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ADVANCED GUIDANCE DESIGN VIA SUCCESSIVE CONVEX
OPTIMIZATION FOR THE 6-DOF ATMOSPHERIC RE-ENTRY OF

REUSABLE LAUNCHERS

Alice De Oliveira*, and Michèle Lavagna†

This paper studies the development, analysis and improvement of a successive
convex optimization guidance algorithm which solves the 6-DoF powered-descent
fuel-optimal control problem for reusable launchers re-entry. An analysis is car-
ried out to find the optimal trajectory problem formulation that leads to the best
performance results. More particularly, the minimum-time strategy is compared
with the maximization of the final mass as well as the minimization of the thrust
usage throughout the flight. Performance is also evaluated comparing the convex-
ification methods such as lossless convexification or 1st-order Taylor expansion
approximation. Advanced state and control constraints are studied such as aero-
dynamics and thrust slew rate. Finally, the guidance system is embedded in a
nonlinear simulator to assess the global performance.

INTRODUCTION

The controlled atmospheric re-entry associated with the precision soft-landing of Reusable Launch
Vehicles (RLVs) on Earth is very challenging as it depends on multiple parameters.1 Over the last
decade, the cost-effectiveness of such a technology has been finally demonstrated with the success-
ful recoveries of SpaceX’s Falcon 9 first-stage rocket first,2 then followed by other companies such
as the Rocket Lab’s Electron microlauncher.3 Today, SpaceX has flown reusable boosters more that
100 times, with some single boosters reused more than 10 times, proving the feasibility and the
economic sustainability of such a technology. This breakthrough has been made possible by the
development of advanced and robust computational methods able to generate in real time the refer-
ence trajectory to be followed according to the flight conditions, and to output the optimal vehicle’s
deflections accordingly to steer the vehicle toward this trajectory until a safe pinpoint landing.

Indeed, during an Earth atmospheric re-entry, the vehicle is subjected to fast system dynamics
changes partly induced by external loads associated with the terrestrial environment (e.g., lift, drag,
wind and gusts), but also by the actuation commands to answer the landing constraints satisfaction
and the vehicle integrity preservation. All those involve uncertainties and nonlinearities, which lead
to vehicle’s instability and therefore justify the implementation of a highly performant Guidance,
Navigation and Control (GNC) system.4 More particularly, one of the critical aspects is the design
of an advanced guidance algorithm capable of generating in real time and rapidly valid solutions but
also to possibly consider significant off-nominal conditions experienced during the descent flight.
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On the other hand, the pinpoint landing requirement involves a high accuracy and a perfect coordi-
nation between thrust, position, velocity, and attitude to enable a vertical and soft touchdown at the
desired landing site.5

Research in the area of optimal aerodynamic and powered-descent trajectory generation began
with the Apollo program in which a polynomial guidance scheme for the acceleration profile was
computed offline according to the initial and final desired positions and velocities.6 Nevertheless,
this method did not consider fuel-optimality, neither allowed for further constraints inclusion. Then,
the Space Shuttle entry guidance method used a reference drag-velocity profile to control bank angle
and angle of attack during the descent,7 which allowed to better consider the constraints involved
(dynamic pressure, heat flux, load factor). However, thanks to the increase of computational power
available on board, the recent progresses have shown that convex optimization is the key technol-
ogy to enable autonomous and onboard real-time trajectory planning and therefore pinpoint landing.
It consists of transforming the nonlinear re-entry trajectory problem into a convex one, more pre-
cisely into a Second Order Cone Programming (SOCP) problem, which can be solved with efficient
solvers in polynomial time. More particularly, the lossless convexification of the nonconvex thrust
magnitude lower bound constraint first,8 and then further constraints, had made possible the suc-
cessful pinpoint landing of the Masten Space Systems’ Xombie sounding rocket in 20129 and the
SpaceX’s Falcon 9 in 2015.

Among the convex optimization family of methods, successive convex optimization has emerged
as an effective approach to transition from a fully convex 3-DoF to a 6-DoF problem with some
nonconvexity10 but also to account for nonlinearities and additional constraints, more particularly
the aerodynamic forces which can be included in the control authority.11 Moreover, this prob-
lem formulation allows to reduce (both in terms of time and cost) the Verification and Validation
campaign for which it used to be necessary to check that the 3-DoF trajectory is executable in a
fundamentally 6-DoF lander system. Since the mid 2010s, several studies have been achieved in
successive convex optimization. In certain cases, lossless convexification is embedded to remove
some nonlinearity, and aerodynamic drag and even lift are approximated. Other developments en-
able the advent of State-Triggered Constraints (STC), embedding an if-then logic into the guidance
problem, and allowing the definition of new constraints such as for example a velocity-triggered
angle of attack constraint or a range-triggered line-of sight constraint.12 Finally, simultaneously, re-
search on embedding pseudospectral discretization in the problem formulation have emerged with
more particularly the development of the successive pseudospectral convex optimization method,
yielding to greater accuracy and faster solutions.13

This paper studies the development, analysis, and improvement of a successive convex optimiza-
tion guidance algorithm, adapted from (Reference 12). This algorithm solves the 6-DoF powered-
descent guidance problem with free final time, nonlinear dynamics with aerodynamic drag and
nonconvex constraints. More particularly, it is using a spherical aerodynamic model which allows
drag generation, approximating the nonlinearities and nonconvexities through first-order Taylor ex-
pansions and considering a dynamic pressure-triggered angle of attack constraint. Moreover, to
better assess the algorithm performance, the guidance logic is embedded in a closed-loop fashion
in a nonlinear 6-DoF RLV re-entry dynamics simulator with a control system using gain-scheduled
Proportional-Integral-Derivative (PID) controllers. It covers the atmospheric re-entry and vertical
landing of a first-stage rocket equipped with a Thrust Vector Control (TVC) system and steerable
planar fins.14

Several algorithm developments are investigated, more particularly regarding the selection of
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the cost function, the convexification method and the set of penalization weights for trust regions
and virtual controls. In fact, the minimum-time strategy is compared with the maximization of
the final mass as well as the minimization of the thrust usage throughout the flight. The lossless
convexification method is compared with the 1st-order Taylor expansion approximation. Finally, the
ability of the algorithm to counteract realistic aerodynamics is assessed. All these cases are carried
out using the nonlinear simulator and the obtained performance are analyzed towards the selection of
the best design. For this purpose, first the RLV re-entry controlled dynamics simulator is introduced
with all the flight mechanics involved. Then, the guidance problem is defined and the successive
convex optimization method is explained. Following, the different algorithm developments are
described and assessed inside the guidance logic. After the selection of the best-performing cases,
they are embedded in a closed-loop fashion with the nonlinear RLV reentry simulator to be tested
in a realistic scenario. Finally, a summary of the paper and its main conclusions are presented.

REUSABLE LAUNCHERS RE-ENTRY CONTROLLED DYNAMICS SIMULATOR

This section describes the nonlinear 6-DoF dynamics of a Vertical Take-off Vertical Landing
(VTVL) vehicle first-stage booster modelled as a rigid body with varying mass, subjected to external
forces induced by the terrestrial atmosphere and controlled through embedded closed-loop guidance
and control strategies.

This paper relies on the 6-DoF reusable launchers re-entry controlled dynamics simulator devel-
oped by the authors to study the efficiency of aerodynamic steering and conventional Guidance and
Control (G&C) techniques.14 Whereas in this previous research work, the vehicle was only steered
via a TVC system and the fixed planar fins implementation was studied, the RLV simulator used
in this paper considers a vehicle actuated both by the TVC system and steerable planar fins. An
analysis to add an enhanced aerodynamic model in the simulator was also carried out.15 Figure 1
describes the architecture of the simulator with the interactions between all the building blocks;
from G&C systems to actuators, vehicle dynamics, and environment.

The simulator includes standard G&C algorithms where a thrust vector is commanded by the
guidance subsystem and then converted to reference pitch θref (t) and yaw ψref (t) angles, and
thrust magnitude Tref . Then, the control subsystem generates the necessary commands to correct
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Figure 2: Structure for Baseline Control Synthesis, adapted from (Reference 4).

the deviations between the reference and actual attitude angles in terms of TVC gimbal deflections
{βTV C,y, βTV C,z} and fins’ deflections {βfin,y, βfin,z}. The guidance subsystem relies on a suc-
cessive convex optimization algorithm which consists in iteratively solving convex optimization
SOCP subproblems in which the nonconvex dynamics and constraints are repeatedly linearized us-
ing the information coming from the previous iteration solution. The generated reference trajectory
is updated with a user-specified frequency fgui at which the guidance subsystem is re-executed.
Concerning the control subsystem, it relies on the use of feedback control though gain-scheduled
PID controllers, decoupling pitch and yaw axes based on the assumption of low roll rates. To sim-
plify the MIMO formulation due to the consideration of TVC and steerable planar fins, for which it
is complex to apply classical linear control theory, a control moment is defined as a variable speci-
fying the necessary pitch or yaw moment to be commanded to correct the trajectory of the vehicle,
following the work in (Reference 4). Then, knowing the control effectiveness level of each actuator,
a control allocation algorithm is used to determine the actual control inputs in terms of TVC gimbal
and fins’ deflection angles. Figure 2 illustrates this structure for the gain-scheduled PID controllers
synthesis, where a reference trajectory corresponding to the simulated case is stored offline and used
through the RLV linear model to tune the scheduled PID controllers by sampling the system in n
different points according to the altitude.

The equations of motion are written in the landing site-centered inertial and the vehicle’s body-
fixed reference frames based on the initial state xI(0) =

[
m(0) rTI (0) vT

I (0) qI
B(0)

T ωT
B(0)

]
and on the assumptions that the vehicle is a rigid body with no effect induced by the varying mass
(e.g. propellant sloshing) and structural flexibilities for the sake of simplicity. Therefore we can
formulate the 6-DoF re-entry equations of motion of a powered RLV as described by the following
set of nonlinear differential equations summarized in Eq. (1).

ṁ(t) = −
||FTV C,I(t)||2

Ispg0
− AnozzlePamb(t)

Ispg0

ṙI(t) = vI(t)

v̇I(t) =
1

m(t)
[FTV C,I(t) + Ffins,I(t) + Faero,I(t)] + gI(t)

q̇I
B(t) =

1

2


q4(t) −q3(t) q2(t)
q3(t) q4(t) −q1(t)
−q2(t) q1(t) q4(t)
−q1(t) −q2(t) −q3(t)

ωB(t)

ω̇B(t) = J−1(t) [MTV C,B(t) +Mfins,B(t) +Maero,B(t)− ωB(t)× JωB]

(1)
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In Eq. (1), m(t) is the mass of the vehicle, rI(t) ∈ R3 and vI(t) ∈ R3 are the position and
velocity at the center-of-gravity (CG) of the vehicle expressed in the inertial reference frame. The
attitude states are governed by the quaternion-based kinematics equation where ωB(t) ∈ R3 is the
angular velocity vector expressed in the vehicle’s body-fixed reference frame. Isp is the vacuum
specific impulse of the engine, g0 is the standard Earth gravity, Anozzle is the nozzle exit area of the
engine, Pamb(t) is the ambient atmospheric pressure and J(t) = diag

([
JA(t) JN (t) JN (t)

])
is the inertia matrix of the vehicle. The terms Faero,I(t) ∈ R3 represent the aerodynamic force
of the vehicle expressed in the inertial reference frame; FTV C,I(t) ∈ R3, and Ffins,I(t) ∈ R3

represent the control forces generated by the TVC system and the steerable planar fins, respectively.
Equivalent to the forces, Maero,B(t) ∈ R3, MTV C,B(t) ∈ R3, and Mfins,B(t) ∈ R3 represent
aerodynamic and control moments written in the vehicle’s body-fixed reference frame.

For the computation of the aerodynamic forces and moments, it is necessary to define an addi-
tional reference frame, the so-called velocity reference frame. This latter is fixed to the vehicle’s
CG with its x-axis directed along the wind-relative vector vair(t) so that the transformation from
the body-fixed to the velocity reference frame can be represented by two aerodynamic angles: the
angle of attack α(t), and the sideslip angle β(t).16 Then the aerodynamic characteristics depend
on the vehicle’s external shape with its reference area and on the instantaneous dynamic pressure,
which is defined as follows:

Q(t) =
1

2
ρ(t)||vair(t)||2 (2)

where vair(t) accounts for the vehicle’s inertial velocity and wind gusts; and the atmospheric den-
sity ρ(t) is generated using the Committee on Extension to the Standard Atmosphere model17

(like the ambient pressure Pamb(t)).The aerodynamic drag and lift coefficients, as well as the
center of pressure, are estimated from lookup tables as function of the effective angle of attack
αeff (t) =

√
α2(t) + β2(t) and the Mach number M(t).15

Then, the gravitational field is defined in the inertial frame as a function of the altitude rI,x(t):

gI(rI,x(t)) =
[
g(rI,x(t)) 0 0

]T
g(rI,x(t)) = g0

(
RE

RE + rI,x(t)

)2 (3)

where RE is the radius of the Earth.

GUIDANCE PROBLEM VIA SUCCESSIVE CONVEX OPTIMIZATION

For the RLV re-entry simulator introduced in the previous section, the guidance algorithm is re-
sponsible for the real-time generation of a reference trajectory to be followed by the vehicle with
thrust and attitude commands. Here, a direct method is used among the framework of convex op-
timization. This latter consists in transforming the fuel-optimal trajectory problem into a convex
one, more precisely into a SOCP problem, which can be solved with efficient solvers in polyno-
mial time. The challenging tasks rely in converting nonconvex state and control constraints into the
convex form and on the high computational power needed. Recently, the so-called lossless convexi-
fication method8 and the progresses in computational development have enabled to overcome these
issues, and therefore to enable real-time trajectory generation in a closed-loop fashion.

Moreover, a particular class of convex optimization, successive convex optimization, can be ap-
plied to approximate the remaining nonlinearities in the optimal landing problem such as the aero-
dynamic effects, previously ignored. It consists in iteratively solving convex optimization SOCP
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subproblems in which the nonconvex dynamics and constraints are repeatedly linearized using in-
formation coming from the previous iteration solution. This algorithm has been first developed in
(Reference 18) and then adapted in different ways.11, 19 In this paper, the successive convex opti-
mization algorithm adapted relies on the work achieved in (Reference 20) where the strategy defined
in (Reference 12) was enhanced to be applicable in a closed-loop fashion towards a 6-DoF re-entry
dynamics simulator.

For this study, the successive convex optimization guidance algorithm has been implemented in
MATLAB using the CVX library21 to formulate the convex problem and the ECOS routine22 to
solve them. At each simulation instance defined by the simulation rate fsim = 0.001 Hz, the ref-
erence thrust profile TB,ref (t) and the reference attitude angles {θref (t), ψref (t)} are computed
from the most recent guidance solution via linear interpolation. Indeed, that solution is stored as
an online lookup table which is updated at each guidance step, with the guidance update frequency
fgui = 0.1 Hz, so every 10 seconds. To enable the formulation of the SOCP subproblems, the op-
timal control problem must be converted into a finite dimensional parameter optimization problem.
Therefore, the trajectory and optimization variables are discretized into K uniformly spaced points.
At each guidance step, the time vector is divided in that way:

tk =
k − 1

K − 1
tf , k ∈ [1,K] (4)

and because the estimated time of flight tf → 0 as t→ ToF , where ToF is the actual time of flight
achieved by the simulation, the accuracy of the discretisation becomes more precised towards the
end.

Therefore, to compute the optimal reference trajectory to be followed, several state and control
constraints are considered in addition to the re-entry dynamics. Regarding the state constraints, the
first one is a lower bound of the mass: for each time instant tk, k ∈ [1,K], the mass cannot be lower
than the dry mass of the vehicle (mdry = 2, 750 kg). This constraint is expressed by:

m[k] ≥ mdry (5)

The second constraint is the so-called glide-slop constraint: it restricts the inertial position to lie
within a glide-slope cone with half-angle γgs ∈ [0, 90 deg) and vertex at the landing site. This
constraint is enforced by:

e1 · rI [k] ≥ tan (γgs)
∣∣∣∣∣∣[e2 e3

]T
rI [k]

∣∣∣∣∣∣
2

(6)

where ei, i ∈ [1, 3] are the versors. For this study, γgs = 10 deg. Then, the third constraint concerns
the tilt angle, i.e. the angle between the x-axes of the two reference frames, which is bounded to be
less than a maximum θmax ∈ (0, 90 deg]. Here, θmax = 75 deg. It is defined by:

cos (θmax) ≤ eTI,1 R
B
I [k] eB,1 (7)

Then, the fourth constraint limits the angular rate of the vehicle to ωmax = 28.6 deg, it is enforced
by:

||ωB[k]||2 ≤ ωmax (8)

Finally, an additional constraint preserves the unit norm of the quaternion, as follows:

||qI
B[k]|| = 1 (9)
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Boundary constraints are added regarding initial and desired final conditions. Note that the initial
attitude has not been constrained for the first guidance iteration while it was when the problem is
solved during the flight to preserve the continuity of the solution. Moreover, a so-called STC12

is added. In that case, it consists in imposing an angle of attack α constraint, αmax, when the
dynamic pressure Q(t) is larger than a prescribed value Qmax. The values αmax = 5 deg and
Qmax = 4 · 104 Pa were chosen. This constraint is written in a continuous formulation with a
trigger-function gα and a constraint-function cα as follows:

hα(rI [k],vI [k],q
I
B[k]) = −min(gα(vI [k], rI [k]), 0) · cα ≤ 0

cα(vI [k],q
I
B[k]) = e1 ·RI

B[k]vI [k] + cos (αmax)||vI [k]||2

gα(rI [k],vI [k]) = Qmax −
1

2
ρ[k]||vI [k]||22

(10)

Finally, two control constraints are considered to bound the direction and magnitude of the thrust
force. The direction is bounded by limiting the TVC up to a maximum gimbal angle δmax = 10 deg.
It is enforced by:

cos (δmax)||TB,ref [k]||2 ≤ e1 ·TB,ref [k] (11)

Then, the thrust magnitude is bounded between a minimum and maximum values, such as:

0 < Tmin ≤ ||TB,ref [k]||2 ≤ Tmax (12)

where Tmin = 0 kN and Tmax = 600 kN are the lower and upper bounds, respectively.

However, the optimization problem subjected to the described dynamics and state and control
constraints is not convex and must therefore be convexified. In order to do so, the first step is to
convert the free-final-time nonlinear continuous-time optimal control problem into an equivalent
fixed-final-time nonlinear continuous-time problem. It is achieved in normalizing the time of flight
from t ∈ [0, tf ] to τ ∈ [0, 1], where τ is the normalized time of flight. Summarising the nonlinear
dynamics as ẋ(t) = f(x(t),u(t)) with x(t) =

[
m(t) rTI (t) vT

I (t) qI
B(t)

T ωT
B(t)

]T the state
vector and u(t) = TB,ref (t) the control vector, they can be re-written as follows:

ẋ(t) =
dτ

dt

d

dτ
x(t) (13)

Therefore, having σ = (dτ/dt)−1, the normalized nonlinear dynamics are expressed by:

d

dτ
x(τ) = σ · f(x(τ),u(τ)) (14)

Moreover, a spherical aerodynamic model is used to describe the aerodynamics of the vehicle.
This model, introduced by Szmuk et al. in Ref.,12 approximates the relationship between the aero-
dynamic force and the velocity vector and has the advantage to be easily implementable in the
successive convex optimization guidance method. The aerodynamic force Faero,I(t) is considered
always anti-parallel with respect to the velocity vI(t) as if the vehicle was subjected to a pure
drag force. Assuming that the rocket is axisymmetric, the aerodynamic forces and moments in the
vehicle’s body-fixed reference frame are expressed by:

Faero,B(t) = −1

2
ρ(t)||vair,I(t)||2SrefCaeroR

I
B(t)vair,I(t)

Maero,B(t) = [xCP − xCG(t)]× Faero,B(t)
(15)

7



where Caero is the aerodynamic coefficient matrix defined by Caero = diag
([
ca,x ca,x ca,x

])
where ca,x = 0.82 is a positive scalar assumed constant during all the flight.

Then, the nonlinear re-entry dynamics equations, defined in Eq. (1), are discretized and linearized
about the solution of the previous iteration, through a first-order Taylor approximation and the
nonconvex constraints are convexified. It involves two state constraints, the norm of the quaternion
(Eq. (9)) and the STC (Eq. (10)); and one control contraint, the lower bound of the thrust magnitude
(Eq. (12)). The convexification of the Eq. (9) is obtained through a first-order Taylor expansion
approximation evaluated about the previous SOCP (i− 1)th iteration:

||qI,i−1
B [k]||2 +

qI,i−1
B [k]T

||qI,i−1
B [k]||2

(qI,i
B [k]− qI,i−1

B [k]) = 1 (16)

The same method is used for the STC (Eq. (10)). However, due to the min (·) function, the constraint
is approximated as follows:

hα(ξ
i−1[k]) +

∂hα
∂ξ

∣∣∣∣
ξi−1[k]

(ξi[k]− ξi−1[k]) ≤ 0, if gα(ξ
i−1[k]) < 0

0, otherwise

(17)

where ξi[k] =
[
vi
I [k]

T qI,i
B [k]T

]T
, k = {1, ...,K} is the reference trajectory parameters ob-

tained from the SOCP ith iteration. Lastly, it is applied to the lower bound of the thrust magnitude,
obtaining the following expression for k ∈ [1,K − 1]:

hT (u[k]) = Tmin − ||TB,ref [k]||2

hT (u
i−1[k]) +

∂hT
∂u

∣∣∣∣
ui−1[k]

(ui[k]− ui−1[k]) ≤ 0
(18)

Finally, the successive convex optimization strategy involves the use of trust regions and virtual
controls to prevent unboundedness and artificial infeasibility, respectively. Trust regions implemen-
tation allows to limit the deviation between two consecutive iterations. They are defined for state
and control vectors but also for the time of flight:

||xi[k]− xi−1[k]||2 + ||ui[k]− ui−1[k]||2 ≤ ∆i
x,u[k]

||σi − σi−1||2 ≤ ∆i
σ

(19)

Virtual controls are additional control inputs νi which allows reaching each point of the solution
domain, through dynamics relaxation. All that terms must be penalized in the cost function. For
the norm ∆i

x,u and for the virtual control vector νi, it is needed to define an auxiliary variable,
respectively Si

∆ and Si
ν , to avoid a quadratic term in the cost function joined with an inequality

constraint.20 Therefore, the following constraints are added:

||∆i
x,u||2 ≤ Si

∆x,u

||νi||2 ≤ Si
ν

(20)

The objective of the optimal control problem defined is to find the optimal trajectory, subjected
to the defined re-entry dynamics and state and control constraints, minimizing the vehicle’s fuel
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consumption, which corresponds to maximizing the vehicle’s final mass. Due to the monotonic
behavior of the propellant consumption with respect to time, the time of flight is first selected as
the value to be minimized. Therefore, the cost function can be written as follows at each SOCP ith

iteration:
Jt = σi + wνS

i
ν + w∆S

i
∆ + w∆σ∆

i
σ (21)

where wν = 103, w∆ = 1 and w∆σ = 0.75 are penalization weights. This algorithm is hereafter
referred to as SCVxTime 1.

COST FUNCTION AND ALGORITHM DEVELOPMENTS ANALYSIS

This section aims at analyzing the guidance algorithm performance through several develop-
ments. First, the selection of the cost function is studied by comparing different implementation:
the minimization of the final time as displayed in Eq. (21), the maximization of the final mass, the
minimization of the thrust usage and an hybrid configuration. This latter is combining maximization
of the final mass and minimization of the thrust usage. Then, since in the algorithm SCVxTime 1,
the convexification of the nonconvex constraints is achieved through the successive process via first-
order Taylor expansion, this section also analyzes the convexification of the constraints through the
so-called lossless convexification. Finally, the outputs of the algorithm are also analyzed regarding
the selection of the penalization weights for the trust regions and the virtual controls. To summarize,
the following implementations are studied:

– Minimum-final-time strategy VS. maximum-final-mass strategy VS. minimum-thrust-usage
VS. hybrid configuration.

– First-order Taylor expansion VS. lossless convexification.

– Selection of the penalization weights for trust regions and virtual controls.

Cost Function Selection

As mentioned in the previous section and more precisely in Eq. (21), the minimization of the time
of flight was selected as the cost function for the baseline algorithm referred to as SCVxTime 1. This
choice was made due to the monotonic behavior of the propellant consumption with respect to time,
meaning that minimizing the time of flight is equivalent to minimizing the propellant cost function.
However, it is still relevant to analyze the performance of other choices of cost function. As a first
example, the minimization of the propellant consumption can also be linked to the maximization of
the final mass mf and therefore the cost function can be written as followed:

Jmf
= −mi

f + J i
w (22)

where J i
w = wνS

i
ν +w∆S

i
∆ +w∆σ∆

i
σ is the part of the cost function related to the penalization of

the trust regions and virtual controls. Note that through the discretization process, Eq. (22) is then
becoming:

Jmf
= −m[K]i + J i

w (23)

Moreover, the minimization of the propellant consumption can also directly be linked to the thrust
usage throughout the descent flight. This cost function is given by:

JT =

∫ t

0
||Ti

B,ref (t)||2 dt+ J i
w (24)
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This latter is then discretized using the trapezoidal law and expressed by:

JT = J i
w +

σi−1

2(K − 1)

K−2∑
k=1

(
||Ti

B,ref [k + 1]||2 + ||Ti
B,ref [k]||2

)
(25)

Finally, another cost function is studied hereafter referred to as hybrid which is defined as a
combination of the maximization of the final mass and the minimization of the thrust usage. The
cost function is given as follows:

Jhybrid = −wmm
i
f + wT

∫ t

0
||Ti

B,ref (t)||2 dt+ J i
w (26)

where wm = 1 and wT = 1 are penalization weights which can be use to set more emphasis on a
specific cost function.

Lossless Convexification

The successive convex optimization process enables to approximate the remaining nonlinearities
in the optimal problem defined but can also be used to convexify the nonconvex constraints such as
for example the lower bound of the thrust magnitude. In the algorithm SCVxTime 1, the first-order
Taylor expansion approximation evaluated about the previous SOCP (i− 1)th iteration is also used
for the convexification of the nonconvex constraint following (Reference 12). However, lossless
convexification can still be used within the successive process.11, 19 It consists in defining a slack
variable Γ(t) with the following constraint:

||TB,ref (t)||2 ≤ Γ(t) (27)

and therefore Eq. (11) becomes:

cos (δmax) Γ
i[k] ≤ e1 ·TB,ref [k] (28)

whereas the nonconvex constraint described in Eq. (12) is convexified as follows:

Tmin ≤ Γi[k] ≤ Tmax (29)

Note that Eq. (28) (and therefore also Eq. (11)) can be replaced or enhanced with a thrust slew rate
constraint defined by:

−Ṫmax ≤ (Γi[k + 1]− Γi[k]) · (K − 1)

σi−1
≤ Ṫmax (30)

However, this modification did not show any performance increase in the simulations achieved
and is therefore not considered in this analysis. Finally, through lossless convexification, JT of
Eq. (24) and Eq. (25) and Jhybrid of Eq. (26), are also modified considering the new slack variable
Γ. Therefore, the modifications from Eq. (18) to Eq. (20) are applied to SCVxTime 1 hereafter called
LosslessTime 1.
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Penalization Weights Selection and Summary

In SCVxTime 1 and LosslessTime 1 algorithms, three penalization weights are considered; wν =
103, w∆ = 1 and w∆σ = 0.75, in order to penalize respectively the virtual controls usage, as
well as the trust regions regarding the state and control vectors and the time of flight. This weights
selection has a relatively high impact in the obtained reference trajectory. In order to assess their
impact on the performance, another set of penalization weights is considered: wν = 105, w∆ = 0.1
and w∆σ = 0.075. The algorithms using this set become SCVxTime 2 and LosslessTime 2.

Table 1 summarize all the different cases studied.

Algorithm Developments analysis and Discussion

All the algorithm design configurations are assessed and the performance in terms of final mass
and time of flight, as well as the obtained reference profile are compared.

First, the different cost functions and the convexification method used (1st-order Taylor expansion
approximation or lossless convexification) are compared for the first set of penalization weights. The
results are depicted in Figure 3 where the blue bar gives the time of flight generated by the algorithm
while the orange bar gives the final mass of the vehicle. Note that the dry mass of the vehicle is
equal to mdry = 2, 750 kg. From this figure, it can be noticed that the performance related to the
convexification method used is similar. In fact, the use of lossless convexification instead of the
1st-order Taylor expansion approximation does not always leads to an increase of the performance
and when it is the case, the gain is relatively low. As an example, from what concerns the per-
formance of the minimization of the final time, i.e. SCVxTime 1 and LosslessTime 1, the second
algorithm generates a higher final mass (6, 928 ≥ 6, 881 kg) for a similar time of flight. Then,
the minimization of the time of flight is also perceived as the best cost function compared to the
other cases studied. We actually clearly see the monotonic behavior of the propellant consumption
with respect to time since all the other cases ended up with a higher time of flight and therefore

Table 1: Summary of the Algorithm Design Cases Studied

Case Name SCVx Lossless Cost function Weights selection

SCVxTime 1 — Jt wν = 103, w∆ = 1 and w∆σ
= 0.75

SCVxMass 1 — Jmf
wν = 103, w∆ = 1 and w∆σ

= 0.75

SCVxThrust 1 — JT wν = 103, w∆ = 1 and w∆σ
= 0.75

SCVxHybrid 1 — Jhybrid wν = 103, w∆ = 1 and w∆σ
= 0.75

LosslessTime 1 — Jt wν = 103, w∆ = 1 and w∆σ
= 0.75

LosslessMass 1 — Jmf
wν = 103, w∆ = 1 and w∆σ

= 0.75

LosslessThrust 1 — JT wν = 103, w∆ = 1 and w∆σ
= 0.75

LosslessHybrid 1 — Jhybrid wν = 103, w∆ = 1 and w∆σ
= 0.75

SCVxTime 2 — Jt wν = 105, w∆ = 0.1 and w∆σ = 0.075
SCVxMass 2 — Jmf

wν = 105, w∆ = 0.1 and w∆σ
= 0.075

SCVxThrust 2 — JT wν = 105, w∆ = 0.1 and w∆σ
= 0.075

SCVxHybrid 2 — Jhybrid wν = 105, w∆ = 0.1 and w∆σ
= 0.075

LosslessTime 2 — Jt wν = 105, w∆ = 0.1 and w∆σ
= 0.075

LosslessMass 2 — Jmf
wν = 105, w∆ = 0.1 and w∆σ = 0.075

LosslessThrust 2 — JT wν = 105, w∆ = 0.1 and w∆σ = 0.075
LosslessHybrid 2 — Jhybrid wν = 105, w∆ = 0.1 and w∆σ

= 0.075
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Figure 3: Comparison of the Algorithm Design Cases for the First Set of Penalization Weights

with a lower final mass. Figure 4 shows the obtained thrust profile according to the case studied.
More particularly, Figure 4a compared the thrust profile obtained through 1st-order Taylor expan-
sion approximation with the one obtained through lossless convexification for the minimum-time
strategy, whereas Figure 4b depicted the thrust profiles obtained through 1st-order Taylor expansion
approximation for different cost functions. The thrust profile is relatively similar for all the cases.
Figure 4a only shows the minimum-time strategy since the same trend is obtained from the other
cost functions and allows to conclude that the convexification method does not have a high impact
of the reference thrust profile generation. Figure 4b draws the same conclusion regarding the cost
function selection. It is also possible to notice that the profiles are not following the classical bang-
bang behavior for rocket powered-descent and landing.23 Note that the same conclusions can be
drawn for the reference pitch angle profile generated but the results are not shown in this paper for
a better conciseness.

Then, the same comparison is achieved for the second set of penalization weights. Figure 5
depicts the outputs of this comparison, like Figure 3. From this figure, note that the performance is
never as good as the outputs of the first set of penalization weights. In fact, except for the minimum-
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Figure 4: Comparison of the Obtained Thrust Profile for the First Set of Penalization Weights
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Figure 5: Comparison of the Algorithm Design Cases for the Second Set of Penalization Weights

time strategy, all the other cases shows a significant lower performance than the previous analysis,
in terms of time of flight and final mass. However, the same conclusions are drawn: minimum-time
strategy still lead to the best performance while the convexification method used is not playing an
important role. In the same way, the conclusions regarding the reference thrust and pitch profiles
are similar. However, it is interesting to compare the profiles with respect to the ones obtained with
the first set of penalization weights. Figure 6 achieves this analysis for the minimum-time strategy.
More particularly, Figure 6a shows the reference thrust profiles, whereas Figure 6b the pitch angle
profiles. The obtained reference profiles show a significant difference. In fact, the profiles generated
by the second set of penalization weights is closer to the classical bang-bang behavior. Even if the
time of flight is higher, the final mass is slight lower than the one indicated by the algorithms with the
first set of penalization weights. In case of discrepancies due to disturbances, nonlinearities, and/or
uncertainties, this type of profile could lead to better performance when considering a closed-loop
RLV re-entry nonlinear simulation. The next section will study this impact. Finally, the reference
pitch angle profiles depicted in Figure 6b are also relatively different. The ones generated by the
second set of penalization weights is less smooth as it shows several slight pitch angle oscillations.
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Figure 6: Comparison of the Obtained Reference Profiles for the Two Set of Penalization Weights
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SIMULATION RESULTS AND DISCUSSION

In this section, the best-performing algorithms are assessed in the 6-DoF reusable launchers re-
entry controlled dynamics simulator described previously. More particularly, the four minimum-
time strategies are compared: SCVxTime 1, LosslessTime 1, SCVxTime 2, LosslessTime 2. Then,
several cost function strategies are assessed in order to test if the minimum-time strategy still lead
to the best performance. Note that all these simulations are carried out for a simplified aerodynamics
model in order not to generate additional errors which could interfere with the outputs of the analysis
carried out. More precisely, the aerodynamics model used in the simulator is also considering a pure
drag force with a constant drag coefficient equal to ca,x = 0.82. Therefore, a last set of simulations
is achieved which considers the enhanced aerodynamic model15 in the simulator in order to study
the robustness of the guidance algorithm to uncertainties in the aerodynamics. Table 2 displays the
initial and final conditions of the nominal cases studied.

Table 2: Initial and Final Conditions

(a) Initial conditions

Parameter Value

rI [0] [25, 000 0 − 15, 000]T m

vI [0] [−850 − 0.1 950]T m/s

ωB[0] [0 0 0]T rad/s
m[0] 14, 000 kg

(b) Final conditions

Parameter Value

rI [K] [0 0 0]T m

vI [K] [−5 0 0]T m/s

ωB[K] [0 0 0]T rad/s

qI
B[K] [0 0 0 1]T

Some enhancements in the simulator have been considered. As explained previously, the solution
of the more recent guidance is stored as an online look-up table and is updated every 10 seconds.
However, in some cases depending on the actual state of the vehicle, the guidance algorithm is gen-
erating an unfeasible trajectory or is not converging to a solution. Therefore the re-entry simulation
is worsened or stopped whereas it was still possible to follow the previous trajectories generated
with acceptable results. To overcome this issue, some feasibility conditions are implemented after
a new guidance update is achieved, and when they are not met, the vehicle keeps following the
previously updated reference trajectory which was saved. These feasibility conditions involves: (i)
the guidance algorithm must have successfully converged to a solution; (ii) the estimated time of
flight must be strictly positive, i.e. ToF i > 0; (iii) the estimated final mass must be strictly superior
to the vehicle dry mass, i.e. mi

f > mdry.

Comparison of the Best-performing Guidance Algorithms

As mentioned in the previous section, the best-performing guidance algorithm designs are the
ones considering the minimum-time strategy. Therefore, they are here assessed in the nonlinear
simulator for a realistic scenario. The performance is analyzed in terms of final mass mf , final
downrange error ϵlat and final velocity vf . Figure 7 shows the results of the four simulations
achieved, each one in closed-loop with a different guidance algorithm designs: SCVxTime 1 in
Figure 7a, LosslessTime 1 in Figure 7b, SCVxTime 2 in Figure 7c, LosslessTime 2 in Figure 7d.
From these figures, it is possible to notice that the first set of penalization weights is not the al-
gorithm design leading to the biggest final mass, as it was foreseen by the previous tests. In fact,
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in both cases, the re-updating of the guidance trajectory leads to a higher time of flight and there-
fore a bigger propellant consumption in order to reach the desired final states. In what concerns
the convexification methods, both enable a similar trajectory and performance. As foreseen from
the previous study, the thrust profile followed by the vehicle are quite different according to the
set of penalization weights chosen. The classical bang-bang behavior is well seen for the second
set and enable a lower propellant consumption, however, it produces a relatively high final velocity
which cannot ensure a soft landing. The first set of penalization weights consumes more propellant
throughout the flight allowing an acceptable final velocity. Note that the precision related to the
final downrange error is relatively big for this set. It is more likely due to a difficult maneuver to be
achieved by the actuation system at low altitude. Therefore, either the guidance algorithm should
be better designed to prevent the generation of such kind of trajectory, either the tuning of the con-
trollers gains should be improved. As a conclusion, the second set of penalization weights enables
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Figure 7: Comparison of Minimum-Time Strategies through Closed-Loop Nonlinear Simulations
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a bang-bang behavior for the thrust profile leading to a lower propellant consumption, as well as a
reference trajectory which is easier to be followed by the vehicle in realistic flight conditions. How-
ever, the obtained final velocity remains too high. A solution could be to design a proper guidance
algorithm for the end of the flight until pinpoint landing (starting for example at an altitude lower
than 2 km), as in (Reference 5) where a powered-descent guidance algorithm is used considering
only the TVC system as actuator.

Comparison of the Cost Function Strategies

In this subsection, the cost function strategies will be compared for the second set of penaliza-
tion weights and for the 1st-order Taylor expansion convexification method in order to confirm the
highest efficiency of the minimum-time strategy. Therefore, the following algorithm designs are
analyzed in closed-loop with the simulator and compared with SCVxTime 2: SCVxMass 2, SCVx-
Thrust 2, and SCVxHybrid 2. Figure 8 shows the results of the four simulations achieved. Note that
the same observations were made by studying the other set of penalization weights and/or lossless
convexification method. From these figures, it is again possible to conclude that the highest perfor-
mance of the minimum-time strategy foreseen by the previous analysis is not completely confirmed
by the nonlinear closed-loop simulations. In fact, in these simulations, the other cost function strate-
gies even lead to a higher final mass. However, the precision and the softness of the landing is not as
well ensured since the final downrange position and final velocity errors are higher compared to the
minimum-time strategy. Therefore, the minimum-time strategy can be seen as a good compromise
between all the critical parameters targeted. Moreover, regarding the minimum-thrust-usage strat-
egy, the reference trajectory to be followed was not recomputed during the flight meaning that the
guidance algorithm was not able to converge to a better solution, therefore leading to a re-entry with
open-loop guidance. That is why the discrepancies with respect to the targeted values are quite high
at the end of the flight. In the other cases, the thrust profiles need a shorter time of flight therefore
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Figure 8: Comparison of Cost Function Strategies through Nonlinear Closed-Loop Simulations
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reducing the propellant consumption, but on the other hand preventing the vehicle to correct the ex-
isting mismatches. Note that the latter can also come from a non-adequate tuning of the controllers
gains. Finally, from this analysis, it was concluded that the minimum-time strategy was more flexi-
ble in real-time implementation since the time of flight is directly linked with all the others critical
parameters.

Aerodynamics Consideration

At the start of this section, it was mentioned that a simplified aerodynamic model accounting for
a pure drag force was used in order not to generate errors in the analysis. In this subsection, the en-
hanced aerodynamic model developed in (Reference 15) is implemented in the nonlinear simulator.
This latter updates the aerodynamic coefficients and therefore the aerodynamic force and moment
generated by the vehicle according to the vehicle aerodynamic angles and the Mach number. There-
fore any modification of the trajectory of the vehicle has an incidence of the aerodynamics. In order
to cope with this non-negligible effect, the successive convex optimization can be used to predict
the aerodynamic force and moment that the vehicle will encountered.

Recalling Eq. (15) where the aerodynamic force and moment considered in the guidance algo-
rithm is computed from a user-specified aerodynamic coefficient matrix Caero. Let’s consider the
diagonal coefficient ca,x as a varying parameter which can be computed as follows:

cia,x[k] = Ci
D[α = π,M i[k]] (31)

where Ci
D(α(t),M(t)) is the drag coefficient which is estimated from the available lookup tables.

Therefore, this enhancement is embedded in the guidance logic described previously and the ob-
tained guidance algorithm is tested through nonlinear closed-loop simulations. All the difference
guidance strategies were assessed and the one giving the best results was LosslessTime 2. The re-
sults are shown in Figure 9. The trajectory profile as well as the altitude VS. velocity profile are
depicted respectively at the top and bottom left. From them, it can be noticed that the vehicle is
moving smoothly towards the landing site following the computed reference trajectory. The vehicle
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is properly slowed down at the end of the flight, reaching a final velocity low enough to ensure a soft
landing. On the right, the control inputs are depicted with the TVC gimbal angles and the planar
fins deflection angles at the top, as well as the reference thrust magnitude profile at the bottom. The
red dashed-line displays the thrust magnitude limit; when the required thrust magnitude is higher
than this threshold, the TVC system is primarily used with respect to the steerable planar fins, and
conversely. The thrust magnitude profile follows a bang-bang behavior optimizing the propellant
consumption. It is relevant to notice that the global performance of this simulation is better than
all the other simulations tested, whereas the vehicle final mass is higher. Therefore, the guidance
algorithm well managed to use the aerodynamics as an additional control authority to steer the ve-
hicle towards the landing site. The slight discrepancy in the downrange error is more likely due
to the saturation of the actuators. As a conclusion of this analysis, successive convex optimization
is proven as a good candidate to counteract the aerodynamics encountered for rocket atmospheric
re-entry, powered-descent and landing.

CONCLUSIONS

This paper aims at studying advanced guidance algorithm designs for the 6-DoF atmospheric
re-entry of reusable launchers. More particularly, successive convex optimization was embedded
into the guidance logic and different algorithm designs are analyzed. This guidance method en-
ables to iteratively solve convex optimization SOCP subproblems in which the nonconvex dynam-
ics and constraints are repeatedly linearized using the information coming the previous iteration
solution. As an example, this technique allows the consideration of the aerodynamics. Therefore
inside this guidance logic, several algorithm developments are analyzed in order to find the opti-
mal design leading to the best performance. Moreover, they are also assessed through a nonlinear
6-DoF reusable launchers re-entry controlled dynamics simulator embedding the guidance logic in
a closed-loop fashion with a control system and the RLV flight mechanics involved.

First of all, the cost function strategy is analyzed through four cases: minimum-time formu-
lation, maximum-final-mass, minimum-thrust-usage and an hybrid formulation considering both
maximum-final-mass and minimum-thrust-usage. From this study, the minimum-time strategy was
selected as the best-performing formulation but also as the most flexible one towards a soft pinpoint
landing. In fact, the minimization of the time of flight is linked to the minimization of the propellant
consumption due to its monotonic behavior with respect to time.

Then, the convexification method to convexify the lower bound of the thrust magnitude is ana-
lyzed through the 1st-order Taylor expansion and the lossless convexification techniques. From this
analysis, it was observed that both methods were leading to similar results.

Moreover, the user-specified set of penalization weights also plays an important role in the per-
formance of the guidance algorithm. Two sets are compared, one leading to a shorter time of flight
and a bigger final mass, and the other leading to the classical bang-bang behavior of the thrust mag-
nitude profile. The latter enables a lower propellant consumption in closed-loop simulations but
usually leads to a high final velocity. A solution to this problem could be to separate the atmo-
spheric re-entry and landing into several phases with particularly a last one at low altitude where a
powered-descent guidance algorithm is used with only TVC as actuator.

Finally, the aerodynamics consideration is embedded into the guidance logic and the simulation
carried out shows that the guidance strategy well enable to counteract the aerodynamics and to steer
the vehicle towards the landing site. Moreover, it is relevant to notice that the case considering the
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aerodynamics leads to a better global performance compared to the other algorithm designs, more
likely due to the fact that the aerodynamics can also be used to slow down the vehicle and therefore
increasing the available control authority to correct the trajectory of the vehicle.

Note that the remaining discrepancies are probably due to the need for an adequate tuning of the
controllers gains, here using gain-scheduled PID controllers. Future work will study the implemen-
tation of structured H∞ control method towards an enhanced robustness to uncertainties.
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