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Abstract—Due to the increasing complexity of modern inte-
grated circuits, High-Level Synthesis (HLS) is becoming a key
technology in hardware design. HLS uses optimizations to assist
during design space exploration. However, some of them can
introduce security weaknesses. We propose an approach that
leverages static analysis to identify a class of weaknesses in HLS-
generated code. We show that some of these weaknesses can be
corrected through the automatic generation of HLS directives.
We evaluate our approach by comparing the static analysis
results with formal verification. Our results show that the static
approach has the same accuracy as formal methods while being
3× to 200× faster.

I. INTRODUCTION

Systems-on-Chips (SoCs), which integrate multiple
Intellectual Property blocks (IP), have increased computer
system complexity. Design and verification methodologies
and tools have not evolved and scaled as much as the size
and complexity of SoC designs [1]. It has thus become
increasingly difficult to properly design and verify hardware
while meeting time-to-market commitments. High-Level
Synthesis (HLS) aims to alleviate the design bottleneck by
raising the abstraction level to the algorithmic one [2], [3].
HLS enables designers to start with algorithms expressed
in a High-Level Language (HLL) and explore the space of
corresponding hardware designs using HLS tool directives or
source-code pragmas. Designers can explore the large design
space offered by HLS and evaluate Power, Performance, and
Area (PPA) trade-offs, with recent work proposed to help
designers explore the large space of configurations [4].

However, current commercial HLS tools generate Register-
Transfer level (RTL) designs without considering security.
Starting from an algorithm and using different HLS directives,
one can obtain different results in terms of latency, resources,
and weaknesses. Designers focusing only on traditional met-
rics can introduce unintentional security weaknesses [5].

With hardware security concerns driving regulations [6],
we need security-conscious HLS tools and verification frame-
works to systematically assess design security, even when
designers are not security experts.

We would like to acknowledge CMC Microsystems for the provision of
products and services that facilitated this research. This research work is
supported in part by a gift from Intel Corporation. This work does not in any
way constitute an Intel endorsement of a product or supplier. We acknowledge
the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), RGPIN-2022-03027.

L. Collini, J. Ah-kiow and R. Karri are with the Center for Cybersecurity,
New York University, New York City, NY, 11201 USA. E-mail: {lc4976,
joey.a, rkarri}@nyu.edu.

B. Tan is with the Department of Electrical and Software Engineer-
ing, University of Calgary, Calgary, AB, T2N 1N4, Canada. Email: ben-
jamin.tan1@ucalgary.ca. J. Ah-kiow was with the University of Calgary for
a portion of this research.

C. Pilato is with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Milano, 20133, Italy. Email: chris-
tian.pilato@polimi.it

Thus, we propose to use static analysis to detect weaknesses
in HLS-generated RTL and an automated repair flow to correct
detected weaknesses by generating HLS directives that enable
changes to the RTL without modifying the high-level code.
We evaluate our work on synthetic benchmarks that highlight
how similar high-level patterns can yield different RTL designs
and conduct a case study analyzing three block ciphers (AES,
serpent, and PRESENT from [7]) to explore the weaknesses
that can be introduced by a commercial HLS tool. We show
that we can detect these weaknesses automatically and provide
fixes to the designers. Our contributions are twofold: (i) An
approach for the detection and correction of weaknesses in
HLS generated designs (Section III). (ii) A proof-of-con-
cept implementation that we evaluate experimentally on three
crypto cores (Section IV).

II. BACKGROUND AND PRIOR WORK

A. HLS-Induced Security Weaknesses

Recent work started to consider the potential for security
issues induced by HLS. For example, Pilato et al. [8] and Basu
et al. [9] examined the possibility of Hardware Trojan (HT)
insertion through compromised HLS tools. HLS is a prime
candidate for HT insertion since it is hard to correlate the
HLL description to the RTL. HTs can be partially remedied
by equivalence checking for mismatches between HLL and
RTL; Abderehman et al. [10] propose a C-to-RTL equivalence
checking framework by extracting the RTL-level finite-state
machine with datapaths (RTL-FSMDs).

Another concern is the unintentional introduction of secu-
rity weaknesses in HLS-generated designs [5]. Design weak-
nesses are flaws in a design that, if exploited, can lead to
vulnerabilities. Unlike HTs, weaknesses are not intentional
mismatches and may not be detected through equivalence
checking. MITRE maintains a list of known weaknesses
called the Common Weakness Enumeration (CWE) [11]. Some
vulnerabilities identified by Pundir et al. [5] map to the
following CWEs: CWE 1245 (insecure finite state machine);
CWE 1300 (improper protection of side channel); CWE 1271
(uninitialized value on reset for registers holding security
settings); CWE 1189 (improper isolation of shared resources
on system-on-a-chip); CWE 203 (Observable discrepancy).
Of these weaknesses, we focus on CWE 203, as it may
enable other weaknesses, like uninitialized values on reset or
unbalanced pipelines, to leak sensitive data during operation.
This is a problem for ciphers like AES that guarantee security
only after all rounds have been completed, not before.

B. RTL Static Analysis

Our work is positioned at the junction of static analysis
for weakness detection in RTL and security weaknesses in
HLS-generated designs. Prior work [12] showed the use of
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Fig. 1. Our proposed detection and correction flow, where source files in
a high-level language like C are passed to an HLS tool with accompanying
HLS directives (e.g., in a .tcl file). We feed the generated hardware design
(RTL) through a scanner to identify weaknesses; if present, we generate a
new directive file in an attempt to remediate the weakness.

static analysis of RTL to identify weaknesses. Their work
targeted human-written RTL and addressed the challenge of
identifying patterns that indicate possible weaknesses, even
when designs assume different structures, demonstrating that
static analysis can support early detection and fixes, reducing
the verification burden in later design stages. In contrast, we
focus on HLS-generated code and the template-based nature
of commercial HLS tools. We observe that control signals
are named consistently by default, and functionally similar
patterns are syntactically identical. There is an opportunity for
accurate and practical static analysis of the RTL code for HLS-
generated designs, since it is likely that there are fewer unique
weakness patterns that must be heuristically determined.

III. WEAKNESS DETECTION AND DESIGN CORRECTION

Given the potential introduction of security weaknesses
during HLS, we propose a framework to detect/correct weak-
nesses in HLS designs (Fig. 1). The framework takes a C/C++
design, a set of directive files D for optimizations, and param-
eters specifying the weaknesses to scan for and environment
settings. An HLS engine is run for each directive file d ∈ D
obtaining tuples (synthesized design, report) H, |H| = |D|.
We feed each tuple to the RTL scanner which analyzes the
Verilog for weaknesses. The scanner uses HLS reports to
identify primary inputs/outputs and generated RTL. Scanning
the outputs of the HLS tool and using built-in directives to fix
weaknesses allows us to work with commercial tools since we
do not need access to the source code.

A. RTL Scanner Design

At first, a Verilog parser extracts the Abstract Syntax Tree
(AST), and an HLS report parser extracts information such as
the top module and primary inputs/outputs from the structured
report file generated by an HLS tool (e.g., in XML format).

This information is passed to our RTL scanner, which
is implemented using the visitor pattern, a common design
pattern to explore tree/graph data structures. The RTL Scanner
includes one or more Visitors for each weakness; new weak-
ness scanners can be added by implementing new visitors.
When exploring the AST, the Visitor looks for patterns that
are related to the weakness in scope. Since the analyzed RTL
is automatically generated, the scanners can use the patterns
and structures characteristic of the specific HLS tool used,
obviating the need for generality as desired in prior work [12].
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Fig. 2. Scheme of the passthrough visitor.

As discussed in Section II, the passthrough weakness en-
ables other weaknesses as it leaks data to primary outputs
before the computation is complete. For this reason, we
implemented a scanner for the passthrough weakness.

B. The Passthrough Scanner

Our scanner needs information such as the names of the
top module, primary input/outputs. By inspecting synthetic
benchmarks with and without the passthrough weakness after
using a commercial HLS tool, we observed several patterns.
In designs without passthrough, the primary output is assigned
with non-blocking substitution; the primary output is assigned
in continuous assignment to a signal with post-fix “_reg”;
the primary output is assigned to a Phi variable ϕ, which has
one of the two properties above.
Taking into account these observations, one can design a
visitor for the passthrough weakness, for example, like one
illustrated in Fig. 2 (one can make adjustments for other HLS
tools). Our visitor defines a function for analyzing continuous
assignments. Before calling the function, the relevant signal
list is initialized with the primary outputs. The function then
checks if the left-hand side is in the list and if so, it checks if
the right-hand side has a post-fix “_reg”, or includes “_phi”
in its name. If this condition is met then a flag to signal the
weakness is not present is raised and the function exits. If the
right-hand side includes “_phi”, then its name is added to the
relevant signal list phi_list if not already present. At the
end of the traversal, if the list of relevant signals has increased,
the AST is scanned again. If the scanning ends without raising
the “not present” flag, we infer the weakness is present.

C. Correction via HLS Directives

Two conditions must be met to mitigate the passthrough
weakness: (i) a registered output, (ii) appropriate control
logic. The registered output is necessary to separate the
intermediate output net to the top-level output net. The control
logic enables the added register only when the operation is
complete. We intuited that weaknesses can be remediated
using the directives of an HLS tool, the idea being that
after we detect a weakness, we can add the required direc-
tive(s) to the corresponding file of the HLS project. After
re-running the synthesis, we can scan the generated design
again to validate that the weakness has been fixed. If it
is present, an error message is raised to get the designer’s
attention. We manually investigated the directive documen-
tation of a typical commercial tool for directives that make
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the outputs registered, and identified config_interface
-register_io scalar_out. This is a configuration
command applied at the solution-level that controls the default
IO interface synthesized by the HLS tool for each function,
specifying that all scalar outputs must be registered. For secure
IP like crypto accelerators, there should not be intermediate
updates to the output. Similar directives exist for other tools;
the effort to repeat this process for other tools is a one-off.

IV. EXPERIMENTAL EVALUATION

We implemented the prototype using Python and a com-
mercial HLS tool1. We used Pyverilog to parse the design
and extract the AST [13] and the Python ElementTree XML
API to parse the XML reports. Our implementation will be
open-sourced. We used Cadence JasperGold to run formal
verification to verify the passthrough property as a baseline.

A. Benchmarks

For evaluation, we selected three synthetic benchmarks to
explore the HLS-induced passthrough weakness. We use an
implementation of the Fibonacci sequence and a factorial
function to represent designs with loops updating the internal
state to compute their results. Fibonacci implementation has
the passthrough weakness when implemented with no HLS
directives. The Factorial implementation has a similar struc-
ture but does not exhibit the weakness. Combining the two
functions in a module that allows one to select one of them
via a control input, does not present this weakness when the
functions are inlined. When not inlined, Fibonacci sequence
leaks to the output when selected. These benchmarks serve to
illustrate that similar c structures can yield different results,
motivating scanning for issues on the generated RTL.

Additionally, we selected block ciphers, AES(-v1),
PRESENT and Serpent from [7] as benchmarks. We also
selected the open-source AES(-v2) from the Vitis Library [14].
The cipher implementations came with HLS directives for
each design as they were HLS-ready. We derived 5 sets
of directives: (1) All directives (ALL) from the original
set; (2) Register I/O (REG): directives in the original
set plus the config_interface -register_io
scalar_out directive; (3) Only pipelining (PIPE): Original
set of directives removing all unrolling directives; (4) Only
unrolling (UNROLL): Original set of directives removing
pipeline directives; (5) No directives (EMPTY): no directives
specified; tool’s defaults as in [5]. This allows us to study
choices that a designer could make.

B. Experimental Setup and Results

To explore the feasibility of the proposed framework, we
take a set of benchmark designs, D, and a set of directives
P and check if the combination < D, p >, p ∈ P contains
the passthrough weakness after HLS. If it does, we want to
check that < D, p + f >, with f being the fixing directive,
does not contain the passthrough weakness. We feed the
designs through our framework running on 4 cores on an Intel

1We cannot disclose the tool due to license agreements.
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Fig. 3. Waveform of Fibonacci sequence (top) and factorial (bottom) with
both default settings and register I/O directive. Notice how Factorial does not
exhibit the weakness but adding the directives adds latency to the computation.

Xeon Gold 6248R with 16GB of RAM. We characterize the
benchmarks in terms of their complexity (lines of C code
and lines of generated Verilog), their resource requirements
in terms of latency, flip-flops, and LUTs, and run times, with
results in Table I. For brevity, we report the results of the fix
applied only to the original set of directives (REG rows). The
results show that the weakness was correctly identified in all
cases by the scanner as verified with the formal tool.

Synthetic Benchmarks. As shown in the waveforms in
Fig. 3, when the default settings are used, both the Fibonacci
sequence and the factorial exhibit the passthrough weakness.
Without inlining, only the Fibonacci sequence leaks data on
the output during the computation. When both functions are
inlined the passthrough weakness is absent. This is illustrated
in Fig. 4. For complex scenarios, it is hard to predict the
security outcomes by looking only at HLL code.

Serpent. This block cipher exhibited a passthrough when
the directive to register all outputs was not used. However,
using such a directive increased latency from 36→337 cycles.

PRESENT. This block cipher also exhibited passthrough in
all cases without the directive to register the output registers.
The directive increased latency from 73→110 cycles.

AES-v1. This also exhibited passthrough in all cases that
did not include the directive to register the output registers.
The directive increased latency from 532→563 cycles.

AES-v2. This also exhibited passthrough in all cases where
we did not include the directive to register the outputs. Fig. 5
shows the passthrough of the subkey used at round 1. In this
case, the directive had a minimal latency increase: 166→170.

Overall, our scanner identified all instances of the
passthrough weaknesses. The scanner’s bottleneck is the Ver-
ilog parser. We used Pyverilog [13] since it is open-source,
while faster commercial Verilog parsers could reduce this
bottleneck. However, this is not the focus of this work.
Furthermore, our fixing directive increases latency from 1.1×
to 9× in the worst case, emphasizing the need to scan for the
weakness rather than applying it universally.

V. CONCLUSION

We proposed a framework to detect and correct a class
of security weaknesses that can be induced by high-level
synthesis. Our experimental results on synthetic algorithms
and realistic block cipher benchmarks show that our prototype
is as effective at detecting the weakness in generated Verilog
as more cumbersome formal verification while being up to
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TABLE I
EXPERIMENTAL RESULTS SHOWING BENCHMARK CHARACTERISTICS AFTER HLS AND WEAKNESS PRESENCE AS DETECTED BY OUR SCANNER. DESIGN

COMPLEXITY IS REPRESENTED BY THE LINES OF CODE (LOC). TCL SUMMARIZES THE DIRECTIVE SET USED FOR SYNTHESIS.

DESIGN LOC (.c) TCL LOC (.v) Passthrough Design Characteristics Time (s)
Latency FF LUT Scanner Parse Scanner Scan Formal

Factorial 9 DEFAULT 597 N ** 104 172 1.225 0.0015 3.934
REG 497 N ** 171 177 1.222 0.0020 3.757

Fibonacci 11 DEFAULT 314 Y ** 98 159 1.206 0.0009 3.678
REG 249 N ** 181 144 1.219 0.0012 3.803

Combined 23
INLINE OFF 1067 Y ** 255 352 1.241 0.0015 3.866
INLINE OFF + REG 928 N ** 388 353 1.211 0.0012 4.062
REG 786 N ** 338 313 1.256 0.0016 3.831
EMPTY 922 N ** 206 307 1.230 0.0021 3.977

PRESENT [7] 205
ALL 5405 Y 73 539 2105 1.323 0.0052 4.140
REG 5535 N 110 808 2135 1.362 0.0057 80.66
PIPELINE 4488 Y 205 681 1697 1.357 0.0051 4.274
UNROLL 3463 Y 130 766 1598 1.317 0.0044 4.334
EMPTY 1717 Y 5956 659 2340 1.316 0.0031 14.174

serpent [7] 331
ALL 4129 Y 36 667 1543 1.243 0.0024 5.399
REG 5303 N 337 4433 1766 1.276 0.0034 300.83
PIPELINE 4129 Y 36 667 1543 1.274 0.0026 5.871
UNROLL∗ - - - - - - - –
EMPTY 2574 Y 21944 4434 5964 1.248 0.0025 12.414

AES-v1 [7] 372
ALL 6751 Y 532 1266 5860 1.287 0.0062 4.344
REG 7038 N 563 1983 5953 1.298 0.0062 204.19
PIPELINE 6325 Y 584 1629 11346 1.312 0.0062 4.552
UNROLL 4516 Y 1048 1453 6343 1.307 0.0055 4.427
EMPTY 10535 Y 10542 2015 15082 1.304 0.0053 4.571

AES-v2 [14] 303
ALL 3660 Y 166 1979 1824 1.215 0.0016 6.669
REG 3387 N 170 2368 1800 1.222 0.0019 189.241
PIPELINE 3660 Y 166 1824 1824 1.205 0.0016 6.054
UNROLL 3190 Y 67 1290 1594 1.249 0.0032 7.334
EMPTY 2989 Y 1103 2247 27388 1.228 0.0024 6.234

∗Output does not update ∗∗Latency depends on inputs
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Fig. 4. Waveform of the combined Fibonacci and factorial, inlining (top), no inlining (bottom). Green highlights the safe update of output.
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Fig. 5. Waveform of AES from Vitis Libraries [14], with (top) and without
(bottom) fix. Orange shows passthrough leaking the first sub key in round 1.

200× faster even without a fast Verilog parser. This shows
the potential for static analysis for weakness detection on HLS
generated designs that can take advantage of template-based
code structures, motivating research for new static scanners. In
further exploring this work, we aim to generalize the support
for other commercial HLS tools and increase the number of
scanners to cover more vulnerabilities.
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