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GOAL-ORIENTED GUIDANCE STRATEGY FOR BINARY
ASTEROID EXPLORATION: INVESTIGATION OF DIFFERENT

METRICS

Antonio Rizza*, Carmine Giordano†, and Francesco Topputo‡

Operations in proximity of minor bodies demands high levels of autonomy
to achieve cost-effective safe and reliable solutions. Autonomous path and
operations planning capability plays a pivotal role in this. The Deep-space
Astrodynamics Research and Technology (DART) Group at Politecnico di
Milano is responsible for the Mission Analysis (MA), Image Processing
(IP) and Guidance Navigation and Control (GNC) subsystem design of
Milani, one of the two Hera CubeSats that will be released in proximity
of the Didymos binary asteroid system. A goal-oriented guidance strategy
for on-board implementation is presented in this paper to achieve high level
mission objectives with impulsive control capability. The methodology is
based on abstract reachability analysis performed on the control domain
combining model predictive control theory with artificial potential fields
algorithms. The formulation of the optimization problem in a general and
flexible way allows to target different goals while being compliant with an
arbitrary number of mission constraints. The methodology is applied to the
Milani mission scenario targeting a global coverage of the main attractor,
Didymos, and detailed observations of specific features on the secondary
asteroid, Dimorphos. Different metrics are investigated to achieve mission
objectives leading to four application scenarios that are discussed in this
work. Results are compared in terms of computational cost, convergence
properties and efficiency. These results represents a step forward in en-
abling autonomous guidance capability for Cubesats proximity proximity
operations.

INTRODUCTION

The recent growing interest in small solar system bodies such as asteroids and comets for sci-
entific understanding, exploitation of resources and planetary defense reasons is pushing a lot the
development of new technologies to better investigate these celestial bodies. Ground-based ob-
servations allow preliminary characterizations of small bodies in terms of bulk properties such as
orbit, mass, shape, rotational state and surface composition. The acquisition of Range-Doppler
radar data in addition to Optical and Spectroscopic observation revolutionized the way we look at
asteroids allowing for precise shape and rotational state reconstruction.1 A drastic improvement in
the body characterization can be obtained with in-situ observations with the use of specialized and
instrumented probes. Historically the easiest way of performing proximity observations is achieved
designing a spacecraft trajectory that intersects the target on its way towards its final destination
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performing a far flyby. This strategy usually provide, however, low resolution images with very
limited observation windows. Rendezvousing with a Small Body and hovering in its proximity is
a challenging engineering task because it requires precise trajectory control and accurate naviga-
tion in a low gravity highly perturbed dynamical environment. Many robotic missions successfully
performed scientific operations in proximity of asteroids, comets and minor planets. Fundamental
milestones have been marked in the last two decades by missions such as NEAR,2 Dawn,3 OSIRIS-
REx,4 Hayabusa,5 Hayabusa 2,6 and Rosetta,7 throwing the bases of modern deep-space exploration
techniques. Recent resonance to the field is doubtless provided by DART:8 the kinetic impactor de-
veloped within the framework of the Asteroid Impact Deflection Assessment (AIDA) program, an
ESA-NASA collaboration to test the deflection capability of a kinetic impactor on potentially haz-
ardous Near Earth Objects (NEO). DART targeted and successfully impacted in September 2022
the secondary asteroid of the Didymos-Dimorphos binary system. It is the first time in history that
such kind of complex dynamical systems are observed in close proximity, and the data collected
by the probe will be subject of study for years. The ConOps of past missions have many common
aspects, a preliminary characterization of the targets is generally performed from a safe distance,
following orbits or hyperbolic arcs accurately designed on Earth. Knowledge of the system and its
dynamical environment are initially provided only via ground observations. The initial proximity
phase helps refining this preliminary knowledge paving the way to closer approaches. This tasks
have always been performed by large instrumented probes with heavily margined trajectory control
capability and limited autonomy on-board. Nowadays the Space exploration field is withstanding a
transition towards the use of CubeSats, and miniaturized platforms in general, for the systematic ex-
ploration of the Solar System.9 Their use aims at performing riskier tasks and operate in multi-agent
scenarios while cooping with limited resources. This trend is demanding always higher levels of au-
tonomy on-board to achieve cost-effective safe and reliable solutions, particularly for what concern
proximity guidance and navigation. Classical trajectory optimization typically implies the solution
of an optimal control problem to get a reference trajectory to be followed by the spacecraft. This
optimization generally requires the minimization of fuel, time-of-flight or a combination of them
to move from a given initial state to a given final state in the configuration space. This approach
works well when an interplanetary transfer is designed but exhibits some drawbacks when facing
the challenges of small bodies proximity operations. Small body environment is characterized by
high uncertainty affecting the dynamics governing the spacecraft motion and strong perturbation
due to the predominant effect of solar radiation pressure. Moreover, the body shape is generally
only partially known and it may be difficult to identify a priori the path to achieve the best charac-
terization of the target since this requires a mapping between given geometrical configurations and
observation requirements. These effects leads to high dispersion and uncertainties which make the
design of the proximity control a challenging task. An innovative concept developed in recent years
is proposing a paradigm shift towards autonomous goal-oriented approaches. The idea is that the
probe is provided with the high-level objectives of the mission and the trajectory is computed au-
tonomously on-board within a continuous replanning framework to best achieve the assigned tasks.
Of paramount importance in this field is, to the authors’ opinion, the work by D. Surovik,10 where
he proposes a reachability analysis exploration scheme performed in the control domain to compute
optimal impulsive manoeuvrers to maximize the observation of surface feature within a receding
horizon model predictive control framework. The same concept is extended by Capolupo11 to the
case of global mapping. A similar methodology is also exploited in Earth’s orbit for the devel-
opment of Simultaneous Localization And Mapping (SLAM) techniques in proximity of artificial
objects.12
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This work presents an innovative goal-oriented guidance methodology with a formulation that is
flexible and adaptable to different mission scenarios. The structure of this paper is the following:
first the problem formulation is presented, together with a general framework to produce global and
feature-based observation models. Then the numerical technique to solve the optimization problem,
based on abstract reachability analysis is illustrated. Finally, four application scenarios are shown
and results of the approach are discussed.

PROBLEM STATEMENT

The idea behind the proposed methodology is based on the work on abstract reachability analysis
performed by Surovik10 and Capolupo.11 The idea is to target mission objectives in an abstract
space and periodically replanning the spacecraft trajectory to take into account accomplished tasks,
dispersion, knowledge uncertainty and updates in the target’s characterization. Before presenting
the methodology it is necessary to give some definitions. Referring to Figure 1 the spacecraft state
at the a given epoch t0 after the impulsive manoeuvre u0 ∈ U0 is given by x+0 = x−0 + u0, with
x−0 being the pre-manoeuvring state. The resulting trajectory flow, x(u0, t0; t) is mapped into a
measurements vector yi(x) ∈ Yi ⊂ RNm , where Yi are a set of measurement spaces associated
either with a specific feature on the body surface or with some global observation property, and
Nm the number of considered measurements. Mission objectives defines in the Yi spaces bounded

A

S

U0

escape

impact

x
−

0

Figure 1: Graphical illustration of the important sets.

observation regions indicated with Ωi ⊂ Yi, mapping for example required surface resolution and
illumination conditions with range and phase-angle constraints. This allows to define the Science
region S as the portion of the control domain U0 that leads to a crossing of the observation regions,
i.e.:

S := {u0 ∈ U0 : ∃t ∈ [t0, th],∃i ∈ [1, Nf ] : yi(u0, t) ∈ Ωi} (1)

In Eq.(1) th and Nf are respectively the horizon epoch and the number of features to be observed.
The former one indicates the latest epoch in which the next manoeuvrer is to be performed, while
the actual manoeuvring epoch is referred to as tm. Limiting the search of the optimal solution only
to the S region would however not consider the fact that there may be operational constraints and
forbidden regions in the configuration space. These regions would take into account for impacts,
escapes, flight to the night side and any other constraint on the feasible spacecraft path. This con-
straints can be expressed in general through the inequality constraint g(x, t) ≤ 0 leading to the
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definition of an Admissible region A:

A := {u0 ∈ U0 : g(x(u0, t), t) ≤ 0,∀t ∈ [t0, th]} (2)

For the cases discussed in this work the admissible region is given by the satisfaction of the follow-
ing constraints:

• minimum distance from Didymos larger than 500 m (to avoid impact on Didymos);

• minimum distance from Dimorphos larger than 180 m (to avoid impact on Dimorphos);

• maximum distance from the system centre of mass lower than 50 km (to avoid escape from
the system);

• spacecraft phase angle lower than 130 deg (to remain in the day side).

The last constraint stems from navigation requirements. Milani relies on vision-based optical navi-
gation techniques to reconstruct its state on-board.13 In order to reduce dispersion and manoeuvring
uncertainties, firing should be performed when a good knowledge of the state is available. This
may not be possible when the spacecraft is flying in the nigh-side. As will be shown later on in
this paper, this constraint often leads to an hyperbolic hovering approach to the asteroids, which is
indeed the current baseline for the mission.14 The last important domain to be defined is the dual of
A for the manoeuvring time. Defining a set of constraints on tm, namely h(tm) ≤ 0 a region T can
be defined as in Eq. 3.

T := {tm ∈ [t0, th] : h(tm) ≤ 0} (3)

In this work, unless differently specified, it is only imposed tm− t0 ≥ 1 day. This type of constraint
stems from the need of having manoeuvrers sufficiently distributed in time to allow convergence
of the navigation solution before the successive planning cycle. The optimization problem is then
given by the minimization of a cost function J over the impulsive initial control and the successive
manoeuvring time tm as reported in Eq. 4.

min
u0,tm

J(u0, tm) s.t.

u0 ∈ A ∩ S

tm ∈ T

(4)

The objective function proposed in this methodology is a general purpose cost function linked
with the time spent inside observation regions given by Eq. 5.

J(u0, tm) = − 1

Nf

Nf∑
i=1

min

(
1,

1

∆ti

∫ tm

t0

ωi(yi(u0, τ), τ)dτ + g0i

)
(5)

Where ∆ti is the required observation time for the i-th feature, ωi is a potential function evaluated
on the measurement space Yi and g0i is the normalized integral computed at the previous planning
cycle. The min function is needed to saturate the cost function when a feature has been fully ob-
served. A general form of ωi may be the one given in Eq. 6, with mij a metric indicating the
distance of the j-th quantity from the observation region Ωi.

ωi =

Nm∏
j=1

mij (6)
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If a boolean approach is adopted, and observation regions Ωi are hypercubes in the Yi space delim-
ited by the lower and upper bounds y−ij and y+ij , mij can be expressed as in Eq. (7).

mij =

{
1 y−ij ≤ yij ≤ y+ij

0 otherwise
(7)

In this case the integral term in the cost function gives exactly the time spent spent by the spacecraft
inside the observation region Ωi. At this point an observation model needs to be defined to properly
map the configuration space X into the measurement space Y . Two observation models are devel-
oped and presented in this work: inertial and rotating. In the former one the asteroid is modelled
with a single feature (Nf = 1) and two measures (Nm = 2) are considered: the range ρ from the
asteroid centre of mass and the phase angle α. Observation regions are then defined as cone sections
in the X space and rectangles in the Y space as shown in Figure 2. In the rotating model, instead,

ρ

α

Figure 2: Inertial observation regions. On the left the observation region in the X space while on
the right its mapping in the Y space.

an arbitrary number of features is defined (Nf > 1) and three measures (Nm = 3) are considered:
the range ρi, the spacecraft declination δi, and the Sun declination βi with respect to each feature.
Here although observation regions assume complex, time dependent shapes in the X space, they are
still mapped into cubes in each of the Yi space, as shown in Figure 3. To the authors’ opinion this is
the real advantage of performing the optimization in the abstract domain.

ρi δi

βi

Figure 3: Rotating observation regions. On the left the surface feature, in the centre one observation
regions in the X space and, on the right its mapping in its Yi space.
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METHODOLOGY

The methodology proposed in this paper to solve the optimization problem of Eq.(4) consists in
performing a reachability analysis on the control domain U0 supported by an heuristic mesh re-
finement. The procedure is summarized in Figure 4. The first step is to generate a uniform initial
mesh U

(0)
0 on the control domain. The problem of uniformly sampling a sphere is non trivial, in this

work this is achieved by generating a series of concentric Fibonacci’s lattices* with different surface
density. This property is set in order to have uniform volumetric density of the samples. In partic-

Dynamical model

Scoring

Time optimization

Mesh refinment

J(u0, t), J
C(u0, t)

J∗(u0)

J∗C(u0)

Reachability map

Figure 4: Numerical approach: rechability analysis and heuristic mesh refinement.

ular the pseudocode used to generate this mesh is shown in Algorithm 1. Each point u0,i of U (0)
0 ,

corresponding to a different initial condition x+0,i, is then propagated forward in time from t0 to th.
A non-dimensional ephemeris model is used to integrate the dynamics in proximity of the binary
system; in particular the point mass gravitational effect of the two asteroids and the Sun is consid-
ered, together with the perturbation due to Solar Radiation Pressure (SRP). For the purpose of this
work, the integration is performed with the MATLAB variable-step solver ode113. The propagated

*http://extremelearning.com.au/evenly-distributing-points-on-a-sphere/ last retrived on 16th Jan 2023
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Algorithm 1: Generation of initial mesh U
(0)
0

ρv,mesh ← Selected mesh volumetric density
Nr ← Number of layers in the radial direction
U

(0)
0 = [ ]← Initialize mesh

rc = [0, 0, 0]← Centre of the mesh
for k = 0 : Nr do

rk = k
Nr
← Define radius of mesh layer

n = ⌊43πr
3
kρv,mesh⌋ ← Number of points on the fibonacci distrubution

[Uk] = generate fibonacci distribution(rc, rk, n)

U
(0)
0 = [U

(0)
0 , Uk]← Append new mesh layer to the mesh

end

trajectories xi(t) = x(u0,i, t) are then scored with the selected cost function. In order to take into
account the constraints in Eq.(4) an augmented cost function J̃(u0,i, t) = a(u0,i)s(u0,i)J(u0,i, t)
is computed using the boolean model for ωi reported in Eq.(7). Where a, s = 1 if u0,i belongs
respectively to A and S. Then, a time optimization is performed, identifying for each point of the
mesh the manoeuvre time tm that minimize the cost function, resulting in the map J∗(0)(u0). To
make the computation affordable, the mesh U

(0)
0 needs to be relatively small, in this work the con-

trol domain is restricted to a sphere with radius of 35 cm/s, to be in line with the Milani spacecraft
∆V budget,14 and an initial mesh with 300 points is considered. This discretization is clearly too
rough to properly characterize the reachability map, therefore a mesh refinement is needed. In liter-
ature this problem is typically faced using an heuristic approach,10, 11 exploiting the structure of the
map to identify regions of high interested to be refined. A similar strategy is adopted in this work
and presented in the following. First of all the boolean information embedded in J̃(u0,i, t) is not
enough to assess properly which unexplored areas of the control domain may contain high score
trajectories, moreover, if the initial sampling is significantly limited or if the targeted observation
regions are very small, the initial mesh may not contain any intersection between the admissible and
the science region. In this case the propagation of U (0)

0 may simply lead to a null field. To avoid this
issue a relaxation of the potential ωi is performed defining a continuous metrics mC

ij as in Eq.(8).
With ȳij being the geometric centre coordinates of the observation region Ωi.

mC
ij = e−|yij−ȳij | (8)

With the use of this potential a continuous cost function JC(u0,i, t) is computed together with its
augmented counterpart J̃C(u0,i, t) = a(u0,i)J

C(u0,i, t). This time only the admissible constraint is
considered because non-zero values are desired even outside of science regions. The time optimized
map obtained in this case will be denoted as J∗C(0)(u0). The mesh refinement scheme implemented
in this work consists in identifying the nbest nodes in the mesh with the lowest cost function and
refine their neighbourhood . The pseudocode of the algorithm is reported in Algorithm 2. The mesh
refinement procedure is repeated a few times, recomputing at each cycle the map J∗(k) on the new
mesh. If the refinement algorithm is called and none of the new nodes has reached a better score
than the previous iteration, e.i. U

(k)
0,reduced = ∅, the algorithm is stopped. For the results reported

in this work it is selected nbest = 10, nmax,iteration = 5. Once the mesh refinement procedure is
over the result is a non uniform map J∗(u0) from which the optimal solution u∗

0 and its associated
manoeuvring time t∗m are extracted. This planning cycle is repeated until mission objectives are
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Algorithm 2: Heuristic mesh refinement
n← Number of points in the refined sub-meshes
nbest ← Maximum number of refinement nodes
U

(k)
0 ← k-th iteration of the mesh

J∗(k) ← k-th iteration of the continuous reachability map
is ← index of nodes whose neighbourhood has already been refined
[U

(k)
0,reduced, J

∗(k)
reduced] = reduce mesh(U

(k)
0 , is)← compute subsets to be refined

[U
(k)
0,best, J

∗(k)
best ] = identify best solutions(U

(k)
0 , J∗(k), nbest)←

identify nbest solutions
U

(k+1)
0 = [U

(k)
0 ]← Initialize new mesh

for l = 1 : size(U
(k)
0,best) do

u
(l)
0 = U

(k)
0,best(l)← Centre of the new refined mesh

[rl] = closest node range(u
(l)
0 , U

(k)
0,best)← Range to the closest node in the mesh

[Ul] = generate fibonacci distribution(u
(l)
0 , rl, n)

U
(k+1)
0 = [U

(k+1)
0 , Ul]← Append new mesh layer to the mesh

end

accomplished or a maximum number of planning cycles is performed. The first condition is verified
when g = 1, where g is the normalized overall time spent within the observation regions, as shown
in Eq.(9).

g(t) =

Nf∑
i=1

min

 1

∆ti

∫ t

t0

Nm∏
j=1

mijdτ + g(t0), 1

 (9)

One final remark regarding the methodology is necessary. The discussed objective function does
not weight the magnitude of the control action. This effect is already embedded in the fact that the
reachability analysis is restricted to a limited control domain, however one may want to take this
into account during the optimization. In this case the augmented cost function Jfull reported in Eq.
(10) can be used.

Jfull(u0) = (1− αu(g0i))J
∗(u0) + αu(g0i)a(u0)s(u0)

||u0|| −min||u0||
∣∣∣∣
A∩S

max||u0||
∣∣∣∣
A∩S

(10)

This formulation is used in this work, with the weighting coefficient αu = 1
2(1−

1
Nf

∑Nf

i=1 g0i). This
additional potential in the objective function is beneficial for two reasons: it avoids having plateau
in the reachability map and, thanks to the dependence of αu from the mission status, facilitates the
algorithm convergence when the goals achievement is close to one.

TEST CASES AND RESULTS

The Deep-space Astrodynamics Research and Technology (DART) Group at Politecnico di Mi-
lano is responsible for the Mission Analysis,14 Image Processing,15 and GNC13 subsystem design
of Milani, one of the two CubeSats carried on-board Hera,16 the european contribution to the AIDA
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program. Hera and its two CubSats will rendesvous with the Didymos binary system in early 2027
to characterize the post impact environment.17 Didymos is a binary Near-Earth Asteroid (NEA) of
S-type discovered in 1996 formed by Didymos, or D1 (the primary) and Dimorphos, or D2 (the
secondary). The analysis in this paper are made with the pre-impact orbital properties of the system
summarized here. The two asteroids share the same equatorial plane on which their relative motion
occurs, D2 is tidally locked with with D1 with a rotation period of the primary TD1 = 2.26h and
a rotation and revolution period of the secondary TD2 = 11.92 h.14 In this section Milani is used
as a test case to validate this approach in the proximity of the binary systems. Four applications
are shown: first the case of global mapping of D1 using an inertial observation model is discussed
underlining strength and limitations of this approach, then the same goal is targeted using a rotat-
ing observation model. Monte Carlo (MC) simulations are performed to assess the robustness and
success rate for the two approaches. In both cases mission performances are assessed using the ro-
tating observation model being the one that best represents the effective coverage of the target. The
third application presented here is again on the global coverage of D1 but imposing this time the
additional operative constraints of a given manoeuvring schedule. Finally, the last application is on
the observation of the post-impact crater on D2. An inertial frame centred in the system barycentre
and aligned with the ECLIPJ2000 frame is used for propagation and inertial observation regions
definition while body fixed rotated frames are used for the rotating approach.

Global mapping of D1 - Rotating approach

In the rotating approach, the main asteroid shape model is discretized to obtain an observation
model with 96 features, intended as regions on the surface to be observed, as shown in Figure
3. For each of them the targeted observation region is defined by a range from the feature 8.640
km ≤ ρ ≤ 10.940 km, a spacecraft declination over the surface 60 deg ≤ δi ≤ 90 deg, and a
Sun declination over the surface dependent from the feature latitude LATi. In particular: 70 deg
≤ βi ≤ 90 deg if 0 deg ≤ LATi ≤ 10 deg, 45 deg ≤ βi ≤ 90 deg if 10 deg < LATi ≤ 30 deg,
0 deg ≤ βi ≤ 90 deg if 30 deg < LATi ≤ 90 deg. This differential observation constraints are
selected to grant the satisfaction of scientific requirements in the equatorial region14 while granting
the feasibility of valid observations at higher latitudes. The required observation time for each
feature is set to 1 hour. A MC analysis is performed on 500 random samples of x−0 to assess
the success rate and the time required to achieve global coverage. Position and velocity direction
are generated with a standard uniform distribution within the spacecraft operative region while, a
normal probability distribution with mean of 3 cm/s and standard deviation of 3.3 mm/s is selected
for the velocity magnitude. Results of the simulations are reported in Figure 5. It can be seen
that operative constraints (impact, escape, permanence in the day side) are never violated and the
planned trajectories are hyperbolic hovering arcs. Moreover all the trajectory reach global coverage
of D1 in less than 20 days. Even if the approach successfully target all 96 observation regions, it
is however computationally demanding because of the large number of yi vectors that needs to be
computed. An alternative strategy is presented in the following section.

Global mapping of D1 - Inertial approach

With the inertial approach, only one feature located in D1 centre of mass is considered. The
reachability map is computed targeting the following observation region: 8.640 km ≤ ρ ≤ 10.940
km and 0 deg ≤ α ≤ 70 deg with a required observation time of 3 days. Since metric comparison
is intended, the goal in Eq. (9) is still computed using all the 96 features of the previous case. A
second MC analysis is performed using the same initial conditions of the rotating case and results
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Figure 5: Rotating approach. On the left the trajectory envelope in the inertial frame ECLIPJ2000,
on the right the goal achieved by the mission as a function of time.

are shown in Figure 6. All the trajectories still comply with operative constraints and the resulting
arcs between manoeuvres are still hyperbolic trajectories. However, the goal achievement exhibits
an asymptotic behaviour. This was of course an expected trend because here the optimization is not
informed on the features’ location but, the interesting thing, is that still a significant percentage of
trajectories gets to very high scores. In particular, looking at Figure 7 it can be seen that more than

Figure 6: Inertial approach. On the left the trajectory envelope in the inertial frame ECLIPJ2000,
on the right the goal achieved by the mission as a function of time.

90% of the initial samples, leads to an effective global coverage of D1 higher than 90% even if more
time, and thus fuel, is needed. This is a surprising results considering the relatively low computation
effort of this approach. The few trajectories that stall at early mission stage are the ones that keep
hovering over the same hemisphere limiting the observation of the features on the other.

Compliance with working week

The third study case presented here is the one in which the approach feasibility to the potential
need of having a manoeuvring schedule synchronized with ground operations is assessed. To do
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Figure 7: Histogram showing the success rate of the randomly sampled MC distribution for the
inertial approach.

this, the region T of Eq. (3) is defined by imposing a fixed tm and following a 3-4 days pattern
from one arc to the next one in order to be aligned with the working week on-ground. This is
also the same pattern followed by the Milani spacecraft during its Far Range Phase (FRP) aimed at
giving a global characterization of the asteroid.14 The reachability map is computed by targeting
all the surface features, like for the rotating case, but this time only one trajectory is considered.
The initial time t0 for the computation is set a few seconds before the FRP injection manoeuvre
of Milani and, the initial state x−0 is taken from the ephemeris of the spacecraft. The idea is to
compare performances for the two cases in terms of coverage and ∆V . Trajectory comparison and
goal achievement are shown in Figure 8. It is observed that the trajectory produced by the planner
leads to global coverage of D1 according to the imposed requirements while Milani trajectory leads
to a lower score. This is due to the fact that the trajectory computed by the algorithm covers higher

Figure 8: Compliance with working week. On the left trajectory comparison in the inertial frame
ECLIPJ2000, on the right the goal achieved by the mission as a function of time. In black the
outcome of the planner, in green the Milani one.
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latitudes, thus allowing detailed observations of the polar regions differently. This is clearly seen in
Figure 9 where both trajectories are plotted in D1 rotating body frame and the achieved coverage
of each feature is shown in the case of Milani. Also from a ∆V point of view this approach results

Figure 9: Performance comparison. On the left the produced trajectory is compared with Milani’s
one in the rotating asteroid frame of D1. On the right the coverage map on D1 is shown for Milani
trajectory, showing limited observation of the polar regions.

more convenient leading to a deterministic budget of 91.94 cm/s against the 115.56 cm/s of the
nominal mission profile during the same phase †. Note that, the mission analysis of Milani is not
designed to achieve a global coverage of D1 and it takes into account lots of other constraints such as
the ones deriving from communication requirements and observations of D2. Moreover, differently
from the Milani study, neither a knowledge or dispersion analysis are performed at this stage on
the proposed methodology to assess the robustness of the approach against navigation and firing
uncertainty. Therefore, this is not meant to be a proof of the goodness of one trajectory with respect
to the other but simply a performance comparison against a known trajectory.

Observation of the crater on D2

The last test case presented in this work is the observation of a specific feature on the secondary
asteroid: DART impact crater. To achieve this, a mixed approach is used among the ones illustrated
so far planning each arc in a twofold pipeline. First a targeting of the observation region associated
with the crater is attempted, if this fails because the feature is not observable with those initial
conditions, the optimization switches to an inertial approach, leading to a repositioning in front
of D1. This basically works as a re-phasing manoeuvre between the spacecraft and D2. To set
up the simulation, the rotating observation region is defined by 1.96 km ≤ ρ ≤ 2.78 km, 45 deg
≤ δ ≤ 90 deg and, 75 deg ≤ β ≤ 90 deg, while the inertial observation region is given by 1 km
≤ ρ ≤ 5 km, 0 deg ≤ α ≤ 10 deg. The resulting trajectory is shown in Figure 10 while the goal
achievement is reported in Figure 11. Interestingly, the initial part of the trajectory follows an
hyperbolic arc hovering approach, during which the goal gradually increases. However, after a few
cycles, a feasible set of closed trajectories with high phase angle is found to be the optimal solution.
Differently from the hovering approach with open trajectories, see for example Figure 8, the closed
orbits leads to a linear behaviour of the goal achieved also when approaching the mission success.

†Values retrieved from internal documents on the Milani mission analysis.
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Figure 10: Crater observation (to be updated)
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Figure 11: Goal achieved by the mission as a function of time.

Clearly the feasibility of such orbit would need to be assessed at least by performing dispersion
analysis which from previous studies on Milani resulted to significantly impact the mission close
approach. However this is out of the scope of this paper which is only to present some preliminary
open loop results with the presented methodology.

CONCLUSIONS AND FUTURE WORK

In this paper, a general purpose formulation is provided for the problem of performing goal-
oriented proximity operations to small bodies. To the authors’ knowledge this is the first time that
this kind of approach is systematically applied to a binary asteroid system considering a realistic set
of operational constraints and observation requirements on both attractors. Four application scenar-
ios are discussed for both global mapping and features observation. Preliminary results are shown
considering only open loop trajectories with no navigation or dispersion uncertainty. However, these
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results are very promising: the rotating approach allows to always achieve global coverage of the
target, the inertial approach is computationally cheaper but provides still pretty good results even on
its own. Combining the two a close proximity guidance strategy is presented capable of performing
detailed observations of surface features with complex and time dependent observation constraints.
In general this work indicates that abstract reachability analysis for spacecraft proximity guidance
is a field that is worth investigating further. Future work consists in performing closed-loop simula-
tions with on-board navigation in the loop, processor-in-the-loop analysis are needed to assess the
actual computation need of the algorithm in terms of CPU and RAM. The numerical methodology
could be refined by substituting the heuristic mesh refinement with a more sophisticated gradient
based method and, finally, it would be interesting to extend the methodology to additional metrics
and objective functions such as one involving SLAM strategies whose interest is spreading a lot in
recent years.
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