parameter-
dependent PDEs [21, 29, 48]. ANNs can also be employed to enhance the performance
of algorithms and solvers used in “classical” numerical methods for the approximation
of PDEs, i.e. as accelerators for scientific computing. In this context, we mention for
example: the enhancement of numerical stabilization methods for the FE approximation of
advection-dominated differential problems, e.g. in [33, 57]; the use of ANN to optimally
select artificial viscosity for discontinuous Galerkin methods in [18]; exploiting CNN for
grid refinement in discontinuous Galerkin and virtual element methods in [2, 3]; the hybrid
ML-FETI-DP algorithm combining the advantages of adaptive coarse spaces in domain
decomposition methods and certain supervised ML techniques that have been proposed in
[27]. Moreover, ML techniques and ANNs have already been used to optimize multigrid
algorithms, see [23, 24, 35].

In this work, we make use of ANNs to improve the tuning of the strong threshold param-
eter that enters in the definition of AMG so as to improve its performance. In order to
test the proposed approach, we consider a two-dimensional elliptic equation with a highly
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heterogeneous diffusion coefficient discretized by the FE method. In order to use the spar-
sity pattern of the underlying matrix as input of the neural network, we introduce a pool-
ing operator. We show how an ANN-enhanced approach can effectively improve the AMG
performance. The performance of the AMG method is measured in two ways: using the
approximate convergence factor and using the elapsed time. We show that these two mea-
sures are strictly correlated, this entails that we have a unique way of measuring the
performance. We demonstrate that, in some test cases, the value of the strong threshold
parameter commonly used in literature can be improved so as to gain efficiency with respect
to both measures. In particular, we test different models to tune the hyper-parameters of the
model and we report the predictions of the models with the lowest loss. Our model shows
very accurate predictions in case of a diffusion coefficient that exhibits “simple” patterns.
More complex coefficient distributions seem to work well only if the dataset is reasonably
rich, thus more computational work is needed.

The paper is structured as follows. In Section 2 we recall the basic elements of the AMG
methods. In Section 3 we introduce the model problem and its FE discretization. In Section 4
we give a brief overview on ANNs. The results of the numerical experiments are showcased
in Section 5, namely, we report a wide set of numerical experiments aimed at testing the
algorithm’s performance when we vary the strong threshold parameter. Then, in Section 6,
we design the architecture of the net, we introduce the pooling operator and test the model.
Finally, in Section 7 we draw some conclusions.

2 Algebraic Multigrid Methods

In this section, we introduce the main ingredients of AMG methods; we refer the reader to
[61] for a comprehensive description. We consider the linear system of equations:

Ahuh = fh

where, for n ∈ N, Ah ∈ R
n×n is symmetric and positive definite. Here, and uh, fh ∈ R

n.
LetNh = {1, . . . , n} be the set with the indexes of all the variables. The setNh is split into
two disjoint subsets Ch and Fh such thatNh = Ch ∪ Fh and Ch ∩ Fh = ∅.

Let IhH : RnH → R
n be the interpolation operator that maps coarse level vectors into fine

level vectors, and let IHh : Rn → R
nH be the restriction operator that maps fine level vectors

into coarse level vectors. It is assumed that IhH can be written as:

(IhH eH )i =
{

(eH )i if i ∈ Ch,∑
k∈Pi

wh
ij (eH )j if i ∈ Fh,

where eH ∈ R
nH is a generic vector, Pi ⊂ Ch, for all i ∈ Fh is called a set of interpolatory

variables for i and wh
ij is a set of weights. One way to define wh

ij is the following. We define
the direct neighborhood of a point i as

Neigh(i) = {j �= i : (Ah)ij �= 0}.

For a ∈ R, we define its positive and negative part as a+ = max{0, a} and a− =
min{0,−a}, respectively. Similarly, we split Pi into two sets

P+
i = Pi ∩ {j �= i : (Ah)ij > 0}, P−

i = Pi ∩ {j �= i : (Ah)ij < 0}.
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Moreover, [54] shows that the following identity holds

(A)ii (eh)i + αi

∑
k∈Pi

(A)−ik(eh)k + βi

∑
k∈Pi

(A)+ik(eh)k = 0, (1)

where the coefficients are given by

αi =
∑

j∈Neigh(i)(Ah)
−
ij∑

j∈Pi
(Ah)

−
ij

, βi =
∑

j∈Neigh(i)(Ah)
+
ij∑

j∈Pi
(Ah)

+
ij

.

Then, the weights are defined as

wh
ik =

⎧⎨
⎩

−αi(Ah)ik/(Ah)ii , k ∈ P−
i ,

−βi(Ah)ik/(Ah)ii , k ∈ P+
i ,

0 otherwise.

Since Ah is symmetric it is also assumed that:

IhH = (IHh )	.

Then, the coarse-level AMG matrix is defined as AH = IHh AhIhH ∈ R
nH ×nH . One of the

key ingredients of the AMG method consists in the definition of the interpolation operator
Ih
H previously described. The classical coarsening algorithm prescribes to maintain at the
coarse level all the strong connections that are defined through a parameter θ , called the
strong threshold parameter. Its rigorous definition is given in the following [13].

Definition 1 Let Ah ∈ R
n×n. Given a threshold parameter 0 < θ ≤ 1, the variable i

strongly depends on the variable j if

−(Ah)ij ≥ θ max
k �=i

{−(Ah)ik}, i, j = 1, . . . , n.

As a matter of fact, performing the Ch/Fh splitting and defining the operators IH
h and

Ih
H requires choosing such strong threshold parameter θ . Even if the weights wh

ij do not
directly depend on θ , the performance of the AMG method will depend on the choice of the
threshold parameter, which is empirically made a priori. To show how the choice of θ enters
in the construction of the operators IH

h and Ih
H , we briefly recall the coarsening algorithm

of [54]. We introduce two sets that exploit Definition 1. The first set contains all the indexes
j that are strongly connected to the index i, i.e.

Si = {j ∈ Neigh(i) : i is strongly dependent on j}, i = 1, . . . , n.

Next, given Si , we introduce S	
i as:

S	
i = {j ∈ Nh : i ∈ Sj }.

The coarsening procedure follows this algorithm:

1. Initialize the set of undecided variables Uh ← Nh.
2. Choose a variable i ∈ Uh such that η(i) ≥ η(k) ∀k ∈ Uh, where

η(k) =
∣∣∣S	

k ∩ Uh

∣∣∣ + 2
∣∣∣S	

k ∩ Fh

∣∣∣ ∀ k ∈ Uh,

and | · | denotes the cardinality.
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3. Move the index i from the set Uh to the set Ch.
4. Add all the variables j ∈ S	

i to the set Fh, that is add to the set Fh all the variables j

that strongly depend on i.

Steps (2–4) are repeated until all the variables are either in Ch or Fh. The measure η is
needed to avoid a non-uniform distribution of the variables. In this way, at each iteration, the
algorithm selects as i (Ch-variable) the index such that the majority ofFh-variables strongly
dependent on.

The last ingredient needed to define the AMG methods is a smoothing operator. In
general, one iteration of the smoothing can be written as:

u(k+1)
h = Shu

(k)
h + gh, k ≥ 0,

where Sh ∈ R
n×n denotes the smoothing operator to be properly chosen. Equivalently, it

can be written in preconditioned form as:

u(k+1)
h = u(k)

h + Bh(fh − Ahu
(k)
h ), k ≥ 0, (2)

where Sh = Ih − BhAh, gh = Bhfh, Bh = (Ih − Sh)A
−1
h and Ih is the identity operator. In

practice, either (Sh, gh) or Bh are given and uniquely identify the smoother. In the following,
the notation:

u(l)
h = smoothl (Ah, u

(0)
h , fh),

means that u(l)
h is the result of l steps of (2), starting from an initial vector u(0)

h . In Algo-
rithm 1 we report one iteration of the two-level algorithm, where ν1 and ν2 are the number of
smoothing steps that we apply before and after the error correction, respectively. The com-
plete two-level AMG algorithm is outlined in Algorithm 2. As usual, in Algorithm 2, tol is
a user-defined tolerance that is employed as a stopping criterion. Analogously, Nmax is the
maximum number of iterations allowed. We notice that Algorithm 1 involves selecting the
parameter θ a priori.

Algorithm 1 One Iteration of the two-level AMG method u(k+1)
h = two level iteration(u(k)

h ,

Ah, fh, ν1, ν2, IHh , IhH ).

As a matter of fact, the two-level AMG Algorithm 2 can be immediately extended to
many levels by simply calling recursively Algorithm 2 until a sufficiently coarse level is
reached (where a direct solver is employed). For the sake of the analysis carried out in the
present paper, we will focus on the two-level method.
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Algorithm 2 Two-Level AMG algorithm u(k+1)
h = AMG(u(0)

h ,Ah, fh, θ, ν1, ν2, Nmax, tol).

3 Model Problems

Throughout this work, we use standard notation for Sobolev spaces [41]. Let Ω be an open,
bounded domain in R

2 and let ∂Ω = Γ D . The first model problem we consider reads:

{ −div(μ(x, y)∇u) = f in Ω,

u = gD on ΓD,
(3)

where f ∈ L2(Ω) is a given forcing term, and gD ∈ H 1/2(ΓD) is the given Dirichlet
boundary data. The function μ ∈ L∞(Ω) is a positive diffusion coefficient. In this work it
will be a piece-wise non-negative constant function. To handle non homogeneous Dirichlet
boundary condition we define ũ by the means of the lifting ũ = u − g̃, where g̃ is an
extension of gD in H 1(Ω). The weak formulation of problem (3) reads:

find ũ ∈ H 1
ΓD

(Ω) : (ũ, v) = F(v) ∀v ∈ H 1
ΓD

(Ω), (4)

where H 1
ΓD

(Ω) := {v ∈ H 1(Ω) : v|ΓD
= 0} and

a(ũ, v) =
∫

Ω

μ∇ũ · ∇v dΩ, F(v) =
∫

Ω

f v dΩ −
∫

Ω

μ∇g̃ · ∇v dΩ .

The well-posedness of problem (4) is given by the Lax–Milgram’s theorem [15].
Now we pass to the FE formulation. We consider a quasi uniform mesh Th of Ω . We

denote with the parameter h > 0 the mesh size of Th given by h = maxT ∈Th
hT , where hT

is the diameter of the element T ∈ Th. In our case, we use:

Vh = {vh ∈ X1
h : vh = 0 on ΓD},

where X1
h = {vh ∈ C0(Ω̄) : vh|T ◦ FT ∈ Q1(Ω̂ ∀ T ∈ Th}, FT : Ω̂ → T is an invertible

function that maps the reference square Ω̂ = (−1, 1)2 to the mesh element T , and QN is
the space of polynomials with real coefficients and degree less than or equal to N in each
coordinate direction. The finite dimensional formulation of (4) reads:

find ũh ∈ Vh s.t.: a(ũh, vh) = F(vh) ∀vh ∈ Vh. (5)

By setting n = dim(Vh), we denote with {φ1, . . . , φn} the FE basis for Vh. Then, from (5),
we obtain the linear system of equations Ahuh = f, where:

a(φj , φi) = (Ah)ij , F (φi) = (f)i , (uh)i = ũi . (6)
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As a second model problem we consider the Stokes equations. Namely, we are looking
for a velocity u : R2 → R

2 and pressure p : R2 → R that satisfy the Stokes equation,
which reads

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ν�u + ∇p = 0 in Ω,

−divu = 0 in Ω,

u = 0 on Γ0,

u = u0 on Γin

ν∂nu − pn = 0 on Γout ,

(7)

where n denotes the outer normal vector and u0 is the parabolic inflow velocity, with
maximum U > 0. Here, we decompose the boundary Γ as Γ = Γin ∪ Γout ∪ Γ0, where
Γin, Γout , Γ0 are disjoint open sets with positive measure. To guarantee the well-posedness
of the problem, we prescribe that p ∈ L2

0(Ω) i.e. is a L2(Ω) functions with zero average.
We introduce the functional spaces:

V = {v ∈ [H 1(Ω)]2 : v|∂Ω = 0}, Q = L2
0(Ω),

and endow them with the norms ‖v‖V = ‖ν1/2∇v‖L2(Ω), ‖q‖Q = ‖q‖L2(Ω). The weak
formulation of problem (7) reads: find (u, p) ∈ V × Q, such that

a(u, v) + b(p, v) − b(q, u) = 0 ∀(v, q) ∈ V × Q

where

a : V × V → R, a(u, v) =
∫

Ω

ν∇u : ∇v,

b : Q × V → R, b(p, v) = −
∫

Ω

p div v.

It is well-known that the bilinear form b(·, ·) satisfies a continuous inf-sup condition; see,
e.g., [11]. We introduce a uniform quadrilateral mesh Th of Ω . Discretizing using the stan-
dard polynomial spaces Vh = [X2

h], Qh = X1
h on Th we obtain the following algebraic

formulation (
Ah B	

h

Bh 0

)(
uh

ph

)
=

(
0
0

)
, (8)

where, setting Nh = dim(Vh) and Mh = dim(Qh), Ah ∈ R
Nh×Nh and Bh ∈ R

Mh×Nh are
the matrix representation of the bilinear forms a(·, ·) and b(·, ·), respectively.

4 Artificial Neural Networks

An artificial neural network, is a regression (or classification) model which given by a
function F : RN → R

M defined as

F (x; γ ) = y,

where x is the input, y is the predicted value of the regression and γ is the vector containing
all the parameters of the model. The function F is the composition of K functions F (k)
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called layers, the number of layers K is called depth of the model. In the case of feed-
forward neural network the layer is defined as{

a(k) = W(k)z(k−1) + b(k),

z(k) = H (k)(a(k))
for k = 1, . . . , K

x = z(0), y = z(K), N0 = N,NK = M, (9)

γ = {(W(1),b(1)), . . . , (W(K),b(K))},
where W(k) ∈ R

Nk×Nk−1 (weights) and b(k) ∈ R
Nk (biases) are the parameters γ ,

and H (k)(·) is a scalar non-linear almost everywhere differentiable function that is
applied component-wise to a(k) and called activation function. The Rectified Linear Unit
ReLU(x) = max{0, x} is our choice of activation function H (k)(·) since, in recent years,
it has become very popular due to the fact that it greatly improves the convergence of the
stochastic gradient descent algorithm compared to the sigmoid/tanh functions [38]. More-
over, it features lighter computations with a random initialization network as only about
half of hidden units have a non-zero output and faster evaluation with respect to the sig-
moid/tanh functions. Indeed, in our experiments, employing the ReLU activation function
seems to lead to better results with respect to the tanh activation function.

Next, we define the loss function L. We assume that a dataset composed by P couples
(x(i), y(i)) is available; these are realizations of random variables X , Y . Once defined the
ANN architecture, its training boils down to minimize the average training error, namely

J (γ ) = 1

P

P∑
i=1

L(F (x(i); γ ), y(i)).

A typical choice of the loss function L that we also use in this paper are the Mean Square
Error (MSE) and Mean Absolute Error (MAE).

For determining the parameters γ , we use the Adaptive Moment Estimation (Adam)
method [36]. It is a variant of the stochastic gradient descent method that combines the
Root Mean Squared propagation (RMSProp) algorithm [58] and momentum method [56]
few other significant modifications, namely the momentum is recorded in the history of the
gradient and there is a correction term of the bias for the estimation of the first and second
order moments of the gradient.

Finally, to prevent overfitting and minimize the generalization error we employ four reg-
ularization techniques. Namely, we will always employ an early stopping criterion, namely
we stop the training at the point of smallest error with respect to the validation dataset and
random parameter initialization [25]. Moreover, we will test dropout, which consists in ran-
domly omitting the weights and biases of some neurons (z(k))l during the training process
[53], and batch normalization, a transformation applied at the end of a layer that normalizes
its output by the empirical mean and variance of the minibatch [32]. As we will show in the
forthcoming sections, the latter seems not to lead to substantial improvements in our model.

As we want to use the matrix of the linear system Ah as input of the network we employ
CNN. Their characteristic is that the layer takes the form of a cross-convolution between the
input and a matrix K ∈ R

D×D , called kernel. Three other hyper-parameters control how the
convolution is performed: number of filters, stride and zero-padding size. Moreover, in the
last stage of the layer a pooling function is applied. The pooling function is a form of down-
sampling that replaces the output of the net at a certain location with a summary statistic of
the nearby outputs. The aim of the pooling operation is to control the number of parameters
and limit the overfitting. We refer the reader to [22] for more details.
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5 Numerical Assessment of the Dependence of the Performance of the
AMGMethod on the Strong Threshold Parameter

In this section we assess the relation between the choice of the strong threshold parameter
θ and the corresponding performance of the AMG method.

For our model problem (3) we select the diffusion coefficient μ to be a piece-wise pos-
itive constant function. We assume that μ features different patterns, where the domain Ω

splits into strides or has a checkerboard pattern; see Fig. 1. The value of μ(x, y) depends
on which “tile” (x, y) it belongs, namely

μ(x, y) =
{
1 if (x, y) ∈ Ωgray,

10ε if (x, y) ∈ Ωwhite,
(10)

where ε is a parameter and Ωgray and Ωwhite are shown in Fig. 1. The experiments were
carried out so that the exact solution u of problem (3) is u(x, y) = cos(πx) cos(πy) for
patterns (a) and (b), while u(x, y) = cos(2πx) cos(2πy) for patterns (c) and (d). Dirich-
let boundary conditions are set on the whole boundary ∂Ω . Moreover, we employ regular
cartesian meshes, so that the discontinuity of μ is aligned with mesh elements.

The implementation of the AMGmethod on which we rely on is the BoomerAMG of the
library HYPRE [20]. In particular, we use the AMGmethod as a preconditioner to accelerate
the Conjugate Gradient (CG) iterative method [6]. The simulations were run using deal.II
[5] with PETSc [1] on Ubuntu 18.04 LTS with CPU Intel i7-8550U. For sake of simplicity,
the computations were carried out in serial. However, even if the choice of θ might influence
the parallelization, the same approach could be extended also to the parallel case.

To measure the performance of AMGwe employ two performance indexes p: the elapsed
CPU time and the approximate convergence factor ρ, defined as follows. Let ρ(k) be defined
as

ρ(k) =
(

‖r(k)‖
‖r(0)‖

) 1
k

,

where r(k) is the residual at the k-th iteration and ‖ · ‖ is the standard euclidean norm. Then,
we define ρ as

ρ = ρ(Nit ),

where Nit is the number of iterations reached to reduce the (relative) residual below the
given tolerance of the linear solver (here it is equal to Nit = mink{k ∈ N such that ‖r(k)‖ <

10−8}.

Fig. 1 Four possible patterns of the diffusion coefficient μ of problem (3) on Ω = Ωgray ∪ Ωwhite =
(−1, 1)2: it is defined such that μ = 1 on the white tiles Ωwhite and μ = 10ε , ε > 0, on the gray ones Ωgray
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Table 1 Definition of the quantities employed in the analysis of Section 5.1 and Section 5.3

Quantity Definition Formula

nn Number of data points

SSE Sum of squares of errors
∑nn

i=1(y
(i) − x̂1x

(i) − x̂0)
2

TSS Total sum of squares
∑nn

i=1(y
(i) − ȳ)2, ȳ = 1

nn

∑nn
i=1y

(i)

SSR Sum of squared residuals
∑nn

i=1(ȳ − x̂1x
(i) − x̂0)

2

R2 Coefficient of determination 1− RSS / TSS

F-statistic F-statistic of the regression (nn − 2) SSR / SSE

AIC Akaike’s information criterion 4 − 2 log(L̂), where L̂ is the log-likelihood
of the model

SE(x̂1) Standard error of x̂1

√
SSE/

∑nn
i=0(x

(i) − x̄)2/(nn − 2)

t-value x̂1 t-value of x̂1 x̂1/SE(x̂1)

p-value x̂1 p-value of x̂1 2 cdft,1(−|tvx̂1 |), where cdft,1 is the cumulative
density function of the Student’s t distribution
with one degree of freedom

The analysis aims at assessing the relation between the predictor scalar variable x and the predicted scalar
variable y given nn data points (x(i), y(i)). We consider the linear model y = x̂1x + x̂0. We refer to [51] for
more details

5.1 Relation Between θ and the Number of Levels

In this section, we show how different choices of θ influence the number of levels built by
the BoomerAMG algorithm and the corresponding size of the coarsest matrix Ah. Let us
call test case a fixed choice of the pattern of the diffusion coefficient μ, the coefficient ε,
and the size of the mesh h. For each test case, we vary θ and record the number of levels
used by the AMG algorithm to solve the problem. The scatter in Fig. 2 (left) shows that if
the strong threshold is small, namely 0 < θ < 0.3, the number of levels is constant and
it is equal to the minimum number of levels used to solve that test case (see Table 1 for
definitions). In Fig. 2 (left) we superimposed a Kernel Density Estimate (KDE), which is an
estimate of the density of the distribution from where the samples are drawn that employs a
standard normal kernel, and a Locally Weighted Scatterplot Smoothing (LOWESS), which
is a locally weighted linear least squares giving more weight to points near the point whose

Fig. 2 Left. A scatter plot of the strong threshold parameter θ versus the min-max normalized number of
levels of the AMGmethod. We superimposed a KDE and a LOWESS. Center and Right. For each test case in
the dataset we perform a least square analysis between θ and the corresponding number of levels of the AMG
method. Center. Histogram of the p-value of the least square analysis. Right. Histogram of the coefficient of
determination (R2). We refer to Table 1 for the definition of p-value and R2
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response is predicted. We refer to [59] for their precise definition. The LOWESS shows
that if θ > 0.3, the number of levels increases, almost linearly, as the strong threshold
increases. Indeed, the KDE displays higher density spots in the upper right zone. Indeed,
a larger value of θ means that more connections are kept and the number of unknowns
between two connecting levels is only partly reduced. In particular, in 95% of the test cases,
the number of levels is a non-decreasing function with respect to θ . For each test case, we
perform the least square analysis between the value of θ and the corresponding number of
levels. Figure 2 (center and right) shows that in most of the test cases there is a significant
correlation (p-value < 10−5) between these two variables.

We carried out the same set of experiments varying the value of θ and recording the
corresponding size of the coarse matrix AH built by BoomerAMG. The results of the least
square analysis seems to indicate there is no correlation between these two variables.

5.2 Relation Between θ and ρ

In this section we investigate the relation between the strong threshold parameter θ and the
corresponding approximated convergence factor ρ. The results reported in Table 2 have been
obtained with a diffusion coefficient that has a “strides” pattern (Fig. 1(c)), while Table 3
displays analogous results on the checkerboard pattern (Fig. 1(d)).

We have computed the value of ρ and the corresponding iteration counts as a function of
the value of ε of the diffusion coefficient (10) and the mesh size h. The value of θ is kept
fixed for each test.

By comparing one test with the others, we can determine if the different value of the
strong threshold parameter θ has affected the convergence factor ρ of the linear solver.
Twenty-five values of θ in [0.02, 0.9] have been chosen. In Tables 2 and 3 we report the
results for three values of θ that are representative of the obtained results when θ is “small”,
“medium” and “large”, namely θ = 0.24, 0.48, 0.72. The values of ε go from 0.0 (yielding
the standard Laplacian problem with uniform diffusion), to 9.5, which produces a quite
large discontinuity in the diffusion coefficient μ.

From the results of Tables 2 and 3, it is clear that, if the choice of strong threshold θ is
appropriate, there is almost always uniform convergence, independently of the mesh size h.
This confirms that the AMG method works as expected also with a diffusion coefficient μ

that presents large discontinuities, provided that θ is appropriately chosen.
The results reported in Tables 2 and 3 also show that for large values of the strong

threshold parameter (θ = 0.72), the approximate convergence factor ρ increases, i.e. the
convergence properties of the AMG method seem to deteriorate. A possible explanation is
the following: as we mentioned in Section 5.1, from Fig. 2 we can conclude that a larger
value of θ implies that a larger number of levels will be needed by the AMG algorithm. This
might lead to a deterioration of the convergence rates.

For the test cases that present less pronounced discontinuities, the value of θ = 0.25
(which is almost the standard literature value) provides uniform convergence. On the other
hand, we notice that in the strongly heterogeneous cases (i.e. when ε is large) deviating
from the literature value of θ can result in a significant improvement is the approximate
convergence factor.

The results shown in Fig. 2 seem to indicate that choosing θ differently from the standard
value suggested in literature does not result in any significant improvement. On the other
hand, the plots of the four finest mesh refinements of Fig. 3 reveal that a significant boost in
the performance could be obtained. An optimal choice of the strong threshold could bring
up to 33% speed-up w.r.t. the default choice of θ = 0.25.
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Table 2 Computed values of the approximate convergence factor ρ and corresponding preconditioned CG
iteration counts (between parenthesis) w.r.t. parameters ε on rows and mesh size h on columns

In each table the pattern of diffusion coefficient μ and the strong threshold θ (shown on the left) is fixed.
The background color depends on ρ with colormap . It is scaled
to range between the minimum and maximum value (among all the tables) of ρ. Strides pattern for μ as in
Fig. 1(c)

5.3 Relation Between θ and Computational Costs

We also investigate the relation between θ and the CPU time t needed to solve the linear
system. Indeed, this is the quantity that we want to minimize in practice.
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Table 3 Computed values of the approximate convergence factor ρ and corresponding preconditioned CG
iteration counts (between parenthesis) w.r.t. parameters ε on rows and mesh size h on columns

In each table the pattern of diffusion coefficient μ and the strong threshold θ (shown on the left) is fixed.
The background color depends on ρ with colormap . It is scaled
to range between the minimum and maximum value (among all the tables) of ρ Checkerboard pattern for μ

as in Fig. 1(d)

In order to have an accurate estimate of the CPU time t we gather multiple samples by
repeating each simulation. The number of iterations we choose was the minimum number
such that the standard deviation of t did not change significantly when increasing the num-
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Fig. 3 Mean and standard deviation (visualized as errorbar) of the elapsed CPU time t to solve the linear
system of equations (in seconds) based on employing the AMG preconditioned CG. In each plot we have
fixed a different mesh size h = 1.25e-1, . . . , 9.773e-4. Each line represents the solver CPU time t for a fixed
choice of ε entering in the definition of the diffusion coefficient μ. The pattern of μ is reported in Fig. 1(c)
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Fig. 4 Mean and standard deviation (visualized as errorbar) of the elapsed CPU time t to solve the linear
system of equations (in seconds) based on employing the AMG preconditioned CG. In each plot we have
fixed a different mesh size h = 1.25e-1, . . . , 9.773e-4. Each line represents the solver CPU time t for a fixed
choice of ε entering in the definition of the diffusion coefficient μ. The pattern of μ is reported in Fig. 1(d)



P.F. Antonietti et al.

ber of samples. Namely, we employed 200, 100, 50, 20, 10, 7, 5, and 4 iterations for each
mesh refinement from the coarsest to the finest, respectively. We report the plots of t vs ρ

in Figs. 3 and 4. Notice that despite the large number of repetitions the standard deviation
(shown as an errorbar) in some cases is still large. These results are also useful to analyze the
relation between θ and ρ since we will show that the least square analysis seems to indicate
that they have a linear relation. We also observe that for small values of the strong threshold
parameter (θ ≤ 0.3) there is an interval where the CPU time is almost constant: this appears
to be true for all the test cases addressed. Since a smaller strong threshold parameter means
that more connections are discarded in the coarsening phase, one would expect that as θ gets
smaller, then the approximate convergence factor ρ may deteriorate, which in turn would
lead to larger CPU times. A possible motivation of this behaviour is to consider that among
the settings of BoomerAMG there is parameter that prevents the coarsening from being too
small (in the present test its value has been set as default, i.e. equal to 1). Thus, the coarse
system associated to AH is still effectively damping the smooth components. Indeed, from
Fig. 2 we can see how the number of levels and the size of the coarse system is constant for
small θ .

5.3.1 Choice of the Performance Index p

We are now interested in finding a scalar p that evaluates how good the AMG configuration
is. Two possible choices for such performance index are the approximate convergence factor
ρ, which measures how rapidly the linear solver converges, and the elapsed CPU time t .

We now proceed to analyze the relation between the elapsed CPU time t and the approx-
imate convergence factor ρ. In Fig. 5, we show a scattered plot of the elapsed CPU time
(t) as a function of ρ, for different values of the mesh size h. The results are normalized
with respect to the data that belong to the same test case. A linear relation between t and ρ

can be clearly identified. This is also confirmed by the results shown in Table 4, where we
report the least square analysis of the data of Fig. 5. We highlight that these results support

Fig. 5 Scatter plot of the (average) elapsed CPU time (t) versus the approximate convergence factor ρ.
Different colors identify different mesh sizes h. The data are normalized (in both components) with respect
to the corresponding data in the same test case
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Table 4 Linear least square analysis of the model t = ρ̂1ρ + ρ̂0

h 1.25e-1 6.25e-2 3.12e-2 1.56e-2 7.81e-3 3.91e-3 1.95e-3 9.77e-4

nn 1200 1200 1200 1200 1200 1200 1200 1200

R2 0.155 0.564 0.762 0.912 0.985 0.992 0.991 0.993

F-statistic 220.5 1550 3836 1.24e4 7.88e4 1.58e5 1.34e5 1.68e5

AIC −2.15e4 −1.79e4 −1.53e4 −1.30e+4 −1.09e4 −7864 −4048 −800.1

ρ̂1 3.49e-4 3.05e-3 1.25e-2 4.99e-2 0.263 1.245 5.259 20.95

SE(ρ̂1) 2.35e-5 7.76e-5 2.02e-4 4.48e-4 9.35e-4 3.13e-3 1.42e-2 5.11e-2

t-value ρ̂1 14.848 39.369 61.937 111.299 280.677 397.857 366.596 409.565

p-value ρ̂1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Data are grouped by the mesh size h. t is the elapsed CPU time and ρ is the approximate converge factor.
For the definition of the quantities appearing in the first column we refer to Table 1

the hypothesis of a relation between ρ and t . We can explain the poor correlation for coarse
mesh sizes h due to the higher relative uncertainty of the measure. Indeed, as h gets smaller
the coefficient of determination R2 improves.

Therefore, in the following we use as performance index the convergence factor ρ.
Indeed, ρ is not machine nor implementation dependent, thus leading to reproducible
results.

The dataset that we build contains numerical simulations made with every combination
of parameters among 8 mesh sizes h, 25 values of θ , 12 values of ε and 4 patterns of μ

(Fig. 1) for a total of 9600 samples.

6 ANN-Enhanced AMGMethod

In this section, we design and use ANNs to predict the value of the strong threshold
parameter θ∗ that maximizes the performance of the AMG method, measured in terms
of corresponding convergence factor ρ. Our goal is to design a model, namely an ANN,
that enables predictions of the optimal strong threshold θ for a given model problem. We
remark that, in the framework discussed in Section 3, fixing a test case (model problem)
is equivalent to fixing the matrix Ah defined in (6). We define the optimal value of strong
threshold parameter θ∗ for a certain test case as the minimizers of the convergence factor ρ

= ρ(Ah, θ).
Then, we build our model (the ANN) to predict the convergence factor ρ of the AMG

in a fixed test case and with a fixed strong threshold parameter θ . More precisely, F is the
ANN such that

F (normalize(pooling(Ah,m,op)),− log2(h), θ; γ ) = ρ.

Here, the pooling will be introduced in Section 6.1.1, whereas m, normalize and op
are so-called hyperparameters of the model (that will be introduced and discussed in detail
in Section 6.1.2). Finally, γ are the parameters that define the ANN (see (9)). There are
two reasons to adopt this approach: first, it is possible to quantify the improvement on the
performance that we expect; second, each numerical simulation can be added to the dataset
making this process less computationally expensive and more flexible.
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If otherwise not stated, we will use a 60%-20%-20% split of the dataset into training-
validation-test.

6.1 ANN-Based Prediction of the Optimal Strong Threshold Parameter θ

In this section, we discuss how to predict the optimal strong threshold parameter θ to be
used in the ANN-enhanced AMG Algorithm 4 without using any prior assumption on the
diffusion coefficient μ. In other words, we do not rely on the fact that μ shows a finite
number of patterns.

The variables that we use as inputs of the ANN F are θ , − log2(h) and a set of variables
V̂ = normalize(pooling(Ah, m,op)) that is extracted from the matrix Ah of the linear
system (6) by means of the pooling Algorithm 3 and a normalization algorithm (extraction
step). This extraction process should be computationally cheap, indeed this approach is
worthwhile only until the process of predicting the optimal value of θ has a negligible
computational cost with respect to the elapsed CPU time to solve the linear system. We
use − log2(h) instead of h as input of the ANN since, by construction, h is not linearly
distributed. It is a well known that ANNs can be more easily trained if the inputs have the
same order of magnitude.

We recall at this stage that the optimal parameter θ∗ to be used in the linear solver with
AMG preconditioner (step 4 of Algorithm 4) is such that

θ∗ = argmin
θ∈(0,1]

F (V̂,− log2(h), θ; γ ).

In practice, θ∗ is found by first evaluating

θ(0) = argmin
k∈{20,30,...,900}

F (V̂, − log2(h), 0.001k; γ ),

and then applying a suitable number of steps of the gradient descent algorithm

θ(k) = θ(k−1) − α∇θF (V̂,− log2(h), θ(k−1); γ ), k ≥ 0,

where α = 10−5 is the learning rate. The gradient ∇θF can be computed by the automatic
differentiation algorithm of Tensorflow. However, we empirically found that this second
step appears to be unnecessary since it gives small to negligible improvements.

6.1.1 Pooling (Step 1 of Algorithm 4)

We introduce what we call the view V of the matrix Ah.
First, let us define the following hyperparameters. Let m ∈ N be a positive integer that

describes the size of V∈ R
m×m. It must be large enough so that the features of Ah are

not lost. At the same time, m should not be too large to avoid expensive computations in
the forward propagation step. Let op : R × R → R be a function that combines two
values. In the field of computer vision this function is usually the sum op=sum where
sum(v1, v2) = v1 + v2, or the maximum of two numbers.

We define the view V ∈ R
m×m of the matrix Ah and the non-zeros count C ∈ N

m×m (i.e.
the matrix where each entry (C)ij is the number of non-zero elements of Ah used to compute
(V)ij ) as (V, C) = pooling(Ah,m,op), where pooling is defined in Algorithm 3. The
insight in this algorithm stems from the operator used in the pooling layer of CNNs. On
one hand we downscale the input, significantly reducing the computational cost, and on the
other hand we also gain translation invariance. Moreover, we also prune details that may not
be useful for the task.
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By exploiting the storage data structure of sparse matrices (for instance compressed
row storage or coordinate lists) to access the elements of Ah, we realize the pooling with
complexity O(nnz), where nnz is the number of non-zero elements in the matrix Ah.
In Algorithm 3, for the sake of simplicity, it is assumed that the matrix Ah is stored in
coordinate lists format.

Algorithm 3 Pooling algorithm (V,C) = pooling(Ah,m,op).

We have also measured the elapsed CPU time by the pooling algorithm. In each simu-
lation it seems that Algorithm 3 requires a negligible CPU time compared to the global one.
We notice that this algorithm could easily be extended to work in parallel. We also point out
that Algorithm 3 does not rely on the connectivity of the mesh nor on the definition of the
coefficients, thus it should also work in more complex cases, as for example in the case of
unstructured meshes.

6.1.2 Normalization (Step 2 in Algorithm 4)

We observe that the view V defined in the previous section cannot be used as input of an
ANN yet. In particular, it features very large values that might impact the stability of the
gradient algorithm. For this reason, propose three normalization techniques:

std(V)ij = (V)ij − v̄

σ
, v̄ =

∑
i,j

(V)ij

m2
, σ =

√√√√ 1

m2

∑
i,j

[(V)ij − v̄]2,

scale(V)ij = (V)ij /max
i,j

|(V)ij |, (11)

log(V)ij = scale(log(|(V )ij | + 1)(V )ij /|(V )ij |).
The first approach is the most employed in the field of deep learning. The argument behind
the second and third definition of (11) is that we would like to preserve the sparsity pattern
of the matrix. In particular, the log normalization yields linearly distributed values, since
the exponent ε of diffusion coefficient μ = 10ε is linearly distributed. Another possibility
is to apply these normalization to the element-wise division of V and C

avg(V,C)ij = (V)ij

(C)ij
, (12)
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Table 5 Summary of the
normalization techniques for the
view V

Name normalize

std+id V̂ = std(V)

std+avg V̂ = std(avg(V,C))

scale+id V̂ = scale(V)

scale+avg V̂ = scale(avg(V,C))

log+id V̂ = log(V)

log+avg V̂ = log(avg(V,C))See (11) and (12) for further
details

with the exception that if (C)ij = 0 then avg(V,C)ij = 0. Hence, the sparsity pattern of
V is preserved, indeed (C)ij = 0 only if (V)ij = 0. Table 5 summarizes all the normaliza-
tion techniques we propose. Figure 6 shows an example of the sparsity pattern of the matrix
Ah (h = 1.25e-1) and Fig. 7 shows three examples of a side-to-side view of the four nor-
malizations V̂ of the view matrix V. At this stage, we have obtained a matrix V̂ ∈ R

m×m,
V̂ = normalize(V,C) with m chosen a priori. We will discuss our choice in the next
section.

Algorithm 4 ANN-enhanced AMG u(k+1)
h = ANN AMG(u(0)

h ,Ah, h, fh, ν1, ν2, Nmax, tol, γ ).

6.1.3 The ANN-Enhanced AMG Algorithm

We show in Algorithm 4 how we intend to use the prediction of the optimal strong threshold
parameter θ∗ realized by ANNwithin the AMG solver, which we call ANN-enhanced AMG
algorithm. In particular, our approach determines θ∗ to be used in the AMG algorithm starting
from the matrix Ah and the mesh size h. This leverages on a map from a manipulation of
Ah (V̂), h and θ to a suitable performance index p of the AMG solver (ρ). Specifically, this
map is realized by an ANN F (x; γ ) such that its inputs are x = (V̂,− log2(h), θ), while
the output y (the predicted value of the regression) coincides with a suitable performance
index, say y = p(Ah, h, θ), of the linear solver with AMG preconditioner, which we select
as the approximated convergence factor p = ρ(Ah, θ). The steps in the ANN-enhanced
AMG Algorithm 4 are the following:

– (1–2) as the matrix Ah can not be directly used as input of an ANN F , suitable pool-
ing and normalization steps are performed to assemble V̂ = normalize(pooling
(Ah,m,op) from Ah, where pooling is defined in Algorithm 3, and op,
normalize and m are hyperparameters of our model defined inside Section 6.1.1 and
Section 6.1.2, respectively;

– (3) the ANNF built for the model problem is used to determine θ∗ in order to minimize
the approximate convergence factor ρ of the AMG;

– (4) the AMG Algorithm 2 is used with θ∗.
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Fig. 6 Sparsity pattern of the matrix Ah for h = 1.25e-1 of the case 1 (Section 6.3)

6.1.4 ANN Architecture (Building the ANN of Step 3 in Algorithm 4)

We now build the ANN F (x; γ ) = F (V̂,− log2(h), θ; γ ). We recall that, following the
former pooling and normalization steps, we have

V̂ = normalize(pooling(Ah,m,op)),

where pooling is defined in Algorithm 3 and op, normalize and m are the hyperpa-
rameters defined in Section 6.1.1 and Section 6.1.2, respectively. We use a model that is the

Fig. 7 Graphical representation of six different normalization of the view matrix V̂ = normalize
(pooling(Ah, 50,sum)) ∈ R

50×50 for mesh dimension h = 1.25e-1, μ pattern Fig. 1(d) and ε = 0, 0.8, 5
for the first, second and third rows, respectively
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Fig. 8 Architecture of our model represented by the ANN F (V̂,− log2(h), θ; γ ) = p = ρ where V̂ =
normalize(pooling(Ah, 50,sum)). In particular, it is comprised by the composition of two ANNs: a
CNN such that yCNN = FCNN(V̂; γ CNN) and a dense FFN FFFN (yCNN ,− log2(h), θ; γ FNN) = ρ.
Given V̂, the mesh dimension h and θ it predicts ρ and thus also the optimal θ∗ that minimizes ρ

composition of two networks as depicted in Fig. 8. Since the matrix view V̂ is a structured
input, we first employ a CNN such that

yCNN = FCNN(V̂; γ CNN),

depending on the parameters γ CNN . Then, the output of the first CNN altogether with the
remaining inputs − log2(h) and θ , constitute the inputs of a second network, which we
select as a dense Feed Forward Network (FFN). This dense FFN is such that

ρ(Ah, θ) = FFFN(yCNN,− log2(h), θ; γ FNN)

and depends on the parameters γ CNN .

6.1.5 Evaluating the Performance of the Model

Since the a priori choice of the strong threshold parameter θ is based on the map Ah → θ∗
defined by step 3 of Algorithm 4, it is not enough to have a small loss to verify that the
model is accurate. With this aim, we introduce some quantities of interest. Let Ah be fixed,
and let

– ρANN be the convergence factor of the AMG-ANN algorithm,
– ρ0.25 be the convergence factor of the AMG method for θ = 0.25,
– ρMIN be the convergence factor of the AMG method with

θ∗ = argmin
θ∈ dataset for this Ah

ρ(θ;Ah).

Moreover, we define

P = 1 − ρANN

ρ0.25
and PMAX = 1 − ρMIN

ρ0.25
. (13)

Finally, we define PB as the percentage of cases where P ≥ 0, and we define P<0 as the
performance P of the cases where P < 0.
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Table 6 Computed loss (MSE) and MAE for different ANNs architectures trained with dataset 1

W1 D1 P1 W2 D2 P2 O W3 D3 loss MAE

32 2 0.25 − − − 128 64 2 7.36e-5 4.33e-3

32 2 0.25 32 2 0.5 128 64 2 9.28e-5 5.40e-3

32 2 0.0 − − − 128 64 3 7.85e-5 4.96e-3

32 2 0.25 − − − 128 64 3 7.72e-5 4.94e-3

32 2 0.5 − − − 128 64 3 7.86e-5 5.16e-3

32 2 0.25 − − − 256 64 3 8.19e-5 5.13e-3

32 2 0.25 64 2 0.5 128 64 4 1.88e-4 9.68e-3

The quantities W1, D1, P1, W2, D2, P2, O, W3 and D3 are defined in Section 6.1.4. The batch size is 32,
normalization std+id (see Table 5), training lasts 500 epochs and the optimizer is the Adam algorithm
(with default Tensorflow learning rate)

6.2 Test Case 1

We test our algorithm fixing the hyperparameters of the view, we discuss their tuning in
Section 6.4.1. Namely, we employ op=sum, m = 50 (our choice is motivated by inter-
preting V̂ as a color image in input to the first CNN network; experience indicates that
this kind of CNN network is able to excellently process color images of similar size) and
normalize=std+id (see Table 5).

Table 6 shows the results of changing the architecture of the model. In particular, we
consider architectures with two convolutional layers each composed by a convolution with
zero-padding, 3 × 3 kernel and ReLU activation and Di − 1 other convolutions with 3 × 3
kernel and ReLU activation (without padding). The last elements of the convolutional layers
are a 2 × 2 max-pooling and Dropout with rate Pi , each layer has Wi hidden units (for i =
1, 2). The output of the convolutional part has O hidden units; the dense part is composed
by D3 dense layers with W3 hidden units.

In Table 7 we report the performance indexes for the first six models of Table 6 (see
Section 6.1.5). We have chosen as architecture for our model the one reported in the first
row of Table 6. We trained this model for up to 1000 epochs and employed early stopping.
As result, it has a loss of 6.36 · 10−5. We show the computed performance in Table 16 (first
row). Figure 9 (left) shows a histogram of the performance gain P . We observe that in 20%
of the cases we have a performance gain P ≥ 43%.

Table 7 Evaluation of the performance of the first six models of Table 6

PB P (avg/median) P/PMAX (avg/median) P<0 (avg/median)

92.96% 16.06% 24.69% 81.31% 97.51% − 3.928% − 3.090%

90.36% 16.63% 33.74% 85.95% 97.14% − 4.102% − 2.123%

92.70% 16.64% 20.72% 81.18% 98.80% − 2.363% − 0.805%

92.96% 16.56% 17.97% 80.09% 97.56% − 1.855% − 0.826%

91.66% 16.31% 22.28% 82.39% 99.08% − 3.462% − 1.324%

91.14% 15.59% 22.32% 80.87% 96.80% − 3.812% − 1.094%

The quantities PB, P , PMAX and P<0 are defined at the end of Section 6.1.4
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Fig. 9 Histogram of the performance of the AMG-ANN method: for each test case we evaluate the perfor-
mance of the model P in orange and the best performance PMAX in blue (as defined in (13)). From left to
right. Performance for Case 1 of Section 6.3. Performance for the Case 2 of Section 6.4. Performance for the
Case 3.a and 3.b of Section 6.5

6.3 Test Case 2: an Enhanced Dataset

In order to further test the robustness of the model to unseen data (i.e. test cases that are
not in the training set), we test the prediction capabilities of the ANN on a new dataset. We
call the latter dataset, “dataset 2”, while the one employed so far is called “dataset 1”. In
particular, we solve the same model problem (3) but with a different diffusion coefficient,
defined as

μ(x, y) =
{
10ε2 if (x, y) ∈ Ωgray,

10ε1 if (x, y) ∈ Ωwhite,

where ε1 and ε2 are parameters to be chosen and Ωgray , Ωwhite is a partition of Ω as shown
in Fig. 1.

In Fig. 10, we show the performance of the model that we designed in the previous
sections, trained with only dataset 1. In particular, we choose randomly three values for ε1
and three values for ε2. We can see how the predictions maintain accuracy in some scenarios,
but fail in other ones.

We proceed to show how the model behaves when the training is instead done with
training samples from both datasets. Dataset 2 contains 5184 entries, we define the test set
to be the union of the 20% of dataset 2 and the 50% of the dataset 1. In this way, the union
of the training and validation set contains 4800 datapoints from the dataset 1 and 4147 from
dataset 2. The ratio between the number of entries of the validation set and the training set
is defined to be 1 : 3. We call this combination dataset 3. The aim is to have a balanced
training dataset in which each definition of μ is equally represented.

If not otherwise stated, we stop the training at 200 epochs. As shown in Table 8, dropout
improves the training, thus it will be employed in all the models. We have also tried employ-
ing batch normalization as a regularization technique on some of these models and a deeper
model with three convolutional layers but it did not lead to any significant improvements.
This can be explained by the fact that batch normalization effectiveness is most evident in
very deep models; see [26].

Table 9 shows training of models with two convolutional layers. By comparing it with
Table 10, where the MSE and MAE are reported for different ANN architectures with one
layer, it is possible to notice that models with only one layer achieve lower loss. From
Table 10, it is also possible to appreciate that the model that in the previous section achieved
the lowest loss is not the same in this case. In particular, a deeper model performs better.
This is not surprising since this means that we need a more complex model to explain the
data, and indeed we are using a more diversified dataset. In Table 11, we repeat the same test
case for different architectures of the convolutional layer. Two applications of convolution
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Fig. 10 Predictions on dataset 2 made by the model designed in Section 6.1.4 and trained with dataset 1.
Each plot show data obtained from a fixed combination of ε1 and ε2. Namely, ε1 is constant for subplots on
the same row and ε2 is constant for subplots on the same column of the plot grid. On the x-axis there is the
true value of ρ, on the y-axis the predicted value

Table 8 Computed loss (MSE) and MAE for different ANNs architectures (with one convolutional layer)
trained with dataset 3

W1 D1 P1 O W3 D3 loss MAE

32 2 0.05 128 64 3 1.75e-4 8.60e-3

32 2 0.00 128 64 4 1.63e-4 8.03e-3

32 2 0.25 128 64 3 1.58e-4 8.14e-3

32 2 0.25 128 64 4 1.35e-4 7.34e-3

32 2 0.50 128 64 3 1.55e-4 7.98e-3

The quantities W1, D1, P1, O, W3 and D3 are defined in Section 6.1.4. The batch size is 32,
normalize=std+id (see Table 5), training lasts 200 epochs and the optimizer is the Adam algorithm
(with default Tensorflow learning rate)
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Table 9 Computed loss (MSE) and MAE for different ANNs architectures (with two convolutional layers)
trained with dataset 3

W1 D1 P1 W2 D2 P2 O W3 D3 loss MAE

16 2 0.25 12 2 0.25 128 64 4 1.72e-4 8.34e-3
16 2 0.25 12 2 0.50 256 256 3 1.56e-4 8.10e-3

16 2 0.25 16 2 0.25 128 64 4 1.68e-4 8.28e-3

16 2 0.25 32 2 0.50 128 64 4 1.61e-4 8.23e-3

32 2 0.25 16 2 0.25 128 64 3 1.55e-4 8.05e-3

32 2 0.25 16 2 0.25 128 64 4 1.55e-4 7.85e-3

32 2 0.25 32 2 0.50 128 64 4 1.75e-4 8.64e-3

The quantities W1, D1, P1, W2, D2, P2, O, W3 and D3 are defined in Section 6.1.4. The hyperparameters
are the same of Table 8

Table 10 Computed loss (MSE)
and MAE for different ANNs
architectures (with one
convolutional layer) trained with
dataset 3

W1 D1 P1 O W3 D3 loss MAE

32 2 0.25 128 64 3 1.71e-5 8.19e-3

32 2 0.25 128 64 4 1.35e-5 7.34e-3

32 2 0.25 128 64 5 1.48e-5 7.88e-3

32 2 0.25 128 128 3 1.51e-5 7.60e-3

32 2 0.25 128 128 4 1.43e-5 7.62e-3

32 2 0.25 256 64 5 1.50e-5 7.86e-3

32 2 0.25 256 256 3 1.52e-5 7.80e-3

32 2 0.25 512 128 3 1.60e-5 8.01e-3

32 3 0.25 128 64 4 1.51e-5 7.64e-3

32 3 0.25 128 128 3 1.48e-5 7.79e-3

32 3 0.25 128 128 4 1.34e-5 7.18e-3

32 3 0.25 256 256 3 1.56e-5 8.10e-3

The quantities W1, D1, P1, O,
W3 and D3 are defined in
Section 6.1.4. We change only
the hyperparameters of the dense
layers as specified in columns
W3 and D3. All the other
hyperparameters are the same as
those reported in Table 8

Table 11 Computed loss (MSE)
and MAE for different ANNs
architectures (with one
convolutional layer) trained with
dataset 3

W1 D1 P1 O W3 D3 loss MAE

16 4 0.25 128 128 4 1.32e-4 7.29e-3

16 4 0.50 128 128 4 1.56e-4 7.98e-3

16 5 0.25 128 128 4 1.54e-4 7.77e-3

16 3 0.50 128 128 4 1.51e-4 7.86e-3

24 2 0.25 128 128 4 1.53e-4 7.71e-3

24 2 0.50 128 128 4 1.52e-4 7.76e-3

24 3 0.25 128 128 4 1.40e-4 7.34e-3

24 4 0.50 128 128 4 1.60e-4 7.98e-3

32 3 0.25 128 128 4 1.34e-5 7.18e-3

32 3 0.50 128 128 4 1.47e-5 7.75e-3

40 2 0.25 128 128 4 1.27e-4 7.30e-3

40 3 0.25 128 128 4 1.32e-4 7.18e-3

The quantities W1, D1, P1, O,
W3 and D3 are defined in
Section 6.1.4. Here, we change
only the hyperparameters of the
convolutional layer. Not
specified hyperparameters are the
same of Table 8
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with 40 hidden units seems to be the best choice. The architecture that we choose for the
model is the second to last of Table 11. Employing training with batch size 32, the Adam
optimizer and early stopping (up to 1000 epochs), we obtain a loss on the test “dataset 3” of
8.83 ·10−5 and MAE 4.84 ·10−3. On the test “dataset 1” we achieve a loss of 7.73 ·10−5 and
a MAE of 4.48 · 10−3 and on test “dataset 2” we obtained a loss of 1.39 · 10−4 and a MAE
of 6.51 · 10−3. The predictions are reported in Fig. 11. Figure 9 (center) shows a histogram
of the performance gain P . In particular, in 20% of the cases P ≥ 37%. Table 16 (second
row) summarizes the results.

Remark 1 We observe that the difference in predictions shown in Figs. 10 and 11 are signif-
icant. This begs the question of how to assess the quality of a training dataset. Unfortunately,
it is very hard to assess the quality of the dataset a-priori. Indeed, this question is equivalent
to predict the neural network generalization, which is still an open question in the field of

Fig. 11 Prediction of the model trained with dataset 3 on the test dataset 2. Each plot show data obtained
from a fixed combination of ε1 and ε2. Namely, ε1 is constant for subplots on the same row and ε2 is constant
for subplots on the same column of the plot grid. On the x-axis there is the true value of ρ, on the y-axis the
predicted value
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ML. However, in the case of very large datasets, it could be useful to train a small ANN on
a small sample of the dataset and validate the results.

6.4 Test Case 3: Diffusion Coefficient with Different Values on Each Tile

In this case, we test the prediction capabilities of AMG-ANN whenever the diffusion coef-
ficient shows a more complicated pattern. Namely, we generalize the definition of the
diffusion coefficient μ in the following way. Let size ∈ N be a positive integer indicating
the size of the pattern (e.g. in Fig. 1, from left to right, size = 2, 2, 4, 4 since the pat-
terns are two stripes, 2×2 checkerboard, four stripes and 4×4 checkerboard, respectively).
Let mode = 1, 2 be an integer that indicates if the pattern is at stripes or checkerboard
like, respectively. These two parameters determine a partition {Ωi}i=1,...,sizemode of the
domain Ω . On each element of the partition Ωi we set μ(x, y) = 10(ε)i (constant), where
ε ∈ R

sizemode is a given vector of parameters. What just described is synthesized in Algo-
rithm 5. Notice that if size is not a power of two, the pattern of μ is not aligned with the
mesh.

We choose f of (3) such that u(x, y) = sin(sizeπx/2) sin(sizeπy/2) if size is odd
and u(x, y) = cos(sizeπx/2) cos(sizeπy/2) otherwise. Varying size = 2, . . . , 10,
mode = 1, 2 and ε by sampling its component at random with uniform distribution in the
interval (−20, 20), we create a dataset with about 200 000 samples (θ and h vary in the
same range as defined in Section 5).

6.4.1 Tuning of the Hyperparameters of the Pooling Operation

To tune the hyperparameters op, normalize and m we consider a subset of the dataset
consisting of about 15 000 samples. By stacking together c views V̂ obtained with different
op we can obtain a tensor V̂′ ∈ R

m×m×c that can be interpreted as a multi-channel image.
Namely, we consider four possible approaches summarized in Table 12. The first two rows
represent the most used approaches in the computer vision field, whereas the argument for
the approach in the third row comes from (1) where you can see the relevance of splitting the
values into the positive and negative part. The fourth approach just combines the informa-
tion of the first three together. We also consider all the six possible choices of normalize
reported in Table 5 and eight values of m = 30, 40, . . . , 100. Thus, there are 192 combina-
tions of hyperparameter m, op and normalize. For each one of this choices we train a
network with learning rate 0.001, batch size 32, 1 convolutional layer with no dropout and
W1 = 32, D1 = 2, W3 = 64, D3 = 3. Figure 12 shows the boxplot of the loss of the model

Table 12 Summary of the
possible ways to obtain
V̂′ ∈ R

m×m×c by stacking
together {V̂i = normalize
(pooling(Ah,m,opi ))}i=1,...,c ,
where c and {opi}i=1,...,c are
defined in the second and third
columns, respectively

Name #Channels c List of op

sum 1 op(v1, v2) = v1 + v2

max 1 op(v1, v2) = max{v1, |v2|}
pp+np 2 op1(v1, v2) = max{max{0, v2}, v1},

op2(v1, v2) = max{max{0,−v2}, v1}
pp+np+sum 3 op1(v1, v2) = max{max{0, v2}, v1},

op2(v1, v2) = max{max{0,−v2}, v1},
op3(v1, v2) = v1 + v2
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Fig. 12 Boxplot (with mean in red) representing the effect of different choices of the hyperparaments op
(left), m (center) and normalize (right) on the test loss (MSE). The training is stopped after 100 epochs
(top row), 200 epochs (bottom row)

trained for 100 epochs (top row) and 200 epochs (bottom row), grouped by hyperparam-
eter category. From these results it seems that the choices normalize = log+id and
normalize = log+avg provide the best results. Concerning the choice of op(·, ·), it
seems that op = pp+np+sum leads to better results. The view size m seems to be inversely
proportional to the loss. However, comparing m = 60 and m = 100 when the model is
trained for 200 epochs, we notice that, on average, the loss is only about 10% larger even if
the view is 64% smaller.

6.4.2 Test Case 3.a: Predictions on 15 000 Samples

We train our model on the reduced dataset containing “only” 15 000 samples. After tun-
ing the architecture of the neural network, we train three different models for 500 epochs.
Table 13 shows the results. The choices normalize = log+id and normalize =
log+avg produce similar results as before. We can conclude that m = 100 seems better,
but the improvement on the loss is only about 10% w.r.t. m = 80. Thus m = 80 could be
a reasonable choice to save time both in the offline and online phases. The second model
results into the lowest loss and MAE, its performance is reported in Table 16. Moreover, we
observe that in 20% of the cases it has a performance gain P ≥ 27%.

Table 13 Case 3.a: computed loss (MSE) and MAE for different choices of the hyperparameters op, m and
normalize hyperparameters

op m normalize W1 D1 P1 O W3 D3 loss MAE

pp+np+sum 100 log+avg 40 3 0 128 128 5 4.31e-5 3.65e-3

pp+np+sum 100 log+id 40 3 0 128 128 5 3.87e-5 3.47e-3

pp+np+sum 80 log+avg 40 3 0 128 128 5 4.07e-5 3.57e-3

All the other hyperparameters are the same as those reported in Table 8
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Table 14 Comparison of the performance of two fixed models when using MSE or MAE as a loss

Loss MAE MSE PB P (avg/median) P<0 (avg/median)

Model 1 MSE 1.00e-3 2.95e-4 62.3% 3.14% 2.67% -13.1% -7.91%

Model 2 MSE 9.67e-4 2.71e-4 62.5% 3.55% 2.19% -12.3% -7.74%

Model 1 MAE 9.35e-4 2.83e-4 63.7% 3.69% 3.56% -13.4% -7.47%

Model 2 MAE 1.00e-3 3.18e-4 61.8% 2.85% 2.86% -14.1% -8.69%

The two models are the second and third of Table 15. They were trained for 20 epochs. batch size 32, default
Tensorflow learning rate of Adam. The quantities PB, P and P<0 are defined in Section 6.1.4

6.4.3 Test Case 3.b: Predictions on 200 000 Samples

In this section we train our model with the full dataset containing 200 000 samples. We
use the following choices as hyperparameters m = 50, normalize = scale+avg and
op = sum since they provide a good compromise between accuracy and efficiency for
tuning the architecture of the ANN.

First, we check if using as loss function MSE or MAE makes any difference on the final
performance: we fix two models architectures and train the ANNs changing only the loss
function. Results are reported in Table 14: there seems not to be any significant difference
between the two.

We then perform an hyperparameter optimization on the model architecture: we train
different models for 40 epochs and check their performance in terms of loss. We test differ-
ent dropout probabilities, different sizes and depths for the convolution filters and different
architectures for the dense part. We report some results in Table 15, where we can see that
larger models, w.r.t. the ones in Table 11, perform better. This is expected since we have a
rather larger dataset.

We choose as architecture of our model the one reported in the seventh row of Table 15.
Using as hyperparameters of the view op = pp+np+sum, m = 100, normalize =
log+avg, the model is trained for 500 epochs (validation loss was still decreasing when
training ended). It reaches a loss of 6.95 · 10−5 MSE (4.69 · 10−3 MAE). We show its
performance in Table 16 (fourth row). The histogram of the performance is reported in
Fig. 9 (right). Even if its performance is not as good as the one of the model obtained in
Section 6.3, we would like to point out that there is still a margin of improvement for the
hyperparameters optimization step and more epochs could be used.

Algorithm 5 Diffusion coefficient μ in a given point x ∈ Ω = (−1, 1)2, fixed the parameters mode, size
and ε ∈ R

sizemode . μ = μ(x;mode,size, ε).
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Table 15 Computed loss (MSE)
and MAE on for different
architectures of the ANN trained
on the dataset of Section 6.4 for
40 epochs

W1 D1 P1 O W3 D3 Loss MAE

32 2 0.25 128 128 4 3.64e-3 1.24e-2

32 3 0.25 128 128 4 2.22e-3 9.35e-3

32 4 0.25 128 128 4 2.16e-3 9.16e-3

32 5 0.25 128 128 4 2.26e-3 9.48e-3

40 2 0.25 128 128 4 2.45e-3 9.90e-3

40 3 0.25 128 128 4 2.12e-3 9.22e-3

40 3 0.25 128 128 5 1.98e-3 8.75e-3

40 4 0.25 128 128 4 2.22e-3 9.31e-3

64 3 0.25 128 128 4 2.19e-3 9.31e-3

64 4 0.25 128 128 4 3.16e-3 1.01e-2

The quantities W1, D1, P1, O,
W3 and D3 are defined in
Section 6.1.4. Not specified
hyperparameters are the same of
Table 14

6.5 Test Case 4: the Stationary Stokes Problem

Finally, we show how we can extend the prediction capabilities of the ANN trained in the
previous section in the case we consider a different model problem. Namely, we consider
the model problem defined in (7). Namely, we consider the channel flow around a cylinder
with parabolic inflow profile in Ω = (0, 2.2)× (0, 0.41) \Br(0.2, 0.2) ⊂ R

2 with r = 0.05
where Br(x, y) is the ball of radius r centered in (x, y) ∈ R

2. We define Γ0 = [0, 2.2] ×
{0, 0.41}∪ ∂Br(0.2, 0.2), Γin = 0×[0, 0.41], Γout = 2.2×[0, 0.41]. We report in Fig. 13 a
graphical representation of the computational domain together with a computational mesh.
We solve its discrete formulation (8) with MINRES preconditioned with

P−1 =
(
Ah 0
0 Mh

)−1

=
(
A−1

h 0
0 M−1

h

)
,

where Mh is the mass matrix in the pressure space. For the approximation of the velocity
block Ah we will perform a single AMG V-cycle: our AMG-ANN will be applied to this
block.

Then, we build a dataset with 3600 samples by varying ν = 0.001, 0.1, 10,U = 0.00001,
0.001, 0.1, 10, h = 0.14/2i with i = 0, 1, 2, 3, 4, 5. Our baseline is the model trained in the
Section 6.4. Using transfer learning, we would like to extend its applicability range to the

Fig. 13 Representation of the domain of the Stokes problem (7) with a quadrilateral mesh Th
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Fig. 14 Left. Predictions on the Stokes problem dataset defined in Section 6.5 of the model trained in
Section 6.4 (i.e. with only Laplace problems). Right. The predictions of the same model after training for
an extra 20 epochs on a dataset composed at 50% by Stokes problems and 50% by samples of the dataset
defined in Section 6.4. Not specified hyperparameters are the same of Table 14

Stokes problem. To this end, using the weights (and architecture) of the pre-trained model
obtained in Section 6.4, we train it with a dataset composed at 50% by Stokes problem
samples and 50% by data from the dataset we build in Section 6.4 (i.e. the dataset used to
pre-trained the model). Indeed, we keep some of the old data to avoid catastrophic forget-
ting [37], i.e. the tendency of ANNs to forget how to perform a task upon learning new
information. We train the model only for 20 epochs, we employ early stopping and a 80%-
20% training-validation split. In Fig. 14 we report the prediction of the model before and
after this step of training. At the end of the training the model has a loss of 1.52 · 10−4 MSE
(MAE 9.09 · 10−3). We report its performance in Table 16. We remark that, in this case, a
performance gain P of 3% (in terms of ρ) results into about 30% performance gain in terms
of elapsed CPU time. Meanwhile on the full original dataset we still maintain a PB > 50%
and P > 0 both in mean and median. Thus, with a small computational effort, we succeeded
in extending the knowledge of our model.

Table 16 Evaluation of the performance of the best model for each case

PB P (avg/median) P/PMAX (avg/median) P<0 (avg/median)

Case 1 96.61% 17.27% 4.11% 86.96% 99.17% − 1.65% − 0.63%

Case 2 89.13% 14.92% 2.81% 80.09% 96.01% − 3.72% − 2.04%

Case 3.a 88.60% 15.03% 13.60% 72.06% 82.24% − 5.47% − 2.25%

Case 3.b 80.65% 12.60% 10.94% 65.82% 69.79% − 6.00% − 3.91%

Case 4 90.16% 2.45% 1.24% 79.62% 90.76% − 0.36% − 0.39%

The models and cases are defined in Section 6.1.4, Section 6.3 and Section 6.4, Section 6.5 respectively. The
quantities PB, P , PMAX and P<0 are defined at the end of Section 6.1.4
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7 Conclusions

In this work, we developed an ANN-based approach to enhance the computational effi-
ciency of the AMGmethods, i.e. to accelerate their performance. In particular, we accurately
predicted the value of the strong threshold parameter θ that maximizes the performance with
respect to the matrix Ah of the linear system to be solved. In order to be able to apply the
model independently of the matrix of the linear system, we introduced a pooling operator.
We measured the efficiency of the AMG method using the approximate convergence factor
and we designed a model that predicts its value. In this way, we are able to choose the strong
threshold parameter that minimizes the predicted approximated convergence factor. More-
over, we have shown that, as expected, the approximated convergence factor of the AMG
method is strictly correlated to the elapsed CPU time during the application of the AMG
method to the linear system solution, thus demonstrating that it provides a good measure of
the performance of the solver. This a priori, optimal selection of the strong threshold param-
eter allows us to efficiently choose a value of θ that significantly decreases the elapsed CPU
time with respect to the “classical” value. We introduced a set of indicators to measure the
performance of our model: we show that if the dataset is smaller than 15 000 samples our
model is better than using the literature value of θ in about 90% of the cases with on aver-
age a 15% gain in performance. On the other hand, from our computations, it seems that in
case of large datasets more work on the tuning of the hyperparameter is needed. Finally, we
have addressed a generalization test case moving from the elliptic scalar differential prob-
lem to the Stokes system exploiting the so called transfer learning. The preliminary results
are encouraging and further investigation will be the subject of further research.

Possible further developments also include: using the ANN to optimize the value of
other AMG parameters, such as the maximum row sum parameter, the choice of whether
using W-cycles or V-cycles or the number of levels of aggressive coarsening. Possible other
improvements include tuning of the hyperparameters of the model; testing a wider range of
differential models, in particular in three-dimensional configuration.
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