Bulletin of Earthquake Engineering

Validation of regional physics-based ground motion scenarios: the case of the Mw 4.9 2019 Le Teil earthquake in France --Manuscript Draft--

Manuscript Number:			
Full Title:	Validation of regional physics-based ground motion scenarios: the case of the Mw 4.9 2019 Le Teil earthquake in France		
Article Type:	Original Article		
Keywords:	physics-based numerical simulation; seismic wave propagation; seismic site effects; seismic safety; benchmark; nuclear power plant		
Corresponding Author:	Chiara Smerzini Politecnico di Milano Milano, Milano ITALY		
Corresponding Author Secondary Information:			
Corresponding Author's Institution:	Politecnico di Milano		
Corresponding Author's Secondary Institution:			
First Author:	Chiara Smerzini		
First Author Secondary Information:			
Order of Authors:	Chiara Smerzini		
	Manuela Vanini		
	Roberto Paolucci		
	Philippe Renault		
	Paola Traversa		
Order of Authors Secondary Information:			
Funding Information:	swissnuclear	Prof. Roberto Paolucci	
Abstract:	In this paper, a comprehensive validation exercise of 3D physics-based numerical simulations (PBS) of seismic wave propagation is presented for a low-to-moderate seismicity area in the south east of France, within the Rhône River Valley, that hosts several operating nuclear installations. This area was hit on Nov 11, 2019, by an unusually damaging Mw 4.9 earthquake (Le Teil event). The numerical code SPEED (http://speed.mox.polimi.it/), developed at Politecnico di Milano, Italy, was used to validate the simulations against the available recordings. When comparing simulations with records, a good to excellent agreement was found up to 8-10 Hz, showing that, even without a very detailed 3D numerical model of the medium, the PBS may provide realistic broadband predictions of earthquake ground motion. This also demonstrates that PBS, if suitably calibrated and validated, may be either an alternative or a useful complement to empirical ground motion models. Referring to the seismic risk evaluation of strategic and critical structures, infrastructures and industrial plants, such as nuclear power plants, the failure of which during an earthquake may endanger safety of population and cause environmental disasters, the 3D PBS may throw light on region- and site-specific features of ground shaking, especially in near-source conditions, that are typically poorly constrained in empirical models.		
Suggested Reviewers:	Gabriele Ameri gabriele.ameri@seister.fr expert in seismic hazard analysis and ground motion, with focus on French context Fabrice Cotton fabrice.cotton@gfz-potsdam.de		

	expert in ground-motion models with focus on low seismicity areas	
	Stefano Parolai sparolai@inogs.it expert in seismology	
	Cécile Cornou cecile.cornou@univ-grenoble-alpes.fr expert in seismic hazard with focus on site effects	
	Floriana Petrone florianapetrone@unr.edu expert in engineering applications of physics-based numerical simulations	

±

Validation of regional physics-based ground motion scenarios: the case of the Mw 4.9 2019 Le Teil earthquake in France

4 By C. Smerzini, M. Vanini, R. Paolucci, P. Renault, P. Traversa

5

6

7 Abstract

8 In this paper, a comprehensive validation exercise of 3D physics-based numerical simulations 9 (PBS) of seismic wave propagation is presented for a low-to-moderate seismicity area in the 10 south east of France, within the Rhône River Valley, that hosts several operating nuclear installations. This area was hit on Nov 11, 2019, by an unusually damaging Mw 4.9 earthquake 11 12 (Le Teil event). The numerical code SPEED (http://speed.mox.polimi.it/), developed at 13 Politecnico di Milano, Italy, was used to validate the simulations against the available 14 recordings. When comparing simulations with records, a good to excellent agreement was 15 found up to 8-10 Hz, showing that, even without a very detailed 3D numerical model of the 16 medium, the PBS may provide realistic broadband predictions of earthquake ground motion. 17 This also demonstrates that PBS, if suitably calibrated and validated, may be either an 18 alternative or a useful complement to empirical ground motion models. Referring to the seismic 19 risk evaluation of strategic and critical structures, infrastructures and industrial plants, such as 20 nuclear power plants, the failure of which during an earthquake may endanger safety of 21 population and cause environmental disasters, the 3D PBS may throw light on region- and site-22 specific features of ground shaking, especially in near-source conditions, that are typically 23 poorly constrained in empirical models.

- 24
- 25

Keywords: physics-based numerical simulation; seismic wave propagation; seismic site
effects; seismic safety; benchmark; nuclear power plant.

29 1 Introduction

The recent history of nuclear power plants (NPP) affected by seismic events, such as those occurred in Japan at Kashiwazaki-Kariwa (during the July 16, 2007, Chuetsu earthquake, Mw6.6) and Fukushima (during the March 11, 2011, Tohoku earthquake, Mw9), has raised the public attention that seismic hazard may be a relevant contributor to the overall risk of NPPs.

34 According to IAEA safety standards (IAEA-SSG9, 2022) both empirical and direct 35 simulation methods can be used to estimate vibratory ground motions, within either 36 probabilistic or deterministic seismic hazard assessment. Empirical ground motion models 37 (GMMs) represent the standard approach for ground motion characterization in a probabilistic 38 framework, suited to account for different sources of aleatory and epistemic uncertainties, but 39 they are also used as a standard for deterministic seismic hazard assessment. However, because 40 of their ergodic nature, classical GMMs do not provide quantitative estimates of the region- and 41 site-specific features of earthquake ground motion, unless empirical non-ergodic adjustments 42 are considered (e.g., Biro and Renault, 2012; Ameri et al. 2017) or fully non-ergodic models 43 are implemented in the considered region (e.g. Landwehr et al., 2016; Sung et al., 2022).

44 As an alternative approach to GMMs, 3D physics-based numerical simulations (PBS) of 45 seismic wave propagation account for the seismic source, the propagation path and the amplification effects related to the site-specific shallow geology (e.g., Paolucci et al., 2018; 46 47 McCallen et al., 2021). They are becoming more and more appealing as the performance of 48 computer codes is growing exponentially and their use is particularly appropriate in case of complex geological configurations, coupled with near-source conditions, cases that are poorly 49 50 constrained in GMMs due to small amount of recordings. Quoting IAEA-SSG9, the PBS 51 procedures "might be especially effective in cases where nearby faults contribute significantly 52 to the vibratory ground motion hazard at the site and/or where the existing empirical data are 53 *limited (e.g. on the hanging wall of a nearby fault)*".

54 Validation of 3D PBS against recorded weak or strong ground motions is one of the key 55 propaedeutic activities to ensure that the different input elements of PBS, namely, the seismic 56 source and the 3D velocity model, are suitable to reproduce the recorded motions, at least up to 57 a prescribed frequency limit.

In the framework of the SIGMA-2 Project (<u>https://www.sigma-2.net</u>/), funded by different industrial partners that operate in the nuclear energy sector, a benchmark on different simulation approaches for earthquake ground motion prediction was organized, with reference to the

November 11, 2019 Mw 4.9 Le Teil earthquake (El Haber et al. 2022). This earthquake 61 62 occurred in a densely populated low-to-moderate seismicity region of South-Eastern France, close to the city of Montélimar within the lower Rhône Valley, at relatively short distance from 63 64 two NPPs, i.e., Cruas (at an epicentral distance Repi of 15 km) and Tricastin (Repi=24 km). The 65 primary goal of the benchmark was to validate and explore the potential of different ground 66 motion simulation techniques in predicting ground motion in a low-to-moderate seismicity area, 67 where the description of the seismic wave propagation medium is limited, the fault geometry 68 and activity are poorly known and the earthquake records are rare.

In this paper, the simulations are carried out using the spectral element code SPEED (Mazzieri et al., 2013), which has been extensively used in the recent past to perform PBS validated on different real earthquakes (Paolucci et al., 2015; Evangelista et al., 2017; Infantino et al., 2020; Sangaraju et al., 2021) and to construct a prototype of a near-source simulated accelerograms dataset with the aim of complementing recordings datasets, still relatively sparse in such near-source conditions (Paolucci et al., 2021).

75 After a brief overview of the case study in Section 2, the 3D numerical model is introduced 76 in Section 3, while the verification and numerical convergence tests are discussed in Section 4. 77 In Section 5, simulated ground motion is successfully compared with the recorded one on a 78 broad frequency range, up to about 8 Hz, where the convergence tests have shown that the 79 accuracy of numerical wave propagation is reasonably preserved. Furthermore, Goodness of 80 Fit tests show good to excellent scores. Since the main role of 3D PBS is to highlight region-81 and site-specific features of earthquake ground motion that cannot be resolved by the ergodic 82 empirical GMMs, and that may lead to biased estimates for seismic hazard assessment, in 83 Section 6 the main findings related to the 3D site amplification features in the Rhône Valley are summarized and compared with 1D approaches for site amplification estimation. 84

85 2 Case study: the Le Teil Mw 4.9 earthquake

86 On November 11, 2019 a seismic event of moment magnitude Mw 4.9, referred to as Le Teil 87 earthquake, occurred in South-Eastern France, close to the city of Montélimar with about 88 40,000 inhabitants, within the lower Rhône Valley (see Figure 1). The earthquake hit a densely 89 populated industrial region characterized by low-to-moderate seismic activity which hosts 90 several operating NPPs. As previously mentioned, two nuclear facilities, namely Cruas and 91 Tricastin, are located close to the epicenteral area of the earthquake, at about 15 km North-East

92 and 24 km South-East of the epicenter, respectively. In spite of the moderate magnitude, the 93 shock caused different degree of damages to approximately 900 residential buildings and 94 several public buildings in the municipality of Le Teil, located at 4 km from the epicenter, going 95 from light cracks in the walls to total collapse. About 200 of these housings were declared at 96 risk of collapse. The maximum macroseismic intensity degree (EMS98 scale, Grünthal et al., 97 1998) I_{max}=VII-VIII was estimated for Le Teil municipality (Schlupp et al. 2021; Sira et al. 98 2020). The economic losses induced by the Le Teil earthquake have been estimated at around 99 200 MEUR for private property and at around 12 MEUR for communal properties (AFPS, 100 2021).

101 The region is characterized by a low-to-moderate seismicity, with instrumental earthquakes 102 of maximum magnitude ranging between 3 and 4 (see orange circles in Figure 1, from SI-HEX 103 (Cara et al., 2015) updated catalogue, https://www.franceseisme.fr/). The most significant historical earthquakes in the region (as indicated by purple dots in Figure 1) occurred south of 104 105 Le Teil in 1773, 1873 the 1923, with maximum macroseismic intensities up to I_{max}=VII MSK 106 (SISFRANCE database, www.sisfrance.net). The August 8, 1873 earthquake, at around 8 km 107 southward from Le Teil, was the largest shock ever felt in this region, with an estimated Mw of 108 around 4.1 and a focal depth of about 3 km (FCAT catalogue, Manchuel et al., 2018). An 109 earthquake was located near Le Teil in November 1923, with an inferred Mw of around 3 and 110 Imax=IV MSK.

From a seismotectonic point of view, the epicenter of the Le Teil earthquake is located at the boundary between the Massif Central crystalline basement and the sedimentary basin of South-Eastern France bordering the Alps mountain range. The tectonic evolution of this region was marked by several deformation phases since 200 million years (Ma), which have produced a complex structural pattern in a compressional stress regime with around 100-km-long system of faults (i.e., the Cevennes Fault System – CFS) striking NE-SW and dipping to the southeast (Delouis et al., 2019; Ritz et al. 2020).

The earthquake was generated by the seismic rupture of a segment of the La Rouvière fault (LRF, see red line in Figure 1), which is located at the North-Eastern part of the CFS. The LRF was not identified as a potentially active fault in the Database of Potentially Active Faults for Metropolitan France – BDFA (<u>https://bdfa.irsn.fr/</u>, Jomard et al., 2017), but it was already listed on the geological map of the Aubenas area (Elmi et al. 1996). The 8 km-long La Rouvière fault is oriented NE-SW (azimuth from N030 to N050), it dips steeply to South-East and is located between, and parallel to, the Saint Remèze fault (part of the Cévennes fault) to the North-West
and the Marsanne fault to the South-East. The latter two, contrarily to the LFR, were identified
as potentially active faults in the BDFA.

127 Geodetic, seismological and field data indicate a rupture area of about 4 km \times 1.5 km, 128 characterized by a reverse focal mechanism, with a hypocenter (44.521°N; 4.669°E) located at 129 solely 1 km depth from the ground surface (Cornou et al. 2021; Causse et al. 2021). Ritz et al. 130 (2020) show evidence of surface fault rupture with a permanent uplift up to 15 cm on the fault 131 hanging wall, which is rather uncommon considering the magnitude and for this region. Such 132 a shallow focal depth is unusual for an earthquake of tectonic origin and it is typically associated 133 with earthquakes of anthropogenic nature, such as gas extraction induced events. Based on both in-field observations and numerical simulations, Causse et al. (2021) showed that, although the 134 135 average source properties of the Le Teil earthquake (stress drop, slip distribution and rupture 136 velocity) were consistent with common deeper earthquakes, the unusually shallow rupture 137 produced exceptional levels of ground shaking in the immediate vicinity of the causative fault. 138 Azimuthal and frequency dependencies of ground motion decay with distance are the object of 139 current research works. The shallow hypocenter, together with the presence of a large limestone 140 quarry located on the hanging wall of the LRF, motivated studies on the causal relationship 141 between the extraction activities and the triggering of the Le Teil earthquake (De Novellis et 142 al. 2020).

143 Recordings of the Le Teil event and aftershocks are available from the stations of the RESIF network (Réseau Sismologique et géodésique Français - RESIF http://seismology.resif.fr/, 144 145 1995) and of the closest stations of the EDF (Electricité de France, the French NPP operator) 146 network. As shown by the blue triangles of Figure 1, only four stations fall within the area 147 covered by the 3D numerical model (details of these stations are given in Table 1). These stations are the reference with respect to which the simulation results will be tested and 148 149 validated. Due to the limited number of records at short epicentral distance, PBS can be 150 effectively employed to gain insights into the main features of seismic shaking in the region.

Figure 1. Seismotectonic map of the region hit by the November 11, 2019 Mw 4.9 Le Teil earthquake. The orange and purple circles are instrumental and historical earthquakes, respectively; the yellow hexagons denote the Nuclear Power Plants (NPP) in the region. The brown lines are potentially active faults mapped in the BDFA catalogue (https://bdfa.irsn.fr/), while the La Rouvière Fault (LRF), activated by the Le Teil earthquake, is in red. Blue triangles are the stations of the RESIF and EDF networks.

158Table 1. Reference accelerometric stations of the RESIF network (for OGLP and ADHE) and for the EDF network159(for CRU1 and TRI2 stations). The station coordinates (in WGS84) are given, with their epicentral distance (Repi)160from the Le Teil earthquake and the Vs30 of the site.

Station	Lat (°N)	Lon (°E)	Elevation [m]	R _{epi} [km]	Vs30 [m/s]	
ADHE	44.374	4.770	90	18	2000	
CRU1	44.636	4.759	77	15	662	
OGLP	44.307	4.689	46	24	490	
TRI2	44.356	4.857	141.2	24	-	

¹⁵⁷

162 3 **3D numerical model of the Montélimar region**

Figure 2 Figure 2shows the area modelled in this work, with the causative fault and epicenter of the Le Teil earthquake and the details of the basin shape adopted in the numerical model. The figure shows also the position of the stations used in the analyses, as well as of the Cruas and Tricastin NPPs. A geological cross-section (orthogonal to the fault rupture area, see dashed line in Figure 2) modified from Causse et al. (2021) is shown in the top right corner.

169Figure 2. Basin model used in numerical simulations. Fault and epicenter of the earthquake (in red) are shown with170indication of the extent of the SPEED model (superimposed transparent yellow box). The location of recording stations171(blue triangles) as well as the two nuclear power plants (Cruas and Tricastin, yellow hexagons) are shown. In the legend,172'Depth' is measured from local topography. The brown lines are potentially active faults from the BDFA catalogue173(https://bdfa.irsn.fr/), while the La Rouvière Fault (LRF) is marked in red. The inset on the top right corner (from174Causse et al. 2021) shows the NS-EW geological cross-section modified from Ritz et al., 2020 (licensed under CC BY1754.0.).

176

177 3.1 Set-up of the 3D velocity model of the Rhône River Valley

The construction of the 3D subsoil model of the region implied some preliminary analyses to properly identify the main features of the Rhône Valley and of the seismic wave velocity model for both the crustal layers and the sedimentary materials within the valley. In particular, 181 the limited geophysical and geological information at large-scale required to develop a 182 numerical algorithm to shape a preliminary 3D model of the Rhône Valley, constrained on the 183 sparse data made available.

184 Namely, the 3D model of the Rhône Valley shown in Figure 2 was constructed from 185 numerical processing of the information included in the DEM (Digital Elevation Model) of the 186 area, available at https://download.gebco.net/, with a resolution of 300 m, further constrained 187 by the sediment depth from available geological cross-sections and by the surface contour of 188 outcropping sediments. For this purpose, an ad hoc algorithm was developed, providing an 189 estimate of the local depth of the Rhône Valley sediments, based on the equilibrium of an elastic 190 and homogeneous membrane fixed at the valley boundaries (i.e., Poisson equation), subjected 191 to a distributed loading inversely proportional to the distance of the point from the boundary. 192 Further details of the procedure are provided in El Haber et al. (2022).

As noticeable from Figure 2, the valley shape and depth change considerably, being narrow and shallow in the North, close to Cruas NPP, and large and relatively deep in the South, close to Tricastin NPP. The maximum sediment thickness reaches about 700 m near the OGLP station.

197 The velocity model of the deep crustal layers implemented in the numerical model (Table 198 2), was borrowed from Causse et al. (2021), who performed a set of numerical simulations of 199 the Montélimar earthquake and characterized for that purpose the 1D structure of the earth crust 200 using seismic noise recorded at temporary seismological stations installed after the earthquake 201 in the fault vicinity. These profiles, in the epicentral area, exhibit soil materials with increasing 202 stiffness from the surface to 1.2 km depth, overlaying less competent deposits (see the 203 geological cross section in Figure 2). As remarked by Causse et al. (2021), this inversion in the 204 velocity profile is consistent with the geological settings of the area (Elmi et al., 1996) and with 205 information from deep boreholes in the region.

206

 $\begin{array}{ll} 207 \\ 208 \end{array} \mbox{Table 2. Crustal model used in numerical simulations. Adapted from Causse et al. (2021). ρ is the soil density, V_P and V_S are the P- and S-wave propagation velocities, respectively. } \end{array}$

Thickness [m]	ρ [t/m³]	V _P [m /s]	Vs [m/s]
600	2.0	3400	2100
600	2.5	5800	3500
220	2.2	2000	1200
780	2.4	3900	2300
6000	2.5	5800	3500

Concerning the sediments, a seismic velocity model was calibrated based on the measured profiles available at the OGLP station (RAP-ID project, Regnier et al., 2010) and at the Tricastin NPP (from local investigations carried out at the moment the NPP was under construction, EDF personal communication). Other profiles north of Montélimar, around the NPP of Cruas (at CRU1 station), at the border of the basin, were used for verification. Based on this information, a parabolic V_S and V_P profile were defined as a function of the depth from the topographic surface (*z*), as follows:

217
$$V_{S}(z) = 300 + 53.7 \cdot z^{0.5}; V_{P}(z) = 550 + 78.3 \cdot z^{0.5}$$
 (1)

For soil density, a constant value ρ =1950 kg/m³ was chosen, in agreement with available data. The adopted V_s model (Eq. 1) is shown in Figure 3 (black line), together with the measured profiles and the crustal model of Table 2 (dashed brown line). Note that, for sake of simplicity, the velocity profile is homogeneous along horizontal plans in the basin. At the generic point in the basin, the Vs profile consists of Eq (1) until the depth of the basin is reached and then, beyond that depth, the crustal model applies.

224 Concerning anelastic attenuation properties, for all soil layers, a frequency-dependent 225 quality factor ($Q=Q_0*f/f_0$) was adopted, with $Q_0 = V_S/10$ and a reference frequency $f_0 = 1$ Hz. 226

227

Figure 3. V_S profiles available at different sites within the Rhône Valley. The adopted surrogate model, calibrated on OGLP and Tricastin NPP, is shown in black and it is applied until the bedrock depth is reached.

230

231 3.2 Kinematic seismic source model

A kinematic representation of the fault rupture process was adopted to model the seismic source of the Le Teil earthquake. In spite of the moderate magnitude, a finite-fault modelling 234 was preferred to point-source to provide more realistic ground motion predictions in the near-235 source region.

236 Among the studies devoted to the inversion of a kinematic model of the seismic source 237 (Delouis et al., 2019; Cornou et al., 2021; Ritz et al., 2020; De Novellis et al., 2020; Mordret et 238 al., 2020), the one proposed by Cornou et al. (2021) was adopted, in agreement with the partners 239 of the SIGMA-2 Project. It is obtained from inversion of Interferometric Synthetic Aperture 240 Radar (InSAR) images acquired by the Sentinel-1 satellite. The used kinematic source 241 parameters are summarized in Table 3, while the co-seismic slip distribution on the fault plane 242 and the Slip Rate Function (SRF), in both time and frequency domain, are illustrated in Figure 243 4. The SRF is defined according to Crempien and Archuleta (2015), assuming a rise time τ 244 equal to 0.5 s.

245 Following Causse et al. (2021), a constant rupture velocity, $V_R = 1800$ m/s, was adopted, 246 corresponding to 85% of the shear wave velocity of the top layer of the crustal model.

248 249 Table 3. Main kinematic source parameters used in the simulations. The Cornou et al. (2021) solution is the reference fault model.

Parameter	Cornou et al. (2021)		
Mw	4.9		
Epicenter location	44.521°N; 4.669°E		
Hypocenter depth [m]	1000		
Source area [km ²]	5000 x·1740		
Rupture velocity V _R [km]	1800		
Strike [°]	50		
Dip [°]	58		
rake [°]	89		
Co-seismic slip	See Figure 4		

253 254 Figure 4. Left. Adopted co-seismic slip distribution (from Cornou et al., 2021) and position of the hypocenter (red star). Right: Slip Rate Function in time and frequency domain (from Crempien and Archuleta, 2015), with rise time = 0.5 s.

From a computational point of view, it is worth highlighting that the source modelling in 255 SPEED takes advantage of a novel strategy, referred to as "not-honoring fault" (see Sangaraju 256 257 et al. 2021, for the simulation of the 2016 Kumamoto earthquakes), specifically developed to 258 account for finite-fault rupture models with arbitrarily complex geometries in a numerically 259 efficient way. According to this approach, the mesh design does not need to incorporate the 260 geometry of the fault plane (making the meshing operations time-consuming and source-261 specific), but spectral nodes approaching the target fault rupture area are searched and loaded 262 in order to reproduce the total seismic moment of the event to be simulated.

263

264 3.3 Mesh computational features

265 Figure 5 illustrates the 3D spectral element numerical model, with indication of the finite-266 fault source area and the surface marking the boundary between the basin sediments and the 267 underlying bedrock. The numerical domain extends over a volume of $45 \text{ km} \times 70 \text{ km} \times 8.5 \text{ km}$ 268 and it is discretized using a structured conforming hexahedral mesh with average length of the 269 spectral elements ranging from about 120 m, at ground surface, to 550 m, at the bottom of the 270 model. Referring to Section 4.2 for quantitative tests on the accuracy of the numerical solutions 271 in the high-frequency range, the mesh was found to propagate accurately frequencies up to 272 about 8 Hz. Using a fourth-order spectral polynomial degree (SD=4), the total number of 273 spectral nodes amounts to more than 80 millions. Due to the large number of degrees of 274 freedom, numerical simulations were performed on the Marconi 100 Cluster at CINECA, the 275 largest high-performance computing center in Italy (www.cineca.it). The walltime for each 276 numerical simulation is around 3 hours on 128 cores of the Marconi 100 cluster, leading to a 277 computational cost of almost 400 cores-hours.

Table 4 provides an overview of the numerical simulations that were performed in this study with the aim of (i) verifying the numerical simulation and (ii) testing the impact of the 3D model effects on ground motion. With reference to (i), a simpler numerical mesh, with flat topography and crustal 1D layered structure was built.

- 282
- 283

Table 4. Overview of the numerical simulations by SPEED.

Label	Topography	Soil Model	Source	Slip Model
1D-pt	Not included	Crustal (1D)	Point-Source	Not used
3D-C21	Included	Crustal with Basin	Finite-Fault	Cornou et al.
3D-C21-R	Included	Crustal without Basin	Finite-Fault	Cornou et al.

Figure 5. Overview of the 3D numerical model: basin structure, crustal layering and numerical fault (in red). Details of the computational features are given in the table on the upper left corner.

287 4 Verification tests

288 4.1 Verification analyses with Hisada code

As a preliminary step of the modelling procedure, simulations were performed using the Hisada code, based on the analytical integration of Green's functions (Hisada and Bielak, 2003). This code allows to compute the ground motions in a horizontally layered half-space originating from a finite-fault kinematic source model, providing solutions with a maximum frequency resolution of about 1-2 Hz at most.

Hisada's solution has been used in a preliminary phase to calibrate and validate the crustal model profile, the assumptions on the quality factor, the slip model on the extended fault and the source time function adopted. Concerning the source, two different parametrizations have been tested: a point source (shown herein) and an extended fault (not shown in this paper). The simplified numerical model, without the basin shape and with the 1D crustal layering and flat topography, has been used for these tests (1D-pt model of Table 4).

Figure 6 shows the recorded and simulated velocity time histories and corresponding Fourier amplitude spectra (FAS) obtained from SPEED and from Hisada's approach at station CRU1 and at a virtual receiver located at about 1 km from the source. All time histories have been low-passed filtered at 3 Hz, given the low frequency resolution of Hisada solution. Herein a simple point-source model is adopted with an exponential source time function (rise time τ =1.2 s), for consistency with the built-in source functions available in Hisada code. An excellent agreement between the two simulation techniques is found, especially in the near source, proving the accuracy of the numerical mesh. Agreement with recorded time series is good as well, both in amplitude, frequency content and arrival times. A detailed discussion on the misfit between simulations and recordings, in a broader frequency range, will be addressed in Section 5.

311

312Figure 6. CRU1 station (Repi=15 km, top) and a near field receiver (Repi=1 km, bottom). Simulated (and recorded, where313available) velocity time histories and corresponding Fourier Amplitude spectra for EW component. Point source 1D314model, with flat topography and horizontal layers (1D-pt in Table 4). All time histories are low-pass filtered at 3 Hz.

315

316 4.2 Numerical accuracy in the high-frequency range

317 Among the various approaches for numerical integration of the linear-elastodynamic wave 318 equations, the spectral element approach enjoys a high accuracy, referred to as spectral 319 accuracy, that was estimated to ensure an accurate wave propagation with slightly more than 320 the Nyquist limit of 2 points per minimum wavelength (ppmw) for homogeneous soil 321 conditions, up to about 4 ppmw in strongly heterogeneous materials (Faccioli et al., 1997). 322 These estimates were based on verification tests on closed-form and/or reference solutions from 323 literature. For a practical application, a proper check of the number of ppmw should be made 324 for the specific case study, depending on the desired accuracy. For this purpose, a convergence 325 test was performed considering the numerical model described in Section 3.3 (model 3D-C21 326 of Table 4), where, with the same discretization in terms of spectral elements, the spectral 327 degree (SD) of each element was increased from SD=1 (i.e., no internal Legendre-GaussLobatto (LGL) node is present along each edge of the spectral element) up to SD=5 (i.e., six LGL nodes within each side of the spectral element). In this way, the accuracy of the solution for SDj (j=1, 2...5) can be checked by verifying at which frequency it departs significantly from the solution obtained with SDj+1. Results of this test are illustrated in Figure 7, showing that, taking as a reference SD5, the solution with SD4 keeps close to SD5 up to about 7.5 Hz on outcropping bedrock and up to about 5 Hz on outcropping basin. These should be considered as the reference accuracy limits of our numerical results when comparing them with records.

335

336Figure 7. Fourier amplitude spectra simulated (3D-C21 model of Table 4) for varying Spectral Degrees (SD from 1 to3375) at two positions at about 17 km from epicenter: on outcropping bedrock (to the North) and on soil (to the South),338inside the basin.

339

340 However, it should also be pointed out that neither the input slip function nor the numerical 341 model are detailed enough at high frequencies, which are dominated by small-scale effects of 342 stochastic nature. As it will be shown by comparing numerical results with records, the highfrequency decaying trend of simulated Fourier spectra is consistent with that of records. 343 344 Because of such good agreement, we discarded the option to produce broadband results by 345 coupling the low-frequencies from PBS to the high-frequencies produced by either stochastic 346 methods or by Artificial Neural Network-ANN, such as proposed by Paolucci et al. (2018). 347 Indeed, such hybrid approaches may not be theoretically well constrained for very shallow 348 events, as it is the case of Le Teil earthquake. Moreover, in the case of ANN, a sufficient amount 349 of records is necessary for training, which is not available for such shallow focal configurations. 350 For this reason, we considered more physically sound to rely on the numerical content of the 351 signal up to about 8 Hz (i.e., signals were LP filtered below 10 Hz). Indeed, although affected 352 by a moderate dispersion, we verified that, in the selected frequency range, the resulting 353 wavefield retains realistic characteristics in terms of amplitude, duration and spatial correlation, 354 that would be lost by LP filtering.

355 5 Overview of simulated results and comparison with records

In this section a summary of the final simulations is given, comparing results from the 3D C21 model of Table 4, with recordings and empirical GMMs, over the whole numerical domain.

530

359 5.1 Velocity motion and ground shaking maps

In Figure 8, snapshots of horizontal ground velocity in the EW direction are shown, illustrating the patterns of seismic wave propagation and its interaction with the Rhône Valley. Basin induced amplification is noticeable both near the source, in the shallower portion of the basin, to the East of Montélimar (see snapshot at 7 s), and in the deeper Southern portion of the basin, such as near the OGLP station (see snapshots at 11 s).

365

366

367

368

369Figure 8. Snapshots of EW simulated velocity (model 3D-C21) at 3, 7, 11 and 15 s. The basin shape is shown together370with the stations (blue dots) and the NPPs (yellow dots). The green line is the cross-section along which basin371amplification effects are studied in Section 6.

372373

Figure 9 shows ground shaking maps of peak ground displacement (PGD), velocity (PGV) and acceleration (PGA) for vertical and horizontal components rotated in the strike fault normal (FN) and fault parallel (FP) directions. Recordings are shown as well, at reference stations, using the same palette. Simulated and recorded ground motions are filtered with a low-pass filter at 10 Hz. The maps of Figure 9 point out an intense ground shaking in the immediate vicinity of the main rupture area, both in horizontal and vertical direction. The maps provide 380 also a clear picture of the radiation pattern associated with a reverse focal mechanism and its 381 interaction with complex subsurface geology. Up-dip directivity effects are visible on the 382 hanging wall of the fault, yielding to a significant increase of ground motion amplitude, with maximum PGA, PGV and PGD values up to 2.5 m/s², 0.4 m/s and 0.1 m, respectively. Two 383 384 prevailing directions of polarization of maximum amplitudes are noted, at azimuths of around 385 45° and 270° measured clockwise from North, most likely because of the influence of the two 386 shallow slip asperities (see Figure 4) on radiation pattern and directivity effects. The influence 387 of the basin sediments is clearly noticeable, although limited in amplitude, especially in the 388 PGA map. Vertical motions are high especially above the main slip area, with peak amplitudes 389 which are comparable or even larger than the horizontal ones, consistent with observational 390 evidences of large vertical-to-horizontal ratios in near-source conditions (Ramadan et al. 2021). 391 FN and FP components show comparable amplitudes, although FN components tend to be 392 larger than the FP ones on the surface projection of the fault rupture area.

In general, the maps indicate a realistic spatial correlation structure of peak ground motion
values, in a wide frequency range (from PGD, at low frequency, to PGA, at larger frequencies):
as expected, PGA shows a more significant contribution of small-scale spatial variability than
PGV and PGD. Agreement with peak values of recorded motion is considerable, mostly in the
horizontal directions.

Although not shown herein for sake of brevity, the simulated permanent vertical displacement on the surface projection of the fault plane (see, as a proxy for the spatial distribution of permanent ground uplift, the PGD –UD map in Figure 9, bottom-right) reaches maximum values of about 10 cm, in reasonable agreement, although underestimated, with the maximum uplift of 15 cm from InSAR measurements (Ritz et al. 2020).

403

Figure 9. PGA (top), PGV (middle) and PGD (bottom) maps from simulation 3D-C21. Recorded peak values are shown with colored circles. Le Teil earthquake fault (red rectangle) and epicenter (red star) are shown as well.

408 5.2 Detailed comparison in time and frequency domain

Figure 10 (a and b) compares recorded ground motion with SPEED simulations, at the four stations: (a) CRU1, on the basin edge to the North-East of the epicenter, and OGLP, inside the basin, and (b) ADHE and TRI2, on outcropping bedrock to the South-East of the epicenter. Comparisons are shown in the time and spectral domain. For all stations, simulations are in satisfactory agreement with recordings in terms of amplitudes, arrival times and duration of motion. The vertical component tends to be in general more amplified, especially on later 415 arrivals, both on bedrock and soil. At outcropping bedrock stations, ADHE and TRI2, 416 simulations show on average a lower agreement with respect to other stations; being on the 417 other side of the basin, with respect to the source, they are more sensitive to the shape and basin 418 properties (simplified in this work as explained in Section 3.1). Inside the basin (at OGLP 419 station), simulations are in very good agreement with observations for the main phases of 420 ground motion, even though, in the horizontal direction, recordings exhibit reverberations with 421 stronger amplitudes, not captured by the simulation. It is interesting to note that the simulations 422 turn out to reproduce relatively well the high energy content of vertical motion at long periods 423 (larger than 0.5 s, note in particular long period branch of CRU1 and OGLP spectra). This is a 424 peculiar feature of the Le Teil earthquake, whose recordings indicate vertical-to-horizontal 425 ratios significantly larger than those predicted by up-to-date empirical models at long periods 426 (Ramadan et al. 2022).

428 429 430 $\label{eq:stations} Figure 10 a. CRU1 \, (R_{epi} = 15 \ \text{km}) \ \text{and} \ OGLP \, (R_{epi} = 24 \ \text{km}) \ \text{stations.} \ Simulated \, (red, 3D-C21 \ model) \ \text{and} \ recorded \, (black) \ velocity \ time \ histories \ with \ corresponding \ Fourier \ and \ Response \ spectra. \ All \ time \ histories \ are \ low-pass \ filtered \ at \ 10$

Hz.

433 Figure 11 b. Same as Figure 10 a, for ADHE (R_{epi}=18 km) and TRI2 (R_{epi}=24 km) stations.

435 5.3 Goodness-of-Fit Scores

436 The overall performance of the numerical simulations was quantitatively estimated through 437 the Goodness-of-Fit (GoF) criteria proposed by Anderson (2004), considering ground motion 438 parameters of interest for earthquake risk applications, namely: Peak Ground Acceleration 439 (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD), Acceleration Response Spectra (SA) at selected periods (T = 0.2, 0.5, 1 and 2 s) and Cumulative Absolute 440 Velocity (CAV). Figure 12 shows the individual scores associated with the aforementioned 441 442 parameters for the set of four reference stations, for both horizontal geometric mean (GMH) 443 and vertical (UD) components. An overall good-to-excellent agreement is found for the 444 horizontal components for all stations and all parameters. For the UD component, slightly worse scores are found, probably due to the higher frequency content of the vertical motion. Theclosest station (CRU1) shows the best performance on the vertical component.

449 Figure 12. GoF scores computed on PGA, PGV, PGD, SA at T = 0.2, 0.5, 1.0 and 2.0 s, and CAV, for both GMH and UD components. Simulations performed with the 3D-C21 model of Table 4.

451

448

452 5.4 Ground motion attenuation with distance

453 Figure 13 shows horizontal PGA, SA(0.2s), SA(0.5s) and SA(1s) as a function of Joyner-454 Boore distance, R_{ib}, from 3D-C21 SPEED simulations (black: on outcropping bedrock; grey: inside the basin) as well as from recordings (green circles) and from the GMM by Kotha et al. 455 456 (2020) for shallow crustal events (violet: rock, with $V_{s30}=2100$ m/s; red: basin, with $V_{s30}=500$ 457 m/s), in its ergodic formulation. V_{S30} values of empirical predictions are selected to be 458 consistent with the Vs profiles implemented in the numerical model. For both simulations and 459 recordings, the median (RotD50) values of spectral accelerations over all orientations (Boore, 460 2010) are considered for consistency. The same comparison is shown in Figure 14 but for the 461 vertical component, using as the GMM by Stewart et al. 2016.

462 These comparisons suggest that:

- numerical simulations are suitable to fill in the gap left by the recordings in the
 proximity of the seismic source: while the records cover, with a very limited
 sampling, only distances beyond about 15 km, numerical simulations provide a
 detailed picture of ground motion in the near-source region (0-15 km), with relevant
 implications for constraining the seismic input for the NPPs;
- 468 in general, in the distance range between 15 and 25 km, the agreement between
 469 simulated and recorded spectral values is satisfactory, since no systematic biases are

- 470 found. Some discrepancies are found at CRU1 station, especially for the horizontal
 471 PGA and vertical SA(0.5s);
- 472-simulations suggest a tendency of near-source ground motions to be lower than the473GMMs model at short periods (particularly for PGA), while a reverse trend is found474at long periods (≥ 1.0 s), where simulated ground motions exceed significantly the475empirical predictions. Such a trend is consistent with the findings from residual476analysis of Montélimar recordings with respect to recorded datasets in Europe and477in Italy;
- 478 the systematic underestimation of the empirical GMMs for the long-period spectral
 479 ordinates is even more pronounced for the vertical components of ground motion,
 480 for which both simulations and recordings tend to be systematically above the 84th
 481 percentile of the empirical predictions;
- 482 at intermediate periods (see SA(0.5s)-H and SA(0.2s)-V) a better agreement is found
 483 between numerical simulations and empirical predictions.

PGA H SA 0.2s H 100 CRU $[m/s^2]$ SPEED outcr. bedrock 10⁻¹ SPEED basin K20 (Vs30 2100) K20 (Vs30 500) 2019.11.11 Mw 4.9 (LP 10Hz) 10⁻² SA 0.5s H SA 1s H 10⁰ $[m/s^2]$ 10⁻¹ 10⁻² 10⁻¹ 10⁻¹ 10⁰ 10¹ 10⁰ 10¹ Rjb [km] Rjb [km]

Figure 13. Horizontal (RotD50) acceleration spectral values (PGA, 0.2 s, 0.5s, 1 s) as a function of Joyner-Boore distance
 Rjb, from recordings (green circles), 3D-C21 simulations (black dots: outcropping bedrock; grey dots basin) and from
 Kotha et al. 2020, K20, (median and ± 1 standard deviation as shaded regions, violet for V_{S30}=2100 m/s, red for V_{S30}=500
 m/s).

490Figure 14. Same as Figure 13 for the vertical component of acceleration and the Stewart et al. 2016, SBS16, ground491motion attenuation relationship.

493 6 **Basin amplification effects**

494 One of the main advantages of PBS is that, unlike for records, site conditions are completely 495 known. While the complexity of the small-scale variability of ground properties cannot be 496 portrayed in detail, unless spatially correlated stochastic fields are applied to the average values 497 of wave propagation velocities (see Paolucci et al., 2021, for an application to the PBS of 498 ground motions from induced seismicity in Groningen, Netherlands), PBS are suitable to 499 investigate site amplification effects from a variety of viewpoints, such as: (i) the variability of 500 site amplification with respect to different outcropping bedrock stations; (ii) the comparison 501 with the results from 1D and 2D simulations (see e.g. Smerzini et al., 2011, for an application 502 to the Gubbio basin, Italy); (iii) their repeatability and scenario dependence both in the linear and non-linear ranges (see e.g., Stafford et al., 2017). Although SPEED allows for consideration 503 504 of a relatively simple, albeit effective, non-linear visco-elastic model (Stupazzini et al., 2009), due to the relatively low levels of seismic excitation we will consider in this section only linear 505 506 visco-elastic site amplification effects. To this end, the focus is on the cross-section shown in 507 Figure 15 (the azimuth of the cross-section is the same as the fault strike), where, velocity time 23

histories at selected locations, are illustrated, on the top panel, both in the basin and at outcropping bedrock, and, on the bottom, at all receivers along the cross-section (the EW component was chosen as reference for these investigations, for simplicity). The latter plot allows to highlight the complexity, as well as the 3D nature, of seismic wave propagation in the basin. As clarified also from Figure 8, the western portion of the cross-section is the one that first experiences ground motion due to the lower source-to-site distance, but afterwards the presence of the basin increases the complexity of the overall seismic wave field, with prominent amplification effects towards the basin center.

VELOCITY [m/s]

Figure 15. Top: sketch of the southern portion of the Rhône basin, with the studied cross-section passing in the vicinity of the OGLP station and Tricastin NPP. Time histories of EW velocity at selected receivers along the cross section are shown. Bottom: EW velocity time histories along the same cross section. Two receivers inside the basin are highlighted, denoted by C (red line) and D (blue line). Simulations resulting from the 3D-C21 model of Table 4.

To quantify the basin-induced amplification, regardless of the reference station, a second 523 524 PBS, with the same reference kinematic source model (see Section 3.2), was carried out but without the presence of the basin. In such simulation, referred to as "3D-C21-R" (where "R" 525 526 means "rock") in Table 4, the dynamic properties of the basin are replaced by those of the outcropping bedrock. In Figure 16 (left), the acceleration time histories at D and C receivers 527 528 (shown in Figure 15) are plotted, clearly pointing out the increased amplitude, and elongated 529 dominant period and duration of ground motion with respect to the case without basin. Such 530 prominent amplification is clearly shown in terms of the corresponding acceleration response 531 spectra, highlighting the significant long period amplification especially at the center of the 532 basin.

534Figure 16. Comparison of EW acceleration time histories with and without basin (3D-C21 and 3D-C21-R535simulations respectively) and corresponding acceleration response spectra (PSA), for the D (top, blue lines) and C536(bottom, red lines) receivers of Figure 15. Basin thickness ranges from 250 m (receiver C) to 700 m (receiver D)537while V_{S30}=500 m/s at both sites.

538

The quantification of site effects is further explored in Figure 17, where the Fourier Spectral Ratios (FSR) and Response Spectral Ratios (RSR) are considered, with reference to the receivers C and D: (a) label "3D" refers to the spectral ratios obtained by dividing the results of the simulation 3D-C21 over the 3D-C21-R; (b) label "1D" refers to the 1D theoretical amplification function with the local stratigraphy below the corresponding receiver; for the RSR, the accelerograms at C and D were computed by 1D convolution using as input motions the corresponding accelerograms computed in the without basin case (3D-C21-R); (c) labels 546 "C/B" and "C/F" (and similarly for receiver D) refer to the spectral ratios computed from 3D547 C21 run with respect to reference stations B and F, located on the left and right side of the basin
548 respectively (see Figure 15).

549 Several remarks can be made based on the inspection of Figure 17:

- with some exceptions in relatively small frequency intervals, the FSR show that there is an overall good agreement between the 1D and 3D amplification functions, supporting the accuracy of the numerical results in a relatively broad frequency range;

in agreement with studies aiming at quantifying the aggravation factors on the response
spectra related to complex 2D/3D geological configurations (e.g., Chávez-García and Faccioli,
2000; Riga et al., 2016), the 1D solution tends to overestimate the 3D one close to the basin
edge (receiver C), while the opposite occurs at the basin centre (receiver D). However,
comparison of RSR at short periods suggests that PGA from 3D simulations tends to be smaller
than in the 1D case;

- if site amplification functions are computed with respect to a reference station, the location
of such station with respect to the basin is critical (as also shown in Smerzini et al. 2011):
namely, spectral ratios with respect to receiver F show some sharp anomalies, since F lies on
the other side of the Rhône basin with respect to the source, so that a part of the frequency
content, including low and high frequencies, is filtered out by the presence of the basin; spectral
ratios with respect to receiver B are instead closer to the 1D and 3D solutions.

More generally these results confirm that, when complex geological configurations lie in the vicinity of active faults, the main features of seismic response cannot be reliably captured by standard approaches owing to the variability of the source-to-site ray paths affecting wave propagation. In these conditions, especially in case of critical structures such as NPPs, PBS seem to be an effective way to predict the regional as well as the site-specific features of the seismic response.

571 Further investigations are planned, starting from this case study, aiming at evaluating the 572 variability of site effects from different realization of earthquakes from the same source, with 573 variable magnitude and slip distribution, and from other sources in the investigated area, with 574 different distance and azimuth from the site.

576Figure 17. Comparison of amplification functions computed from Fourier spectral ratios (top) and Response577spectral ratios (bottom) at the selected receivers C (left) and D (right). The plots show the spectral ratios from 3D-578C21 simulations considering B and F as the reference stations on outcropping bedrock (see Figure 14 for their579location). 1D refers to the local 1D theoretical amplification functions, while 3D are the spectral ratios obtained by580dividing the results of the 3D-C21 run (with basin) to the 3D-C21-R one (without basin). For the response spectral581ratios, the accelerograms at C and D were computed by 1D convolution using as input motions the corresponding582accelerograms computed in the without basin simulation.

584 7 Conclusions

585 In this paper, a comprehensive validation exercise of physics-based numerical simulations 586 (PBS) of seismic wave propagation is presented. The target area is an industrial region in South-587 Eastern France within the Rhône Valley, which hosts several operating nuclear power plants 588 (Cruas and Tricastin). This low-to-moderate seismicity area was hit by an unusually shallow (1 589 km depth) Mw 4.9 earthquake rupturing the La Rouvière fault, near Le Teil, at about 15 km 590 distance from the Cruas NPP. The recordings available for the Le Teil earthquake, although 591 limited in number, were used for validation of the PBS. The numerical code SPEED was used 592 for this purpose. In the recent past, this numerical code underwent several successful validations with earthquakes in a wide range of magnitudes, spanning from 3 to 6.5, and in different 593 594 countries worldwide.

595 A model of the Earth's crust was constructed, including the La Rouvière fault and the lower 596 Rhône Valley, with a size of 70 km \times 45 km \times 8.5 km and a total of about 82 millions nodes 597 using a spectral degree SD=4. Considering models with different SDs, it was found that 598 convergence of numerical solutions was achieved up to 5 Hz within the sedimentary basin, and up to 7.5 Hz in the outcropping rock region. Since the effects of numerical dispersion were
found to be small in a broad frequency range, the numerical solutions were eventually filtered
below 10 Hz and no hybrid technique was applied to produce broadband signals.

602 When comparing simulations with records, a good to excellent agreement was found for all 603 explored frequency ranges, showing that, even without a very detailed 3D velocity model, the 604 3D PBS may provide realistic broadband predictions of earthquake ground motion. This also 605 demonstrates that, with limited recordings available (as for the low-to-moderate seismicity 606 region of Montélimar), PBS, if suitably calibrated and validated, can be employed to shed light 607 on a variety of aspects related to ground motion modelling, poorly addressed by classic ergodic 608 empirical ground motion models, spanning from the prediction of ground shaking intensity and 609 spatial variability in the proximity of the seismic source, to region- and site- specific features 610 of ground response. The investigation of such aspects is particularly relevant when performing seismic risk evaluation of critical infrastructures, such as e.g. NPPs. For such facilities the 611 612 definition of the seismic hazard at long return periods may take advantage of both empirical 613 and physics-based numerical approaches for ground motion characterization.

In addition to these advantages, PBS may provide a kind of numerical laboratory, where realistic time histories of ground motion can be obtained, under fully controlled knowledge of the dynamic parameters affecting the seismic wave propagation and of the slip distribution along the fault. Moreover, PBS may provide a wealth of information on key issues related to earthquake ground motion, such as explored in this paper with the investigation on the basininduced site amplification within the Rhône Valley, that was shown to provide physically sound results in a broad frequency range.

621

622 Acknowledgements

This work was supported by swissnuclear as part of the research activity "Development of advanced numerical approaches for earthquake ground motion prediction," developed in the framework of the SIGMA-2 project. The authors acknowledge the contribution given by Ilario Mazzieri in deriving the 3D basin shape model.

627

628 **References**

AFPS (2021) Séisme du 11 novembre 2019 – Retour d'expérience de la gestion de crise communale. AFPS
 and Le Teil Municipality joint report, juin 2021, 52 pp, in French.

- Ameri G, Hollender F, Perron V, Martin C (2017) Site-specific partially nonergodic PSHA for a hard-rock
 critical site in southern France: adjustment of ground motion prediction equations and sensitivity analysis. Bull
 Earthquake Eng., 15: 4089–4111.
- Anderson JG (2004) Quantitative measure of the goodness-of-fit of synthetic seismograms. 13th World Conf.
 on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, Paper No. 243
- Biro Y, Renault P (2012) Importance and Impact of Host-to-Target Conversions for Ground Motion Prediction
 Equations in PSHA, Proc. 15th World Conf. in Earthq. Eng., Lisbon, Portugal.
- Boore DM (2010). Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity from Two
 Horizontal Components of Motion. Bull Seism Soc Am, 100(4), 1830–1835, August, doi: 10.1785/0120090400
- 640 Cara M, Cansi Y, Schlupp A, Arroucau P, Béthoux N, Beucler E ... & Van Der Woerd K (2015). SI-Hex: a
 641 new catalogue of instrumental seismicity for metropolitan France. Bulletin de la Société Géologique de France,
 642 186(1), 3-19.
- 643 Causse M, Cornou C, Maufroy E et al. (2021) Exceptional ground motion during the shallow Mw 4.9 2019 Le 644 Teil earthquake, France. Commun Earth Environ 2, 14. https://doi.org/10.1038/s43247-020-00089-0
- 645 Chávez-García FJ, Faccioli E (2000) Complex site effects and building codes: making the leap. J Seismol, 4:
 646 23-40
- 647 Cornou C, Ampuero JP, Aubert C, Audin L, Baize S, Billant J, et al. (2021) Rapid response to the Mw 4.9
 648 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus. Géoscience,
 649 Académie des sciences (Paris), 2021, 353 (S1), pp.1-23. ff10.5802/crgeos.30ff. ffhal-03089600v2ff DOI:
 650 10.5802/crgeos.30
- 651 Crempien JGF, Archuleta RJ. (2015). UCSB method for simulation of broadband ground motion from 652 kinematic earthquake sources. Seismol Res Lett. 86:61. <u>https://doi.org/10.1785/0220140103</u>
- Delouis B, Ampuero JP, Aundin L, et al. (2019). Rapport d'évaluation du groupe de travail (GT) CNRS-INSU
 sur le séisme du Teil du 11 novembre 2019 et ses causes possibles. 35 p., in french.
- De Novellis V, Convertito V, Valkaniotis S et al. (2020) Coincident locations of rupture nucleation during the
 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying. Commun Earth
 Environ 1, 20. <u>https://doi.org/10.1038/s43247-020-00021-6</u>
- Elmi S, Busnardo R, Clavel B, Camus G, Kieffer G, Bérard P and Michaël YB (1996) Notice explicative, Carte
 géol. France (1/50000), feuille Aubenas (865). Orléans: BRGM, 170 p. Carte géologique par Y. Kerrien (coord.),
 S. Elmi, R. Busnardo, G. Camus, G. Kieffer, J. Moinereau, A.Weisbrod (1989).
- Evangelista L, del Gaudio S, Smerzini C, D'Onofrio A, Festa G, Iervolino I, Landolfi L, Paolucci R, Santo A,
 Silvestri F (2017) Physics-based seismic input for engineering applications: a case study in the Aterno river valley,
 Central Italy, Bull. Earthquake Eng. 15: 2645–2671.
- Faccioli E, Maggio F, Paolucci R, Quarteroni A (1997) 2D and 3D elastic wave propagation by a pseudospectral domain decomposition method. Journal of Seismology, 1, 237–251
- 666 Grünthal G (ed.), Musson RMW, Schwarz J, Stucchi M (1998) European Macroseismic Scale. Cahiers du
 667 Centre Européen de Géodynamique et de Séismologie, Vol. 15 European Macroseismic Scale 1998. European
 668 Centre for Geodynamics and Seismology, Luxembourg.
- El Haber E., Smerzini C., Fasan M., Saint Mard L., Vanini M., Traversa P., Paolucci R., Ameri G. and Renault
 P. (2022) Simulation Techniques benchmark, the test case of the November 11, 2019 Mw4.9 Le Teil earthquake.
 Deliverable SIGMA2-2021-D3-082 2022.
- Hisada Y, Bielak J. (2003). A theoretical method for computing near-fault ground motions in layered halfspaces considering static offset due to surface faulting, with a physical interpretation of fling step and rupture
 directivity. Bull Seismol Soc Am.;93(3):1154-1168.
- IAEA, INTERNATIONAL ATOMIC ENERGY AGENCY (2022) Seismic Hazards in Site Evaluation for
 Nuclear Installations, Specific Safety Guides, SSG-9, Rev 1.

677 Infantino M, Mazzieri I, Ozcebe AG, Paolucci R, Stupazzini M (2020) 3D Physics-Based Numerical
678 Simulations of Ground Motion in Istanbul from Earthquakes along the Marmara Segment of the North Anatolian
679 Fault, Bull. Seism. Soc. Am. 110: 2559–2576.

Jomard H. et al. (2017). Transposing an active fault database into a seismic hazard fault model for nuclear
facilities—Part 1: Building a database of potentially active faults (BDFA) for metropolitan France. Nat. Hazards
Earth Syst. Sci. 17, 1573–1584

- Kotha SR, Weatherill G, Bindi D, Cotton F (2020). A regionally-adaptable ground-motion model for shallow
 crustal earthquakes in Europe, Bulletin of Earthquake Engineering, 18: 4091 4125.
 https://doi.org/10.1007/s10518-020-00869-1
- Landwehr N, Kuehn NM, Scheffer T, Abrahamson N (2016). A nonergodic ground-motion model for
 California with spatially varying coefficients, Bull. Seismol. Soc. Am. 106, no. 6, 2574–2583, doi:
 10.1785/0120160118.
- Mazzieri I, Stupazzini M, Guidotti R, Smerzini C (2013) SPEED: SPectral Elements in Elastodynamics with
 Discontinuous Galerkin: A non-conforming approach for 3D multi-scale problems, Int. J. Numer. Meth. Eng. 95,
 no. 12, 991–1010.
- McCallen D, Petersson A, Rodgers A, Pitarka A, Miah M, Petrone F, Sjogreen B, Abrahamson N, Tang H
 (2021) EQSIM—A multidisciplinary framework for fault-to-structure earthquake simulations on exascale
 computers part I: Computational models and workflow, Earthquake Spectra, 37(2), 707–735.
- Mordret A, Brenguier F, Causse M, Boué P, Voisin C, Dumont I, Vernon FL, Ampuero JP (2020). Seismic
 stereometry reveals preparatory behavior and source kinematics of intermediatesize earthquakes. Geophysical
 Research Letters, 47, e2020GL088563. <u>https://doi.org/10.1029/2020GL088563</u>.
- Paolucci R, Mazzieri I, Smerzini C (2015). Anatomy of strong ground motion: Near-source records and three dimensional physics-based numerical simulations of the Mw 6.0 2012 May 29 Po Plain earthquake, Italy,
 Geophysical Journal International, 203(3): 2001–2020.
- Paolucci R, Infantino M, Mazzieri I, Özcebe AG, Smerzini C, Stupazzini M (2018) 3D physics-based
 numerical simulations: advantages and current limitations of a new frontier to earthquake ground motion
 prediction. In Recent Advances in Earthquake Engineering in Europe (K. Pitilakis ed.), Geotechnical, Geological
 and Earthquake Engineering series, Vol. 46, Chapter 8, 203-223, Springer.
- Paolucci R, Mazzieri I, Piunno G, Smerzini C, Vanini M, Özcebe AG (2021). Earthquake ground motion
 modelling of induced seismicity in the Groningen gas field, Earthq. Eng. Struct. Dynam. 50, 135–154, doi:
 10.1002/eqe.3367
- Ramadan F, Smerzini C, Lanzano G, Pacor F (2021) An empirical model for the vertical-to-horizontal spectral
 ratios for Italy. Earthquake Engineering and Structural Dynamics 50(15): 3937-4219.
- Ramadan F, Lanzano G, Smerzini C, Pacor F, Traversa P, Felicetta Chiara (2022) Prediction Models for
 Vertical Ground Motion for Italy and France, 3rd European Conference on Earthquake Engineering and
 Seismology, Bucharest, Romania.
- Regnier J, Laurendeau A, Duvel AM, Guéguen P (2010) From heterogeneous set of soil data to Vs profile:
 application to the French accelerometric network (RAP) sites. 14th European Conference on Earthquake
 Engineering.
- Riga E, Makra K, Pitilakis K (2016). Aggravation factors for seismic response of sedimentary basins: A code oriented parametric study, Soil Dynamics and Earthquake Engineering 91, 116–132.
- Ritz JF, Baize S, Ferry M et al. (2020). Surface rupture and shallow fault reactivation during the 2019 Mw 4.9
 Le Teil earthquake, France. Commun Earth Environ 1, 10. <u>https://doi.org/10.1038/s43247-020-0012-z</u>
- Sangaraju S, Paolucci R, Smerzini C (2021). 3D physics-base ground motion simulation of the 2016
 Kumamoto earthquakes. 6th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic
 Motion, August.
- Schlupp A, Sira C, Maufroy E, Provost L, Dretzen r, Bertrand E, Beck E, Schaming M (2021). EMS98 intensities distribution of the "Le Teil" earthquake, France, 11 November 2019 (Mw 4.9) based on macroseismic

- surveys and field investigations. Comptes Rendus. Géoscience, Volume 353 no. S1, pp. 465-492. doi
 10.5802/crgeos.88. <u>https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.5802/crgeos.88/</u>
- Sira C, Schlupp A, Maufroy E, Provost L, Dretzen R, Bertrand E, Beck E, Schaming M. (2020). Rapport
 macrosismique n-4, Séisme du Teil (Ardèche) 11 novembre 2019 à 11 h 52 locale, Magnitude 5,2 ML (RENASS),
 Intensité communale max VII–VIII (EMS98, BCSF-Rénass-2020-R2).
- Smerzini C, Paolucci R, Stupazzini M (2011). Comparison of 3D, 2D and 1D numerical approaches to predict
 long period earthquake ground motion in the Gubbio plain, Central Italy, Bull. Earthq. Eng. 9, no. 6, 2007–2029.
- Stafford PJ, Rodriguez-Marek A, Edwards B, Kruiver PP, Bommer JJ (2017) Scenario Dependence of Linear
 Site-Effect Factors for Short-Period Response Spectral Ordinates. Bull Seism Soc Am 107(6): 2859–2872.
- Stewart JP, Boore DM, Seyhan E, Atkinson GM (2016). NGA-West2 Equations for Predicting VerticalComponent PGA, PGV, and 5%-Damped PSA from Shallow Crustal Earthquakes Earthquake Spectra, Volume
 32, No. 2, pages 1005–1031, May 2016; © 2016, Earthquake Engineering Research Institute.
- Stupazzini M, Paolucci R, Igel H (2009) Near-Fault Earthquake Ground-Motion Simulation in the Grenoble
 Valley by a High-Performance Spectral Element Code," Bull. Seismol. Soc. Am., 99(1): 286–301.
- Sung C H, Abrahamson N, Kuehn NM, Traversa P, Zentner I (2022). A Non-Ergodic Ground-Motion Model
 of Fourier Amplitude Spectra for France. Accepted for publication, DOI: 10.21203/rs.3.rs-358937/v1
- 741

742 Funding

- 743 The work has been funded by swissnuclear within the 2017-2022 research project
- ⁷⁴⁴ "Development of advanced numerical approaches for earthquake ground motion prediction".

745 **Competing interests**

- The authors declare that they have no competing financial interests or personal relationships
- that could have appeared to influence the work reported in this paper.

748 Data Availability

- The SPEED code is available at http://speed.mox.polimi.it. The simulations and data generated during the current study are available from the corresponding author on reasonable request.
- 752