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Abstract 

The rapid growth of the space debris population is leading to an uptick in satellite proximity events. 

The Geostationary Orbit (GEO) region is less populated than the Low Earth Orbit (LEO) regime, but the debris 

density is still significant despite the difference in the absolute number of satellites belonging to the two regions. In 

particular, the increasing number of spacecraft reaching their end-of-life and the existing debris, such as rocket bodies, 

could threaten operative satellites and require onboard Collision Avoidance Maneuver (CAM) planning down the road. 

Moreover, in this peculiar regime, spacecraft are subjected to gravitational perturbations that cause satellites to cross 

the assigned geostationary slot delimited by sharp latitude and longitude limits. To overcome this issue, ad-hoc control 

strategies are adopted to keep the spacecraft within specified boundaries through station-keeping maneuvers. 

Currently, the state-of-the-art treats CAMs and station-keeping as separate problems. This paper illustrates how to 

embed both with an analytical and a time-efficient policy designed for low-thrust propulsion systems. First, an 

extension of previous similar work in LEO has been carried out to GEO considering a pure Keplerian motion. Several 

firing strategies have been: the North-South and East-West energy-optimal maneuvers, typical of station-keeping. 

Then, with the inclusion of geopotential perturbation in the CAM design, a station-keeping maneuver has been 

formulated as a Multi-Point Boundary Value Problem (MPBVP) with specific constraints on Probability of Collision 

(PoC) at Time of Closest Approach (TCA) and final state. The idea is to leverage the motion linearization with the 

state transition matrix (STM) and transform the energy-optimal control problem into an Initial Value Problem. In 

particular, the problem-solution can distinguish between two possible scenarios. On one hand, station-keeping alone 

is enough to ensure a PoC lower than a safeguard limit. On the other, when not fulfilling this requirement, the algorithm 

autonomously identifies the best strategy for commanding CAM and station-keeping by imposing an arbitrary PoC at 

TCA. Results show a reduced computational time burden suitable for onboard CAM planning and a decreasing ∆v for 

longer maneuvering times. 

Keywords: CAM, GEO, MPBVP, PoC, collision  

 

Nomenclature 

𝐑 Rotation matrix 

𝐛 Position vector in the B-Plane Reference 

𝐫 Position vector in the ECI Reference 

𝐯 Velocity Vector in the ECI Reference 

𝐚 Acceleration vector 

𝚽 State Transition Matrix 

𝐱 State vector 

𝐀 State matrix 

𝐉 Cost function 

Ψ Terminal function for the TPBVP 

a Scalar acceleration 

𝜖 Control direction 

𝜖 Weighting factor 

H Hamiltonian 

𝜆 Costate vector 

𝜇 Earth gravitational constant 

𝜈 Multiplier for equality condition in the 

TPBVP 

u Vector direction 

𝛶 Terminal function fo the MPBVP 

Φ Angular deviation between ECI and ECEF 

𝑘 Multiplier for the inequality condition in 

the MPBVP 

 

Acronyms/Abbreviations 

CAM Collision Avoidance Maneuver 

ECI Earth Centered Inertial reference frame 

EOP Energy Optimal Control Problem 

GEO Geostationary Earth Orbit 
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EGO Extended Geostationary Orbit 

IVP Initial Value Problem 

LEO Low Earth Orbit 

MPBVP Multi-Point Boundary Value Problem 

OCP Optimal Control Problem 

PoC Probability of Collision 

SMD Squared Mahalanobis Distnace 

STM State Transition Matrix 

TCA Time of Closest Approach 

TPBVP Two Point Boundary Balue Problem 

 

1. Introduction 

Since space activity started, the number of human-

made objects around the Earth has progressively 

increased. As the congestion grows, so too have close 

calls between orbiting assets, causing an uptick in full-on 

collisions to be reckoned in any space mission.  

Among all the orbital regimes, the Geostationary 

environment is exploited for many space and commercial 

applications. However, natural mechanisms for 

spacecraft removal in this regime are not available. 

Consequently, the debris population is skyrocketing, 

with sizes ranging from small explosion fragments to 

rocket upper stages. Regrettably, only the largest objects 

are regularly observed and catalogued, while the smallest 

cannot be detected. Given the alarming situation, 

sustainable use of space can be reached following 

international guidelines and standards [1]. Among them, 

this work focuses on computationally efficient Collision 

Avoidance Maneuvers (CAMs) in GEO to make a step 

forward to onboard planning. 

During CAM design, the Probability of Collision 

(PoC) and the required Δv are minimized. One peculiar 

aspect of the GEO regime is the satellite slot allocation 

defined by sharp latitude and longitude values, also 

called station-keeping boxes, for the entire operative life. 

For this reason, satellites are forced to frequently perform 

station-keeping cycles to counteract the perturbation 

effects on their nominal orbits. Bearing in mind none of 

the current existing strategies for the maneuver execution 

includes station-keeping, this work initially addresses 

analytical CAMs with a formulation stemming from [2] , 

further extended with North-South and East-West firing 

directions. To strictly comply with slot constraints, a 

Multi-Point Boundary Value Problem (MPBVP) is first 

thought to satisfy both the PoC condition and the targeted 

final state with two separate Optimal Control Problems 

(OCPs), later improved with a single OCP formulation, 

still featuring an analytical formulation. 

 

1. Fundamentals 

This section describes the theoretical background 

needed for the analytical CAM formulation. 

 

1.1. Conjunction definition 

The CAM design process considers the short-term 

encounter between a satellite and debris. The controllable 

object (called primary) is described by a state 𝒙𝑝 =

[𝒓𝑝, 𝒗𝑝]
⊤

 while the piece of debris (secondary object) is 

identified by the state 𝒙𝑠 = [𝒓𝑠 , 𝒗𝑠]
⊤.  𝒓𝑖 and 𝒗𝑖 are the 

position and the velocity of the centre of mass of the 

single object measured in a generic reference �̂�. 

For collision probability computation, a valuable 

coordinate rf. is the B-Plane. The origin lies at the centre 

of the secondary object at the time of closest approach, 

as depicted in Fig.  1  with the following axes direction: 

 

𝒖𝜉 =
𝒗𝑝 × 𝒗𝑠

||𝒗𝑝 × 𝒗𝑠||
, 𝒖𝜂 =

𝒗𝑝 −𝒗𝑠

||𝒗𝑝 −𝒗𝑠||
, 

𝒖𝜁 = 𝒖𝜉 × 𝒖𝜂 

(1) 

 

 
Fig.  1: BPlane reference frame source [2] 

Consequently, the position vector in the B-Plane 

reference frame is identified as 𝒃3𝐷 = [𝜉, 𝜂, 𝜁]
⊤ . The 

rotation matrix to pass from the inertial reference to the 

B-Plane one is defined as: 

𝑹𝑏,3𝐷 = [𝒖𝜉 , 𝒖𝜂 , 𝒖𝜁]
⊤

 (2) 

 

Additionally, the projection on the 𝜂 axis is given by: 

 

𝑹𝑏,2𝐷 = [𝒖𝜉 , 𝒖𝜁]
⊤

 (3) 

 

Consequently, the 2D position vector in the B-Plane 

is defined as 𝒃 = [𝜉, 𝜁]⊤. 

 

1.2. Chan’s PoC model 

PoC between the primary and secondary objects, 

experiencing short-term conjunction, can be obtained by 

integrating the relative position probability density 

function over a sphere of radius 𝑅𝐴  (i.e. the hard body 

sphere given by the summed primary and secondary 

radii) at TCA. This assumption is made up for the lack of 

information about attitude and geometry, especially true 

for the secondary object [3]. Assuming that the relative 

probability distribution function is Gaussian, an 

approximated collision probability is obtained with the 

Chan's method of equivalent cross-sectional areas:  
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PoC(𝑢, 𝑣) = 𝑒−
𝑣
2 ∑

𝑣𝑚

2𝑚𝑚!
[1 − 𝑒−

𝑢
2∑

𝑢𝑘

2𝑘𝑘!

𝑚

𝑘=0

]

∞

𝑚=0

 

(4) 

Where 𝑢 is the ratio of the impact cross-sectional area 

to the 1𝜎 B-Plane covariance ellipse area: 

 

𝑢 =
𝑠𝐴
2

𝜎𝜉𝜎𝜁√1 − 𝜌𝜉𝜁
2

 
(5) 

 

and 𝑣 is the Squared Mahalanobis Distance (SMD): 

 

𝒗 =
(
𝜉
𝜎𝜉
)
2

+ (
𝜁
𝜎𝜁
)
2

− 2𝜌𝜉𝜁
𝜉
𝜎𝜉

𝜁
𝜎𝜁

1 − 𝜌𝜉𝜁
2 = 

= (𝒓𝑝 − 𝒓𝑠)
⊤
𝑹𝑏,2𝐷
⊤ 𝐶−1𝑹𝑏,2𝐷(𝒓𝑝 − 𝒓𝑠) = 𝒃𝑝

⊤𝐶−1𝒃𝑝 

(6) 

where: 𝑪 is the covariance matrix, and 𝒃𝑝 is the 

primary object position relative to the secondary object 

in the B-Plane framework. 

 

1.3. Dynamics 

The dynamics of space objects in the approximation 

of a two-body encounter can be formulated in terms of 

the equation of motion: 

 

�̈� = −
𝜇

𝑟3
𝒓 (7) 

 

where 𝒓  is the object position in ECI reference. 

Developing this equation in a state matrix form, and 

introducing the control acceleration 𝒂𝑐 the two-body 

dynamics can be rewritten as: 

 

{
�̇� = 𝒗

�̇� = −
𝜇

𝑟3
𝒓 + 𝒂𝑐

 (8) 

 

This model can be used as a first approximation to 

describe the motion of a satellite around the Earth. For a 

more refined CAM design in GEO, the geopotential 

perturbation is encompassed as it is the main responsible 

for deviating a satellite from the nominal trajectory.  

Specifically, the associated power series is expanded 

up to the 𝐽22 term. Therefore, the system dynamics 

becomes: 

 

{
�̇� = 𝒗

�̇� = −
𝜇

𝑟3
𝒓 + 𝒂𝑐 +𝒂𝑔𝑒𝑜

 (9) 

 

where 𝒂𝑔𝑒𝑜 = 𝑓(𝑟, 𝜓, 𝜆), 𝑟 is the radial distance, 𝜓 is 

the geocentric latitude, and 𝜆 is the geocentric longitude 

in polar coordinates (for the 𝒂𝑔𝑒𝑜  evaluation see [4]. 

 

1.4. State Transition Matrix 

Given the non-linear dynamics described in the 

previous section, the State Transition Matrix (STM) 

labelled as 𝜱 allows to map an arbitrary state variation 

with respect to a nominal trajectory (for CAMs the 

ballistic motion) from a certain time 𝑡0 to 𝑡𝑓 according to 

the following equation: 

 

𝛿𝒙𝑓 = 𝜱𝛿𝒙0 (10) 

 

For time-varying systems, 𝜱(𝑡, 𝑡0) can be found by 

integrating the following set of differential equations: 

 

�̇�(𝑡, 𝑡0) = 𝑨(𝑡)𝜱(𝑡, 𝑡0),𝜱(𝑡0, 𝑡0) = 𝑰 (11) 

 

where 𝜱(𝑡0, 𝑡0)  is the initial condition and 𝑨(𝑡) is 

the state matrix of the dynamical system 𝒇(𝒙, 𝑡) around 

the nominal trajectory 𝒙𝑛: 

 

𝑨 =
𝜕𝒇(𝒙, 𝑡)

𝜕𝒙
|𝒙𝑛  (12) 

 

2. Energy-Optimal CAM for free, E-W and N-S 

thrust directions 

 

The main objective of CAMs is to minimize both the 

PoC and the propellant consumption through the 

definition of a cost function 𝐽: 
 

𝐽 = 𝜈𝛹(𝒙(𝑡𝑇𝐶𝐴), 𝑡𝑇𝐶𝐴) + 

         +∫
1

2

𝑡𝑇𝐶𝐴

𝑡0

𝑎𝑚𝑎𝑥𝝐
⊤𝝐𝑑𝑡 

 

(13) 

 

where: 𝛹  represents the equality constraint on the 

SMD at the final maneuvering time (𝑡𝑇𝐶𝐴), 𝒂𝑚𝑎𝑥 is the 

maximum value of control acceleration, imposed equal to 

8 ⋅ 10−7  𝑘𝑚/𝑠2 (compatible with a typical low-thrust 

propulsion technology), and 𝝐  is a weighting factor. That 

said, the energy optimal policy may exceed the thruster 

capabilities being the control unbounded. 

This section focuses on the formulation of the Energy 

Optimal Control Problem (EOP) applicable to different 

scenarios: free-thrust direction is considered first, then 

the North-South and East-west forced directions are 

investigated without including the  𝐽22 term. Notably, the 

control acceleration strictly depends on the initial 

maneuvering point and on the targeted SMD. An 

approach already proposed for the LEO regime in [2] is 

extended here to the Geostationary orbits.   
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Appropriate manipulation of these outputs the 

following fourth-order polynomial equation in the 

variable 𝜈: 

 

𝜈2(�̃�𝒃𝑝)
⊤
𝑸(�̃�𝒃𝑝) − 𝜈 [𝒃𝑝

⊤𝑸�̃�𝒃𝑝 + (𝑬𝒃𝑝)
⊤
𝒃𝑝]

= 𝑆𝑀𝐷𝑑𝑒𝑡(𝐼 − 𝜈𝑬)2 − 𝒃𝑝
⊤𝑸𝒃𝑝 

(28) 

With: 

  

�̃� = 𝑑𝑒𝑡 (𝑬)𝑬−𝟏 (29) 

𝑬 = 𝟐𝑹𝒃,𝟐𝑫𝑫𝑩
−𝟏𝑹𝒃,𝟐𝑫

𝑻 𝑸  

 

Among the four solutions of Eq. (28) there are two 

real local minima and two local maxima (depending on 

the polynomial coefficients) in terms of equivalent 𝛥𝑣. 

Once 𝜈  is known, the initial costates can be derived 

following backwards the shown passages. 

Considering the North-South forced control direction, 

the procedure is like the one described above.  The main 

difference lies in the control acceleration 𝒂𝑐 =
𝑎𝑚𝑎𝑥𝜖𝒖𝑁𝑆, where 𝒖𝑁𝑆 = [0 0 1]

⊤ in the ECI reference.  

The Hamiltonian-minimising value of 𝜖 brings to the 

new control acceleration, which changes Eq. (16) as 

follows: 

 

�̇� =
𝜇

𝑟𝟑
𝒓 − 𝑎𝑚𝑎𝑥𝝀𝑣(𝟑)𝒖𝑁𝑆 

(30) 

 

Considering now the East-West control case, 𝒂𝑐 =

𝒂𝑚𝑎𝑥𝜖𝒖𝐸𝑊 , where 𝒖𝐸𝑊 =
𝒗

𝑣
 is the velocity unit vector 

direction.  Therefore, the resulting IVP differs from Eq. 

(16) only in terms of: 

 

�̇� =
𝜇

𝑟3
𝒓 − (𝝀𝑣 ⋅

𝒗

𝑣
)
𝒗

𝑣
 

(31) 

  

𝝀�̇� = −𝝀𝑟 + 

2𝑎𝑚𝑎𝑥 (
𝝀𝑣 ∙ 𝒗

𝑣2
  − (

𝝀𝑣 ∙ 𝒗

𝑣2
)
2

𝒗) 

(32) 

 

3. MPBVP for combined CAM and SK 

This section presents an integrated strategy to 

optimize both the CAM and a station-keeping maneuver. 

The proposed solution reduces the problem to an MPBVP, 

solved with two different approaches detailed hereafter. 

Considering the framework described at the beginning of 

Sect. 1.1, the station-keeping box limits are imposed 

equal to ± 0.05° for both latitude and longitude, in 

agreement with [5]. Moreover, when the primary object 

is in proximity to one of the box boundaries as depicted 

in Fig. 1, it is steered to the opposite side as sketched in 

Fig. 2. This technique is coarse and more operative SK 

routines will be envisaged in future works. The 

underlying idea is just to show the method effectiveness. 

 

 
Fig. 1 Satellite motion on its nominal orbit. 

 

 
Fig. 2: Satellite motion after station keeping 

It is worth noticing that no path constraints are on the 

trajectory, which may not respect the box for the entire 

maneuver.  

Up to this point, all the quantities considered have 

been defined in two reference systems: ECI and B-Plane.  

However, they are not ideal for the satellite latitude 

and longitude variations defined in the Earth-Centered 

Equatorial Frame (ECEF). ECI is inertial, while ECEF 

rotates with the object. Notably, calling the reference 

ECEF is an abuse of notation, being tied to the nominal 

satellite motion without accounting for long-period 

equator plane perturbations 

The rotation matrix to pass from one reference to the 

other is time-dependent. At the time instant 𝑡0 associated 

with the definition of the primary and secondary objects' 

orbits, the two frames deviate from each other by an 

initial angular offset, labelled with 𝛼  that linearly 

increases over time. Therefore, the rotation matrix 

between ECI and ECEF reference frames is: 

 

𝑹𝑒𝑐𝑖2𝑒𝑐𝑒𝑓(𝑡) = [
𝑅11(𝑡) 𝑅12(𝑡) 0

𝑅21(𝑡) 𝑅22(𝑡) 0
0 0 1

] 
(33) 

 



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.  
Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-22,E2,1,5,x71028        Page 6 of 12 

 𝑅11(𝑡) = 𝑅22(𝑡) =  𝑐𝑜𝑠(𝜔𝑝(𝑡 − 𝑡0) + 𝛼) 

𝑅12(𝑡) = 𝑠𝑖𝑛(𝜔𝑝(𝑡 − 𝑡0) + 𝛼)  

𝑅21(𝑡) = −𝑠𝑖𝑛(𝜔𝑝(𝑡 − 𝑡0) + 𝛼) 

 

(34) 

 

𝜔𝑝  is the primary object angular velocity. 

Furthermore, the latitude and longitude variations, 𝛥𝛼 

and 𝛥𝜆, are evaluated as: 

 

𝛥𝛼 = 𝛼 − 𝛼𝑝 

𝛥𝜆 = 𝜆 − 𝜆𝑝 

(35) 

 

where, 𝛼𝑝  and 𝜆𝑝  are the reference angles for the 

latitude and longitude at 𝑡0 respectively, while 𝛼 and 

𝜆 are the latitude and longitude of each point along the 

orbits. 

 

3.1. Energy Sub-Optimal MPBVP for combined 

CAM and SK 

 

In Fig. 3 the sub-optimal MPBVP formulation is 

represented. The orange line is the first trajectory 

segment linked to CAM execution, while the light blue 

one is associated to station-keeping. 

 

 
Fig. 3: Two trajectory segments representation 

The employed dynamics is reported in Eq. (9) 

encompassing up to the 𝐽22 term, while the cost function 

to minimize changes as follows: 

 

𝐽 = 𝑘𝛶(𝒓𝑇𝐶𝐴) + ∫
1

2

𝑡𝑓

𝑡0

𝑎𝑚𝑎𝑥𝒖
𝑇𝒖𝑑𝑡 (36) 

 

where 𝛶  is the terminal function representing the 

inequality constraint on the SMD at 𝑡𝑇𝐶𝐴 

 

𝛶(𝒓𝑇𝐶𝐴
𝑚 ) = 𝑆𝑀𝐷 − 𝑆𝑀𝐷(𝒓𝑇𝐶𝐴

𝑚 ) ≤ 0 (37) 

 

Additionally, at 𝑡𝑓 the primary must target a desired 

state coinciding with a suitable point on the station 

keeping box: 

 

{
𝒓(𝑡𝑓) = 𝒓𝑓

𝑚

𝒗(𝑡𝑓) = 𝒗𝑓
𝑚

 (38) 

 

The first solution approach identifies two different 

cost functions: 

 

𝐽1 = ∫
1

2

𝑡𝑇𝐶𝐴−

𝑡0

𝑎𝑚𝑎𝑥𝒖
𝑇𝒖𝑑𝑡 (39) 

𝐽2 = 𝑘𝛶(𝒓𝑇𝐶𝐴) + ∫
1

2

𝑡𝑓

𝑡𝑇𝐶𝐴+

𝑎𝑚𝑎𝑥𝒖
𝑇𝒖𝑑𝑡 (40) 

 

After having derived the stationary conditions for 

both by imposing the state continuity at the conjunction 

point, the IVP reads: 

 

{
 
 

 
 

�̇� = 𝒗

�̇� = −
𝜇

𝑟3
𝒓 + 𝒂𝑔𝑒𝑜 − 𝑎𝑚𝑎𝑥𝝀𝑣

𝝀�̇� = 𝑓(𝝀, 𝜔𝑝 , 𝒓, 𝜙, 𝑡, 𝑡0)

𝝀�̇� = −𝝀𝑟

 

{
 
 

 
 
𝒓(𝑡0) = 𝒓0

𝑚

𝒗(𝑡0) = 𝒗0
𝑚

𝝀𝑟(𝑡0) = 𝝀𝑟0
𝑚

𝝀𝑣(𝑡0) = 𝝀𝑣0
𝑚

 

(41) 

 

 

The initial costates, 𝝀𝑟0𝑚 and 𝝀𝑣0𝑚, can be determined 

by means of two STMs: 

 

𝛿𝒙𝑇𝐶𝐴− = �̃�𝛿𝒙0 (42) 

𝛿𝒙𝑓 = 𝜱𝛿𝒙𝑇𝐶𝐴+  (43) 

 

together with some boundary conditions: 

 

𝒓(𝑡0) = 𝒓0
𝑚 

𝒗(𝑡0) = 𝒗0
𝑚 

𝝀𝑟
𝑇𝐶𝐴+
𝑚 = −𝑘

𝜕𝛶(𝒓)

𝜕𝒓
|
𝒓𝑇𝐶𝐴
𝑚

 

 𝝀𝑣
𝑇𝐶𝐴+
𝑚 = 𝟎 

𝒓𝑇𝐶𝐴−
𝑚 = 𝒓𝑇𝐶𝐴+

𝑚 = 𝒓𝑇𝐶𝐴
𝑚  

𝒗𝑇𝐶𝐴−
𝑚 = 𝒗𝑇𝐶𝐴+

𝑚 = 𝒗𝑇𝐶𝐴
𝑚  

𝒓(𝑡𝑓) = 𝒓𝑓
𝑚 

𝒗(𝑡𝑓) = 𝒗𝑓
𝑚 

 

(44) 

  

�̃� is associated to the first trajectory segment, and 𝜱 

refers to the second one. 𝜹𝒗𝒇 and 𝜹𝒓𝒇 are known a priori 

because they represent the difference of the targeted state 

with respect to the ballistic trajectory one at 𝑡𝑓 .  

Moreover, 𝛶(𝒓𝑇𝐶𝐴) ≤ 0  turns into the following 

conditions: 
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{
𝑘 ≥ 0
𝑘𝛶 = 0

 

 
(45) 

     To compute 𝛿𝒓𝑇𝐶𝐴 , take the first two rows of Eq. (43) : 

 

𝛿𝒓𝑇𝐶𝐴 = 𝜼 +  𝑭𝝀𝑣
𝑇𝐶𝐴+
𝑚  (46) 

 

With: 

 

𝑭 = −�̃�𝑫 

𝑬 = −�̃�𝑩 

𝑩 = 𝝓𝟐𝟐𝝓𝟏𝟐
−𝟏 

𝑫 = 𝝓𝟐𝟑 −𝝓𝟐𝟐𝝓𝟏𝟐
−𝟏𝝓𝟏𝟑 

�̃� = 𝑨−𝟏 

𝑨 = 𝝓𝟐𝟏 − 𝝓𝟐𝟐𝝓𝟏𝟐
−𝟏𝝓𝟏𝟏 

𝜼 = �̃�𝜹𝒗𝒇 + 𝑬𝜹𝒓𝒇 

 

(47) 

Similarly to the only CAM case, the problem reduces 

to a system of equations:  

 

{
 
 

 
 𝛿𝒓𝑇𝐶𝐴 = 𝜼 +

−2𝑘𝑭𝑹𝑏,2𝐷
⊤ 𝑸𝑹𝑏,2𝐷(𝒓𝑇𝐶𝐴

𝑚 − 𝒓𝑠)

𝑘(𝒓𝑇𝐶𝐴
𝑚 − 𝒓𝑠)

⊤𝑹𝑏,2𝐷
⊤ 𝑸𝑹𝑏,2𝐷(𝒓𝑇𝐶𝐴

𝑚 − 𝒓𝑠)

= 𝑘𝑆𝑀𝐷̅̅ ̅̅ ̅̅

 

 

(48) 

 

Where: 

 

𝑸 = 𝑪−𝟏 (49) 

 

Solving Eq. (48), it results in a fifth-order polynomial:  

 

𝑘 [𝑘2(�̃�𝒖)
⊤
𝑸(�̃�𝒖) − 𝑘 [𝒖⊤𝑸�̃�𝒖 + (�̃�𝒖)

⊤
𝑸𝒖] + 𝒖𝑸𝒖

− 𝑆𝑀𝐷 𝑑𝑒𝑡(𝐼 − 𝑘𝑷)2] = 0 

(50) 

Where: 

 

�̃� = 𝑑𝑒𝑡 (𝑷)𝑷−𝟏 

𝑷 = − 𝟐𝑹𝒃,𝟐𝑫𝑫𝑩
−𝟏𝑹𝒃,𝟐𝒅

𝑻 𝑸 

𝒖 = 𝒒 + 𝒃𝒑 

𝒃𝒑 = 𝑹𝑏,2𝐷(𝒓𝑇𝐶𝐴 − 𝒓𝑠) 

𝒒 = 𝑹𝒃,𝟐𝑫𝜼 

(51) 

 

In particular, the equation in 𝑘 has five solutions. The 

trivial one is 𝑘 = 0, then there are four non null solutions 

arranged in ascending order. For 𝑘 = 0 , the SMD 

inequality must be verified with the obtained linear 

relations (no integration needed). Analysing each case 

separately:  

• If 𝛶 ≤ 0 , the spacecraft motion exploits 

only the perturbation from the thrusters 

before TCA. Therefore, 𝝀𝑟
𝑇𝐶𝐴+
𝑚 = 𝝀𝑣

𝑇𝐶𝐴+
𝑚 =

0. 

• If  𝛶 > 0 holds, 𝝀𝑟
𝑇𝐶𝐴+
𝑚  can be retrieved by 

selecting one solution for 𝑘 ≠ 0 , either 

correspong to a minima or a maxima, 

whereas 𝝀𝑣
𝑇𝐶𝐴+
𝑚  is still null.  

 

Eventually, the initial costates are: 

 

{

𝝀𝑟0𝑚 =  �̃�
−𝟏(𝛿𝒗𝑇𝐶𝐴 − �̃�𝛿𝒓𝑇𝐶𝐴)

𝝀𝑣0𝑚 = �̃�𝛿𝒓𝑇𝐶𝐴 + �̃��̃�
−𝟏(𝛿𝒗𝑇𝐶𝐴 − �̃�𝛿𝒓𝑇𝐶𝐴) 

(52) 

 

Where: 

 

�̃� = �̃�𝟐3 + �̃�24�̃� 

�̃� = �̃�24�̃� 

�̃� = �̃�𝟏𝟒
−𝟏 

�̃� = −�̃��̃�13 

𝒗𝑇𝐶𝐴
𝑚 − 𝒗𝑇𝐶𝐴 = 𝒀𝜹𝒓𝒇 +𝜴𝛿𝒓𝑇𝐶𝐴 + 

+ 𝜫𝝀𝑟
𝑇𝐶𝐴+
𝑚  

𝒀 = �̃�𝟏𝟐
−𝟏 

𝜴 = �̃�𝟏𝟐
−𝟏�̃�11 

𝜫 = �̃�𝟏𝟐
−𝟏�̃�13 

(53) 

 

3.2. Energy Optimal MPBVP for combined CAM 

and SK 

However, the quantities derived at 𝑡𝑇𝐶𝐴  are not 

influenced by those at 𝑡0. Indeed, this problem does not 

jointly optimize CAM and station-keeping. An 

alternative method, called optimal MPBVP, instead only 

employs one cost function for the entire from 𝑡0 to 𝑡𝑓 .  

The main difference concerning the previous solution 

scheme is in the stationarity conditions. The constraints 

mirror the ones of the combined suboptimal CAM and 

SK except for the costates at TCA: 

 

2𝑘
𝜕𝛶

𝜕𝒙𝑇𝐶𝐴
+ 𝝀𝑇𝐶𝐴+ + 𝝀𝑇𝐶𝐴− = 0 (54) 

 

 

Adopting the same notation for the STM 

representation  in the two branches, Express𝝀𝑟0𝑚 and 𝝀𝑣0𝑚 

as a function of 𝛿𝒓𝑇𝐶𝐴  and 𝛿𝒗𝑇𝐶𝐴 by means of the first 

and the second rows of Eq. (42): 

 

{
𝝀𝑟0𝑚 =  𝑼𝛿𝒓𝑇𝐶𝐴 + 𝑽𝛿𝒗𝑇𝐶𝐴
𝝀𝑣0𝑚 = 𝑻𝛿𝒓𝑇𝐶𝐴 + 𝑺𝛿𝒗𝑇𝐶𝐴

 (55) 

 

With: 
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𝑺 = 𝑴−𝟏 

𝑽 = 𝑲𝑺 

𝑼 =  (𝑸 +𝑲𝑻) 
𝑻 = −𝑴−𝟏𝑵  

𝑴 = �̃�23𝑲+𝑲�̃�24 

𝑵 = �̃�23𝑸 

𝑲 = �̃�𝟐𝟑
−𝟏�̃�14 

𝑸 = �̃�𝟏𝟑
−𝟏 

 

 

 

 

(56) 

 

 

The third and the forth rows of Eq. (42)  lead to 

𝝀𝑟𝑇𝐶𝐴−
𝑚  and 𝝀𝑣𝑇𝐶𝐴−

𝑚  dependent on 𝛿𝒓𝑇𝐶𝐴  and 𝛿𝒗𝑇𝐶𝐴: 

 

{
𝝀𝑟𝑇𝐶𝐴−

𝑚  =  𝑳𝛿𝒓𝑇𝐶𝐴 + 𝑶𝛿𝒗𝑇𝐶𝐴

𝝀𝑣𝑇𝐶𝐴−
𝑚 = �̃�𝛿𝒓𝑇𝐶𝐴 + �̃�𝛿𝒗𝑇𝐶𝐴

 

 

(57) 

With: 

 

𝑳 = �̃�33𝑼+ �̃�34𝑻 

𝑶 = �̃�33𝑽 + �̃�34𝑺 

�̃� = �̃�𝟒𝟑𝑼+ �̃�44𝑻 

�̃� = �̃�43𝑽 + �̃�44𝑺 

 

(58) 

 

Successively, the first and the second rows of Eq. 

(43) , and Eq. (54) are leveraged to express 𝛿𝒓𝑓 and 𝛿𝒗𝑓 

as a function of  𝒓𝑇𝐶𝐴
𝑚  and 𝒗𝑇𝐶𝐴

𝑚 : 

 

𝛿𝒓𝑓 = �̃�𝛿𝒓𝑇𝐶𝐴 + �̃�𝛿𝒗𝑇𝐶𝐴 + 

           −𝑘�̃�𝑹𝒃,𝟐𝑫(𝒓𝑇𝐶𝐴
𝑚 − 𝒓𝑠) 

𝛿𝒗𝑓 = 𝑯𝛿𝒓𝑇𝐶𝐴 + 𝑿𝛿𝒓𝑇𝐶𝐴 + 

            − 𝑘𝑱𝑹𝒃,𝟐𝑫(𝒓𝑇𝐶𝐴
𝑚 − 𝒓𝑠) 

(59) 

 

Where: 

 

�̃� = 𝑾 +𝝓𝟏𝟑𝑳 

�̃� = 𝒁 + 𝝓𝟏𝟑𝑶 

�̃�  =  −𝟒𝝓𝟏𝟑𝑹𝒃,𝟐𝑫
𝑻 𝑸 

𝒁 = 𝝓𝟏𝟐 + 𝝓𝟏𝟒�̃� 

𝑾 = 𝝓𝟏𝟏 + 𝝓𝟏𝟒�̃� 

𝑯 = 𝝓𝟐𝟏 + 𝝓𝟐𝟐𝑭+ 𝝓𝟐𝟑(𝑳 + 𝑶𝑭) +

𝝓𝟐𝟒(�̃� + �̃�𝑭) 

𝑿 = 𝝓𝟐𝟐𝑬 +𝝓𝟐𝟑 𝑶𝑬 + 𝝓𝟐𝟒�̃�𝑬 

𝑱 = 𝝓𝟐𝟐𝑮 +𝝓𝟐𝟑 (−𝟒𝑹𝒃,𝟐𝑫
𝑻 𝑸+

𝑶𝑮) + 𝝓𝟐𝟒�̃�𝑮 

𝑭 = −𝑬�̃� 

𝑮 = −𝑬�̃� 

𝑬 = �̃�−1 

(60) 

 

𝛿𝒓𝑇𝐶𝐴 is then: 

 

𝛿𝒓𝑇𝐶𝐴 = 𝒖 + 𝒌𝑷𝑹𝒃,𝟐𝑫(𝒓𝑇𝐶𝐴
𝑚 − 𝒓𝑠) (61) 

 

With: 

 

𝒖 = 𝑯−𝟏(𝛿𝒗𝑓 − 𝑿𝛿𝒓𝑓) 

𝑷 = 𝑯−𝟏𝑱 
 

(62) 

From here the steps match the ones from Eq. (48) to Eq. 

(50). 

Again, there are five solutions, and analogously to the 

previous case 𝑘 = 0 is the trivial one, while the others 

are stored in ascending order.  

If the solution 𝑘 = 0 is picked, the condition on the 

SMD must be verified. Therefore:  

• If  𝛶 ≤ 0, the maneuver is a pure station-

keeping, because 𝝀𝑟
𝑇𝐶𝐴+
𝑚 = 𝝀𝑟𝑇𝐶𝐴−

𝑚 , so there 

are no discontinuities. Station-keeping 

automatically satisfies the SMD inequality. 

• If 𝛶 > 0, the equality condition on the SMD 

enforces selecting one of the solutions 

different from zero, preferably a minimum. 

𝝀𝑟0𝑚 and 𝝀𝑣0𝑚 are derived by following the procedure 

backwards computing 𝛿𝒓𝑇𝐶𝐴  and 𝛿𝒗𝑇𝐶𝐴 . 
Where: 

𝛿𝒗𝑇𝐶𝐴 = 𝑬𝛿𝒓𝑓 + 𝑭𝛿𝒓𝑇𝐶𝐴  + 

                +𝑘 𝑮𝑹𝒃,𝟐𝑫(𝒓𝑇𝐶𝐴
𝑚 − 𝒓𝑠) 

(63) 

 

4. Results 

The case under study in the GEO regime for the 

implementation of the EOP is depicted in Fig. 4. The 

Keplerian parameters of the two orbits are reported in 

Table 1 and Table 2. 

 

a [km] e [-] i [deg] 𝜴 [𝑑𝑒𝑔] 𝝎 [deg] 
42220 0 1.55e-4 158.04 315.00 

Table 1: Primary object orbital elements. 

Notably, the secondary object is a rocket body from 

the catalogue in [6] left in an Extended Geostationary 

Orbit (EGO). 

 

a [km] e [-] i [deg] 𝜴 [𝑑𝑒𝑔] 𝝎 [deg] 
42254 3.23e-4 13.73 23.04 102.97 

Table 2: Secondary object orbital elements. 

𝑷𝒐𝑪̅̅ ̅̅ ̅̅  𝑺𝑴𝑫̅̅ ̅̅ ̅̅ ̅ 
8.4768e-6 10 

Table 3: PoC and SMD imposed threshold. 

The SMD and PoC thresholds are summarized in 

Table 3. 
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4.1. Energy Optimal CAM for free, E-W and N-S 

thrust directions 

For the first three firing strategies in case of only 

CAM, the time range for the firing window (𝛥𝜃) goes 

from 0.1 to 1.5 orbits before conjunction.  

 

 
Fig. 4:  Study case with the primary object belonging 

to GEO and the secondary object belonging to and 

Extended Geostationary Orbit (EGO). 

 

 

 
Fig. 5: B-Plane for the free-direction control case. 

       The primary object position after the CAM in the B-

Plane reference together with the PoC ellipse is reported 

in Fig. 5. Moreover, the 𝛥𝑣  contribution, the control 

acceleration, 𝝀𝑣, the PoC, and the computational time are 

studied. The 𝛥𝑣 in Fig. 6 is like the one for the East-West 

case, while for the North-South one it is less smooth and 

one order of magnitude larger. As expected, in the free-

direction and East-West control cases, the control 

acceleration transverse component turns to be the largest 

far from conjunction, while in the North-South case it is 

the out-of-plane one.  The 𝝀𝑣 time evolution is similar in 

the three cases, but with different orders of magnitude. 

The largest deviation between the real and expected PoC 

is in the North-South case, 10−7 , otherwise it stays 

around 10−10 . Lastly, the computational ranges from 

0.1s to 1 𝑠,  in line with the propagation time windows 

duration. The computational performances in Matlab© 

are assessed with an Asus ZenBook notebook equipped 

with Intel CORE i7 10th generation, with a base 

frequency equal to 1.80 GHz and 2.30 GHz in single core, 

8.00 Gb of RAM, and 4 cores. 

 

 
Fig. 6: Required Δv for the maneuver execution 

for the free-direction control case. 

4.2. MPBVP for combined CAM and SK 

 

For the sub-optimal MPBVP, the extrapolated results 

refer to the solution 𝑘 =  0 of Eq. (50); while for the 

optimal MPBVP the results are obtained both with 𝑘 =
 0 and 𝑘 ≠ 0. However, after a filtering procedure as 

explained hereafter, only the maneuvers with 𝑘 =  0 are 

visible, because the others exceed the imposed 

thresholds. Usually, station-keeping is enough to satisfy 

the PoC constraint at TCA. Differently, both CAM and 

station-keeping are executed with 𝑘 ≠ 0 . Indeed, the 

MPBVP allows understanding a priori if CAM is 

necessary or not, leading to a better problem 

optimization. Two propagation time vectors, 𝑇𝑏𝑎𝑐𝑘  𝑎nd 

𝑇𝑎𝑓𝑡𝑒𝑟 , from 0.1 to 1.5 days are considered before and 

after the conjunction, respectively.  

 

 
Fig. 7:Δv surface for the sub-optimal MPBVP. 

 

The B-Plane final position of the primary object, the 

estimated𝛥𝑣 and final position targeting surfaces are 

reported. In both sub-optimal and optimal scenarios, the 

points in B-Plane land far away from the iso-probability 

ellipse (the SMD inequality is fulfilled). Fig. 7 portrays 

the 𝛥𝑣 for the sub-optimal MPBVP.  
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The white-coloured areas are related to pairs of 𝑇𝑎𝑓𝑡𝑒𝑟  

and 𝑇𝑏𝑎𝑐𝑘  requiring a 𝛥𝑣 demand larger than 15 𝑚/𝑠 not 

compatible with low-thrust propulsion. 

Fig. 8 shows the accuracy of the sub-optimal method 

in targeting the imposed final position. A filter is applied 

to discard the combinations of 𝑇𝑎𝑓𝑡𝑒𝑟  and 𝑇𝑏𝑎𝑐𝑘 

producing an error larger than 1 𝑘𝑚 or 𝛥𝑣 greater than 

15 𝑚/𝑠 . Similar graphs are obtained for the optimal 

solution approach. Fig. 9 illustrates the 𝛥𝑣 and the final 

position error with respect to the target position for the 

optimal MPBVP, respectively. The main difference is the 

reduced, white-coloured regions of Fig. 9 when 

compared to Fig. 7, being globally optimized. 

  

 
Fig. 8: Error on the targeting of the final point for 

the sub-optimal MPBVP solution. 

 
Fig. 9: Δv surface for the optimal MPBVP 

solution. 

The solution aims to reduce the Probability of 

Collision between the primary and the secondary objects 

as well as to keep the controlled satellite inside the 

assigned box. Fig. 11 renders the final position in the B-

Plane reference of the primary object (𝒃𝑓 ), without 

applying the filtering mentioned above.  

Notably, not all the solutions are identified with 𝑘 =
 0, but some of them are characterized by 𝑘 ≠  0 and 

target the probability ellipse because of the CAM 

execution.  However, these points are not visible after 

screening because they relate to values of 𝛥𝑣 or error in 

targeting the final position larger than 15 𝑚/𝑠 or 1 𝑘𝑚, 

respectively. 

 

 

 

 
Fig. 10: Error on the targeting of the final point 

for the optimal MPBVP solution. 

 

 
Fig. 11: Zoomed B-Plane for the optimal MPBVP 

without applying the filtering. 

Hereafter, the condition of station-keeping with the 

minimum 𝛥𝑣 required derived from the optimal MPBVP 

is briefly analysed looking at the most relevant quantities 

related to the maneuver execution. 

 

 
Fig. 12: Control Acceleration from 𝑡0 to 𝑡𝑇𝐶𝐴 for 

the optimal MPBVP solution with box respected and 

minimum Δv required. 

The first quantity to look at is the control acceleration. 

Its evolution is reported in Fig. 12, in magnitude and 

components terms from 𝑡0 to 𝑡𝑇𝐶𝐴. 
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In this case the out-of-plane direction is predominant. 

Fig. 13 depicts instead the tendency of the control 

acceleration from conjunction (𝑡𝑇𝐶𝐴) to the final time of 

the maneuver (𝑡𝑓).  

As it can be noticed, the behaviour of the control 

acceleration during the two propagations is very similar. 

Moreover, both the order of magnitudes agrees with 

the low-thrust propulsion technology maximum allowed 

values. 

 

 
Fig. 13: Control acceleration from 𝑡0 to 𝑡𝑇𝐶𝐴for 

the optimal MPBVP solution with box respected and 

minimum Δv required. 

Looking Fig. 14 and Fig. 15, it represents the primary 

object trajectory evolution concerning the assigned box.  

In particular, Fig. 14 depicts the three-dimensional 

representation of the controlled body trajectory. 

The object relative position is characterized by a 

radial and out-of-plane and transversal motion.  

 

 
Fig. 14: 3D station-keeping box optimal MPBVP 

solution with box respected and minimum Δv required. 

 

In addition, Fig. 15 confirms that the primary body 

respects the assigned box for the entire duration of the 

maneuver with the minimum cost for the supplied 𝛥𝑣. 

For the sake of completeness, the computational 

time is investigated also for the solution of the 

MPBVPs. It results higher than in only CAM case, 

because of the increased dynamics complexity, and it 

spans from 0.1 to 4 𝑠. 
 

 
Fig. 15: 2D station-keeping box optimal MPBVP 

solution with box respected and minimum Δv 

required. 

5. Conclusions 

This work started from an already existing CAM 

control strategy, which has been extended to the 

Geostationary case through subsequent steps.  

First, the only CAM policy employs a pure Keplerian 

model. Consequently, the required computational time is 

the smallest, due to lower dynamical complexity. 

Moreover, it is evident from the graphs that the required 

𝛥𝑣  is strongly influenced by the time at which the 

maneuver is executed. 

Successively, for the sake of treating a more operative 

scenario, two Multi-Point Boundary Value Problems that 

include both CAM and station-keeping have been 

investigated in presence of the geopotential perturbation, 

essential for the GEO regime.  

In this way, the two trajectory segments can be seen 

as a unique path from the initial maneuvering point to the 

imposed final one sticked to the assigned station-keeping 

box.  

When station-keeping alone is enough to satisfy the 

condition on the probability of collision at the 

conjunction point, CAM is not performed.  

Conversely, both are embedded in a single maneuver 

with an analytical solution.  This represents the focus of 

the dissertation.  

The obtained 𝛥𝑣 for the maneuver execution is not 

always compatible with the limits imposed by the low-

thurst propulsion technology.  

However, for most of the identified operating points, 

the Δv demand is below 15 m/s. 
Though, there are cases where the required 

Δv overtake the imposed threshold, so another type of 

propulsion should be considered. 

In conclusion, all the methods have been tested to 

understand the required computational time using 
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Matlab© for future on-board implementation. Lastly, 

some possible  developments are proposed hereafter.  

From the operative scenario standpoint, a bang-bang 

firing should be investigated adopting the guess stemmed 

from EOP formulation. Additionally, for many of the 

analysed cases, the satellite trajectory violates the station-

keeping box during the execution of the manoeuvres. 

One possible solution could be the implementation of a 

path constraint. Furthermore, the method developed here 

could be extended to other orbital regimes (e.g. the 

cislunar environment), since only hinges on boundary 

conditions. 

In fact, the dynamical model could embed: higher orders 

for the geopotential, Solar Radiation Pressure and Soli-

Lunar gravitational perturbations. 

In the event of early maneuvers one may overcome the 

linear approximation of the dynamics with differential 

algebra, increasing the overall accuracy with regard to 

PoC and final target state. 

Eventually, One research topic could be the 

implementation of analytical multi-impulsive strategies. 
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