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Abstract—Ensuring that systems achieve their goals under
uncertainty is a key driver for self-adaptation. Nevertheless,
the concept of uncertainty in self-adaptive systems (SAS) is
still insufficiently understood. Although several taxonomies of
uncertainty have been proposed, taxonomies alone cannot convey
the SAS research community’s perception of uncertainty. To
explore and to learn from this perception, we conducted a survey
focused on the SAS ability to deal with unanticipated change
and to model uncertainty, and on the major challenges that limit
this ability. In this paper, we analyse the responses provided by
the 51 participants in our survey. The insights gained from this
analysis include the view—held by 71% of our participants—that
SAS can be engineered to cope with unanticipated change, e.g.,
through evolving their actions, synthesising new actions, or using
default actions to deal with such changes. To handle uncertainties
that affect SAS models, the participants recommended the use of
confidence intervals and probabilities for parametric uncertainty,
and the use of multiple models with model averaging or selection
for structural uncertainty. Notwithstanding this positive outlook,
the provision of assurances for safety-critical SAS continues to
pose major challenges according to our respondents. We detail
these findings in the paper, in the hope that they will inspire
valuable future research on self-adaptive systems.

Index Terms—Self-adaptation, uncertainty, unanticipated
change, models, modeling formalism, survey

I . I N T R O D U C T I O N

Self-adaptation enhances a system with an external feedback

loop that tracks the state of the system and, through adapting

it to internal and environmental changes, ensures that a set of

goals is consistently achieved [1]–[3]. A classic example is a

service-based system whose feedback loop dynamically selects

services that keep the failure rate below a required threshold,

while also minimizing cost. Multiple terms have been used

to refer to such systems, including autonomic systems [4],

dynamic adaptive systems [5], and self-adaptive systems [6].

We will use the last term in our paper.

Self-adaptation was introduced about two decades ago as

a means to manage the growing complexity of computing

systems [4], [7]. While the initial focus was on automating

the complex task of system operators, about a decade ago

researchers and engineers started to realise that the presence

of uncertainty is a central aspect of self-adaptation [8].

Self-adaptation introduces a blur between traditional offline

activities performed by engineers and online activities per-

formed by the system [9], [10]. In particular, a self-adaptive

system (SAS) can be considered as a partially completed system

with some degrees of freedom in terms of its configuration. This

allows the SAS to adapt its configuration when the conditions

change in order to deal with uncertainties that are difficult or

impossible to anticipate before deployment. At runtime, the

system collects additional information to resolve the uncertainty

and adapt itself to preserve its goals.

Unfortunately, uncertainty is a complex concept that is diffi-

cult to understand, let alone to manage. Over the years a number

of researchers have proposed initial taxonomies of uncertainty

for self-adaptive systems [11]–[14]. While these taxonomies

have been instrumental in putting the focus on uncertainty as a

key driver for self-adaptation, the SAS research community’s

perception of what constitutes uncertainty remains unclear. As

an illustration, a common topic of debate among members of

the community is the extent to which self-adaptive systems deal

with unanticipated change. Some people argue that no human-

made system can handle unanticipated phenomena, while others

argue that dealing with unanticipated change is exactly the

key challenge of self-adaptation. Clarifying such differences

in opinion is crucial for the community.

Our paper aims at shedding light on the perception of

the community on the notion of uncertainty in self-adaptive

systems. To this end, we conducted a survey about (1) the

ability of systems to deal with unanticipated change, (2) the

representation of uncertainty in SAS models, and (3) the

challenges of handling uncertainty for systems with strict

requirements. The 51 survey participants are actively involved

in research on self-adaptation in the broader community. This

paper presents the results of our survey, and is organized as

follows.

We briefly summarize existing taxonomies for uncertainty in

self-adaptive systems (Section II) and the scientific method we

used in this research (Section III). We then report the analysis

of the data collected (Section IV) and discuss the insights

obtained (Section V). Finally we discuss threats to validity

(Section VI) and wrap up with an outlook for future research

in this area (Section VII).

I I . R E L AT E D S T U D I E S

The notion of uncertainty has been studied in a wide variety

of fields, usually in connection to decision-making; a recent

example is [15]. Most of these studies assume that decision-

making processes are “executed” by humans. However, in

self-adaptive systems, the decisions are primarily made by

software. This requires a fresh and innovative approach to the

problem of decision-making under uncertainty.

Over the past years, the number of studies that take into

account uncertainty in self-adaptive systems has gradually been

increasing. A typical example is the use of probabilistic runtime



models, such as Markov decision processes [16], [17] and

parametric stochastic models [18], [19] to reason about change

when making adaptation decisions. As progress is taking place,

a more systematic understanding of SAS uncertainty is required.

Hereafter, we summarize a representative set of studies on

the notion of uncertainty in self-adaptive systems and conclude

with positioning the work presented in this paper.

Taxonomies: Ramirez et al. [11] provide a definition and

taxonomy for uncertainty in dynamically adaptive systems. The

taxonomy classifies sources of uncertainty for the requirements,

design, and runtime phases of dynamically adaptive systems.

The uncertainties are described using a template inspired

by the established template for representing design patterns

(name, classification, context, impact, mitigation strategies,

sample illustration, related sources). Perez-Palacin et al. [13]

present a taxonomy for uncertainty in SAS modeling that

comprises three key dimensions: location, level, and nature.

The location of uncertainty refers to the model aspects affected

by the uncertainty. The level of uncertainty indicates where the

uncertainty is placed on the spectrum between deterministic

knowledge and total ignorance. Finally, the nature of uncertainty

shows whether the uncertainty is due to the imperfection of

the acquired knowledge or to the inherent variability of the

modelled phenomena.

Literature Review: Mahdavi et al. [14] performed a systematic

literature review on uncertainty in self-adaptive systems with

multiple requirements. From the data collected from 51 primary

studies the authors derive a systematic overview of uncer-

tainty dimensions (location, nature, level/spectrum, emerging

time, sources) with their respective options. The sources of

uncertainty are further elaborated and are grouped into several

classes (i.e., uncertainty of models, adaptation functions, goals,

environment, resources, and managed system).

Others: Garlan [8] discusses several sources of uncertainty

affecting modern software systems (humans in the loop,

learning, mobility, cyber-physical systems, rapid evolution),

and argues that uncertainty in software systems should be

considered as a first-class concern throughout the whole system

life cycle. Esfahani and Malek [12] study uncertainty in self-

adaptive systems with an emphasis on sources of uncertainty

that include: simplifying assumptions, model drift, noise,

parameters in future operation, human in the loop, objectives,

decentralization, context, and cyber-physical systems. Their

study also investigate uncertainty characteristics (reducibility

versus irreducibility, variability versus lack of knowledge, and

spectrum of uncertainty).

Conclusion: Previous research has studied the notion of

SAS uncertainty based on existing research literature and on

individual projects and experiences. Our paper complements

these important efforts by presenting insights on the SAS

research community’s perception of the notion of uncertainty

in self-adaptive systems.

I I I . R E S E A R C H M E T H O D

To shed light on the research community’s perception

of uncertainty in self-adaptive systems, we carried out a

survey, which is an empirical method where data are collected

from a population using a questionnaire [20]. The population

for the survey comprises those who perform research on

uncertainty in self-adaptive systems and validate the results of

this research in concrete systems. To obtain a representative

sample, we gave the questionnaire to the researchers attending

the main SAS conferences, and complemented this with direct

email invitations sent to additional SAS experts. All survey

participants were researchers with experience in dealing with

uncertainty in self-adaptive systems.

We performed the survey following the guidelines by

Kitchenham et al. [21]. In this section, we explain the research

questions, and then summarize the methodological steps of the

survey: planning, conducting, analyzing, and documenting.

A. Research Objective

The overall goal of this research has been to obtain insights

into the perception of the community on the notion of

uncertainty in self-adaptive systems. This goal translates to

three research questions to be answered by the survey:

– RQ1 (Dealing with uncertainty): What is the perception

of the community on the ability of self-adaptive systems

to deal with changes that were not anticipated when the

systems were engineered?

– RQ2 (Representation of uncertainty): What is the percep-

tion of the community on the representation of uncertainty

in runtime models and the paradigms used for modeling?

– RQ3 (Challenges of uncertainty): What are the challenges

for uncertainty in self-adaptive systems perceived by the

community, in particular for systems with strict goals?

With RQ1, we wanted to gain insight into the scope of

uncertainty, i.e., into the extent to which a self-adaptive system

can handle changes not anticipated before the system deploy-

ment. With RQ2, we wanted to understand how uncertainty

can be represented in runtime models and what the restrictions

are. Finally, with RQ3 we wanted to gain insight into the

main challenges researchers see with respect to dealing with

uncertainty, in particular for systems with strict requirements.

B. Planning the Survey

We used a cross-sectional survey [21] with a questionnaire

that we delivered to the participants personally or by email.

After defining the research questions, we designed the

questionnaire to cover the different aspects of uncertainty

targeted by these questions. To that end, we included: (i) closed

questions with one or more choices complemented with a text

box where respondents could elaborate on their choice using

free text; and (ii) open questions that respondents could answer

with free text. All questions were optional.

The questionnaire comprised in total seven questions. To

answer RQ1, we formulated two questions; one aimed at

understanding the perception of the respondents on the ability

of self-adaptive systems to deal with unanticipated changes;



and the other one to gain insight into how the system may be

able to gain awareness of change that it was not engineered for.

To answer RQ2, we formulated four questions. With the first

of these questions, we aimed at understanding the perception

of the respondents on the aspects of SAS runtime models

that can be associated with uncertainties. The following three

questions then zoomed in on uncertainties in model parameters,

the model structure, and the modeling formalism. Finally, to

answer RQ3, we formulated a last question that aimed at

gaining insight into the perception of the respondents on open

challenges in handling uncertainty in self-adaptive systems

with safety-critical requirements.

The questionnaire has been designed over several iterations.

An initial set of questions was defined by three of the authors

in a face-to-face meeting. The fourth author then checked

the questionnaire, and proposed a number of refinements

plus an additional question. The revised questions were then

discussed among the four authors. After several adjustments,

the questionnaire was finalized for release.

C. Conducting the Survey

We collected data using a combination of direct and indirect

methods [20]. In particular, we distributed the questionnaire

to the attendees at 2019 editions of the main venues for the

SAS research community: SEAMS (International Symposium

on Software Engineering for Adaptive and Self-Managing

Systems), ICAC (International Conference on Autonomic

Computing) and SASO (International Conference on Self-

Adaptive and Self-Organizing Systems).1 Additionally, we

distributed the questionnaire to the participants at the Shonan

seminar on “Controlled Adaptation of Self-adaptive Systems”

(CASaS) in January 2020. Each of these events was attended

by at least one of the authors. To enhance validity, we have sent

personally invitations via email to several additional experts of

the community, inviting them to complete the questionnaire.

All respondents were researchers with experience in dealing

with uncertainty in self-adaptive systems. The sample included

PhD students, postdoctoral researchers, and academics ranging

from assistant professor to full professor. The respondents

completed printed copies of the two-page questionnaire by

hand. One of the survey authors then copied all the answers

into a spreadsheet for analysis.

D. Data Analysis

To analyze the data collected from the answers with options,

we used simple descriptive statistics. In particular, for each

question, we determined the percentages of the different

response options. We then complemented these results by

analysing the comments provided by the respondents. To

that end, we applied simple qualitative data analysis using

coding. This type of analysis enables identifying patterns and

relationships between the data [20], [22]. The coding was

performed using the following steps:

1After their 2019 editions, ICAC and SASO merged into ACSOS.

1) Extracting data: we read and examined the data from

the questions that allowed comments, and the answers

to the open questions.

2) Coding data: we did not define any coding upfront;

instead we analyzed the data and incrementally added

codes to small coherent fragments of the text provided

in different answers (as suggested in [23]).

3) Translating codes into categories: starting from the codes

we then derived categories through an abstraction step

where the different codes were thematically grouped.

To avoid bias in the identification of codes and the synthesis

in categories, we performed both steps for each question in

a team of two authors. Both authors worked independently

and then exchanged their results. Differences where then

discussed until consensus was reached. Finally, the other

authors crosschecked the results to finalize the coding.

E. Documenting the Survey Results

The results of the survey are documented in this paper that

was jointly produced by the four authors. All material of the

survey is available online.2

I V. R E S U LT S

We collected 51 completed questionnaires distributed as

follows: 11 from SEAMS, 15 from ICAC/SASO, 11 from

CASaS, and 14 from additional experts. In this section, we

report the results of the analysis of the raw data for each

research question and conclude with key findings. In the next

section, we further discuss and interpret the results.

A. RQ1: Dealing with uncertainty

To address this research question, we analysed the partici-

pants’ answers to the two survey questions shown in Table I.

RQ1a: Handling unanticipated changes. The first question

asked for the participants’ view on the possibility that SAS

may only be able to deal with anticipated changes. Only 29%

of those surveyed held this view, with a majority of 71% of

our respondents deeming that SAS would be able to deal with

(at least some level) of unanticipated changes.

Asked to explain their position, those who considered SAS

unable to handle unanticipated changed suggested two main

reasons for this (Table II):

• Unless a system is built to deal with a specific type of

change from the outset, it will not be able to handle it;

• Unless a change is anticipated, a system will not be able

to monitor its occurrence.

In contrast, the respondents who disagreed that SAS could only

deal with anticipated changes held the views that (Table II):

• As a matter of principle, SAS ought to be able to handle

unanticipated changes too;

• SAS can handle unanticipated changes conditional on

their extent, frequency, etc. staying within certain limits;

2https://people.cs.kuleuven.be/danny.weyns/surveys/uncertainty/index.htm



TABLE I
S U RV E Y Q U E S T I O N S A N A LY S E D T O A N S W E R R Q 1

ID Question Responses (out of 51 participants)

RQ1a Self-adapting systems can deal only with
anticipated changes. Self-adapting systems
cannot deal with unanticipated changes. Disagree

Agree

36

15

RQ1b If you selected “Disagree” as answer for Question 1, please explain how the system may be able to gain awareness of the
occurrence of a change that it was not engineered to anticipate.

• SAS can handle unanticipated changes as long as learning

about them, e.g., with human support or by employing

evolutionary techniques, is feasible.

A broad spectrum of approaches that have the potential to allow

SAS to deal with unanticipated changes have been proposed

by these respondents. As shown in the last part of Table II,

these approaches ranged from software “evolution”, (machine)

learning and genetic techniques to the online synthesis (of

“coping” strategies), runtime modelling, generalisation, and

optimization-driven decision making.

RQ1b: Gaining awareness of unanticipated changes. This

question was posed to the survey participants who indicated

that SAS should be able to deal with unanticipated changes,

asking them to suggest methods that these systems can

use to gain awareness that such a change occurred. Their

answers, summarised in Table III, identified three important

categories of concerns associated with SAS gaining awareness

of unanticipated changes:

• Unanticipated change awareness – different criteria can

be used to decide whether a SAS is actually aware of an

unexpected change. Five participants suggested that simply

noting the presence of unexpected symptoms should be

regarded as awareness that an unexpected change has taken

place. In contrast, six participants insisted that awareness

could only be claimed once the cause of the unexpected

change was identified by the SAS. Finally, six additional

respondents recognised the importance of deciding what it

means for a SAS to be aware of an unanticipated change

without specifying how this decision could be taken.

• Unanticipated change identification – a range of methods

for identifying unexpected changes were suggested by

the 36 participants whose answers to question RQ1a

indicated that dealing with such changes should be feasible

for SAS. The most frequently suggested methods (each

mentioned by five participants) are: monitoring deviations

in the system parameters; observing the consequences of

changes; noticing a mismatch between the SAS internal

models and runtime observations; and analyzing historical

data collected through monitoring the SAS. A few other

methods were also suggested: noticing the lack of knowl-

edge/understanding of the SAS status (mentioned by four

participants); identifying broad change classes (proposed

by two participants); and receiving information from a

human (indicated by one participant).

• Reacting to unanticipated changes – three main classes of

methods have been suggested. First, nine respondents indi-

cated that existing SAS actions for dealing with expected

changes should be adapted to deal with the unexpected

change, e.g., by applying evolutionary approaches to the

available set of actions. Second, four respondents proposed

the synthesis of (completely) new such actions, although

no clear approach to achieve this was suggested. Finally,

three respondents indicated that using a default, fail-safe

action could allow SAS to deal with unanticipated changes,

albeit in an over-conservative way.

Key findings from RQ1:

• Over two thirds of the survey participants hold the view
that self-adaptive systems can be engineered to cope with
some level of unanticipated changes.

• The research community has mixed views on whether a
SAS can be deemed aware of unanticipated changes when
their symptoms are observed or only when the cause for
these symptoms is identified.

• Three types of SAS reactions to unanticipated changes
were proposed: adapt existing actions, synthesise new ones,
or just use a default fail-safe action.

B. RQ2: Representation of uncertainty

To answer this research question, we analysed the participant

answers to the survey questions shown in Table IV.

RQ2a: Uncertainties in model elements and formalism. The

first question that we analysed explored the respondents’ view

on the characteristics of runtime models that uncertainties can

be associated with. High percentages of 96% and 94% of the

respondents held the views that these characteristics included

the model parameters and structure, respectively. Additionally,

82% of the respondents deemed the modelling formalism

potentially unable to capture relevant aspects of the SAS and

its environment. All these 42 respondents also selected model

parameters and structure in their answers, leaving only nine

participants who did not agree with all three concrete options

suggested in question RQ2a. The question also allowed the

participants to provide additional comments on uncertainty

sources in a free-text box. The uncertainty sources mentioned in

these comments (Table V) can be organised into four categories:

• Modelling limitations – Ten respondents ascribed sources

of uncertainty to modeling limitations. Out of these,

six participants identified modelling constraints and four

modelling assumptions as main causes of problems.

• Monitoring limitations – A second group of five re-

spondents identified as monitoring limitations the origin

of uncertainty, where the limitation can be located in

the scope of the monitoring (three answers) or in the

monitoring process itself (two answers).



TABLE II
Q U A L I TAT I V E A N A LY S I S O F E X P L A N AT I O N S F R O M R Q 1 A

Categories & codes # Example quote(s)

Reasons to agree†

Not built for 6 “System (instances) cannot adapt to
changes for which they have not been built
(designed, prepared for),” “any capability to
adapt to new situations where no explicit
action is provided must have been built into
the system from the beginning”

Non-monitorable 9 “If it is not anticipated, the system cannot
monitor the issue”, “The possibility of change
should be in some way already present in
the system.”

Reasons to disagree†

Matter of principle 7 “Self-adapting system SHOULD adapt to
unanticipated changes in some manner,” “I
disagree in principle, but I don’t think we
have yet reached this goal as fully as possi-
ble.”

Conditional 6 “it will depend on the kind of unanticipated
changes, their extent, their frequency, etc.
No system will adapt to anything anytime,”
“It depends on what changes and reactions
one wants to consider. If the reaction is
always the same, then any change can be
considered”

Propositive 23 “Learning approaches could allow the sys-
tems to learn new information about unan-
ticipated changes especially if this happens
with a ‘human in the loop’ approach”, “If you
can detect the consequences of the changes,
you might be able to cope with that using
genetic techniques”

Unanticipated
change support
Evolution 4 “System (instances) cannot adapt to

changes for which they have not been
built (designed, prepared for). They require
software evolution.”

Learning 9 “a self-adaptive system should learn during
runtime, so it should be able to deal with
unexpected changes (to some extent-it de-
pends on the knowledge base”

Genetic
techniques

4 “If you can detect the consequences of the
changes, you might be able to cope with that
using genetic techniques.”

Online synthesis 2 “It depends on the capabilities of the system.
The system may be able to recognize an
unknown situation and synthetise a way to
cope with it”

Modelling 5 “if unanticipated changes are reflected to
model, SAS can deal with them”

Generalization 2 “Generalization capabilities of utilized algo-
rithms, for example.”

Decision making 2 “the adaptation should be seen as an op-
timization problem and not a selection be-
tween predefined plans, No rules - mathe-
matical optimization”

Others 5 “I imagine a system that dynamically discov-
ers a new sensor and uses the input to react
to changes of the environment which it was
not able to detect before.”

†that SAS cannot deal with unanticipated changes

• Novelty – Three participants attributed to the novelty of

phenomena the cause of uncertainty.

• External entities – The intervention of external malicious

entities or humans, has been indicated by five respondents

as a major source of the uncertainty.

TABLE III
QUALITATIVE ANALYSIS OF EXPLANATIONS FROM RQ1B

Categories & codes # Example quote(s)

Defining awareness
Symptoms observed 5 “the change can sometimes be antici-

pated indirectly by affecting on other fea-
tures/behaviors, i.e. [...] its partial conse-
quence can be anticipated”

Cause identified 6 “a learning module could discover the
correlation between a certain change in
the environment and some bad behavior
of the system and learn from this”

Unspecified 6 –
Unanticipated change
identification
Monitor parameter de-
viations

5 “”drop in the system utility”, “sensors are
not necessary limited to detect the conse-
quences of ’anticipated’ changes”

Observe
consequences

5 “multiple factors can [make] a robotic
system lose its ability to make a right turn
[and] it may be enough to understand the
change rather than its root cause”, “mea-
suring the effect of an uncertain variable
without measuring the variable directly”

Internal model mis-
match

5 “having a model [...] and checking it;
mismatch can indicate [unanticipated]
change”, “initial model can be partially
wrong/incomplete”

Analyze history 5 “examining historical patterns among
data/behaviors”

Unknown current sta-
tus

4 “no matching rule in the knowledge base”

Identify change class 2 “predict ‘classes’ of likely changes carry-
ing common characteristics and require-
ments for adaptation”

Human support 1 “a human in the loop could give the system
awareness of the change”

Unanticipated change
reaction
Adapt existing actions 9 “genetic algorithms could search [for]

plans similar to what the SAS knows, [and]
apply [them] to new circumstances”, “[use]
cross-learning [...] i.e. learn from similar
systems to improve handling [of] changes”

Synthesize new ac-
tions

4 “[in] a situation for which [the SAS] has
no solution, it reaches an exception state
and [...] synthesizes a completely new
adaptation”, “engineering of systems at
design time that will have the ability to
autonomously and independently modify
themselves [...] to successfully cope with
the [unanticipated] changes at runtime”

Use default action 3 “general reactions [that] can solve any
issue”, “driving itself off in case of unfore-
seen [change]”

Interestingly, only two respondents identified other model

characteristics that uncertainties can be associated with:

• One of these states that ‘One needs to distinguish between

configuration (parameter, structure) and monitoring results

(values and structures),’ emphasizing the distinction

between the system state and the properties monitored.

• The other respondent mentions that ‘no model is correct

at any time. the best you can do is good enough decisions,

soon enough to matter,’ pointing out that models cannot

always represent real-world phenomena correctly.

RQ2b: Handling uncertainties in the parameters used by

the system. This question probed the respondents’ view on



TABLE IV
SURVEY QUESTIONS ANALYSED TO ANSWER RQ2

ID Question Responses (out of 51 participants)

RQ2a Assuming that the knowledge a self-adaptive
system collects and generates (about the
system it manages and its environment) is
represented as a runtime model, then uncer-
tainties in such a model can be associated
with (select all that apply):

Other (please specify)

Modeling formalism1

Model structure

Model parameters

22

42

48

49

RQ2b Uncertainties in the values of model param-
eters can be dealt with by expressing them
using (select all that apply):

Other (please specify)

Combination of intervals & probabilities3

Probabilities & probability distributions

Intervals of values

Concrete values2

13

46

44

36

26

RQ2c Uncertainties in the model structure (i.e., ele-
ments in the model or parts of the model) can
be handled by (select all that apply):

Using multiple models and applying: 42

- model selection5

- model averaging4

33

25

Other (please specify)

Alternative structures within a model6

14

36

RQ2d When the uncertainty comes from the mod-
eling formalism that does not allow capturing
all relevant aspects of the system, it is not
possible to handle this uncertainty at runtime.

Disagree (why?)

Agree

23

28

1i.e., uncertainties can be associated with the inability of the modeling formalism to capture the relevant aspects of the system
2estimated at design time, or determined at runtime; 3e.g., confidence intervals; 4i.e., combining several models into one model;
5i.e., selecting one model among different models based on some criteria; 6i.e., alternative structures with associated probabilities;

possible ways to express uncertainty in the parameters of

models. The most selected method from those that we proposed

was, with 90% of respondents, the combination of intervals

and probabilities. When these methods appear separated, the

probabilities and intervals options alone were selected by 86%

and 71% of respondents, respectively. The method of concrete

values was selected by 51%. One respondent pointed out that

the addition of a concrete value that is used as tolerance

transforms ‘concrete values’ into ‘intervals of values’.

Thirteen of the respondents provided additional methods

to handle uncertainty. Table VI reports them, organised into

two categories: methods to reduce the uncertainty in parameter

values and methods to express the lack of certainty.

• The methods to reduce uncertainty in parameter values

included the use of domain knowledge (mentioned by

three respondents), the continuous search and refinement

at runtime to increase the level of certainty (suggested

by three respondents), and the use of different sources of

data for each parameter (proposed by two respondents).

• Those who proposed methods for expressing the lack of

certainty suggested the use of: sensitivity and stability

analysis; and relations between the values of parameters

and relevance of the parameters.

The use of a free-text box in this question allowed us to observe

the lack of community consensus on the uses of SAS models.

A respondent questioned here the necessity of a model and a

modelling formalism, and also stated the belief in systems that

adapt without previously determining what they can adapt to.

RQ2c: Handling uncertainties in the model structure. The

third question collected the opinions of the participants about

methods for handling uncertainties in the model structure. The

question proposed two families of methods for models with

uncertain structure: using multiple models and using alternative

structures in the model. The two types of methods were selected

by 82% and 71% of the respondents, respectively.

In addition, we split the utilisation of multiple models into

two concrete methods: model averaging and model selection.

Among the group of respondents who selected the utilisation of

multiple models (42 out of the total of 51), the model selection

method was chosen more often than the model averaging, with

79% and 60% of the answers, respectively. Interestingly, 23

out of the 42 respondents selected both options. This means

that only two people selected exclusively model averaging, but

10 of them pointed out exclusively a model selection method.

A free-text box allowed respondents to specify other methods

for handling model structure. Table VII summarises the 14

responses we received, organised into four groups:

• Online model discovery or online model learning was

referred to by five respondents, and involves the runtime

generation and modification of the model elements.



TABLE V
QUALITATIVE ANALYSIS – EXPLANATIONS OF ANSWERS TO RQ2A

Categories & codes # Example quote

Modelling limitations
Modelling
constraints

6 “The structure may be adjusted based on
noisy models and models typically are not
able to capture all aspects of the sys-
tems,” “Complexity of model: scale, multi-
dimensionality”

Modelling assump-
tions

4 “The more of the model we assume,
the less resilient the system is to uncer-
tainty,“Incorrect assumptions on the behav-
ior of the system”

Monitoring
limitations
Scope of monitoring 3 “What your monitor can provide,” “Values

and structure based monitoring results
(monitorable properties).”

Monitoring process 2 “Parameters may be tuned based on noisy
measurements, errors related to the sens-
ing process (resolution, accuracy).”

Novelty
Novel phenomena 3 “Novel Stimuli e.g. obstacles, novel interac-

tions, new requirements and priorities.”
External entities
Malicious entities 3 “Adversarial actors in the environment,

reality (because all models leave out stuff
that we believe doesn’t matter and some-
times it does)”

Human involvement 2 “human in the loop error - multiple owner-
ships.”

TABLE VI
QUALITATIVE ANALYSIS – EXPLANATIONS OF ANSWERS TO RQ2B

Categories & codes # Example quote

Reducing uncertainty
Domain knowledge 3 “Starting guesses”, “Design time estima-

tion is also a realistic starting point (e.g.,
backed up by expert knowledge and knowl-
edge of the domain)”

Continuous
refinement

3 “Refinement by experimentation and reflec-
tion”, “Mechanisms like metaheuristics [...]
to search for or construct new certainty ”

Redundancy 2 “redundancy”, “multi-sensor data fusion”
Expressing
uncertainty
Through Analysis 2 “Sensitivity and stability analysis can sup-

port the concrete values”
Through
Relationships

3 “Implications and other relations between
parameters”, “Value constraints and rele-
vance and importance measures”

• Flexible models were considered in five answers. This

group of methods uses models that can fit more than

one structure at the same time, for instance, incomplete

models, models of boundaries, or approximate models.

• Other proposed methods were based on a combination

or aggregation or multiple models, but more advanced

compared to the provided options. These methods include,

for instance, model interpolation.

• Methods that employ multiple or multi-view models to

capture probabilities or to compare their results.

RQ2d: Uncertainties in model formalism prevent handling

them at runtime. The fourth question of the questionnaire

related to RQ2 investigated the community belief about the

impossibility of SAS to deal with uncertainties related to

TABLE VII
QUALITATIVE ANALYSIS – EXPLANATIONS OF ANSWERS TO RQ2C

Categories & codes # Example quote

Reducing uncertainty
Online learning 5 “New model elements can be discovered

at runtime”, “Online model generation”
Flexible models 5 “Incomplete models”, “A flexible model that

does not fit a structure, but rather defines
boundaries”

Models combination 3 “Interpolation that may be seen as some
form of averaging but it may be different”
and “subjective logic [...] can be considered
for aggregating the models”

Multiple models 3 “Multi-view models capturing probabilities”,
“Comparing results of multiple models”

modelling formalisms. Analysing the answers (Table IV) we

observed 45% of respondents agreeing with the statement and

55% of respondents claiming that uncertainties can be dealt

with notwithstanding their origin in the modelling formalisms.

The survey asked for explanations from participants.3 Their

explanations (Table VIII) can be organised into two categories:

• Uncertainty management – Eight respondents stated that

in this case uncertainties can be only partially managed,

while twelve respondents believed in the unlimited ability

of SAS to deal with this type of uncertainty.

• Methods to handle uncertainties – Model evolution has

been proposed by six participants, with four participants

suggesting the possibility of online model adaptation, and

two of the opinion that SAS can create new online models;

Combination of techniques is the solution foreseen by

seven respondents, through the combination of modelling

formalisms (two answers) or the combination of different

approaches (five answers). Eight participants proposed

alternative techniques, including model-free approaches

(two answers) and best-effort techniques (six answers).

Key findings from RQ2:

• Almost all members of the community agree that param-
eters and structure of models are key artifacts to capture
uncertainties in self-adaptive systems.

• To handle uncertainty in models’ parameters almost all the
members of the community would adopt a combination of
confidence intervals and probabilities.

• A large part of the community hold the opinion that
uncertainty in models’ structure can be dealt with using
multiple models and then applying model averaging or
model selection.

• Almost half of the community members hold the belief
that when uncertainties are related to model formalisms,
SAS are not able to handle them at runtime.

C. RQ3: Challenges of uncertainty

This question was answered by analysing the responses to

the survey question shown in Table IX.

Challenges in handling uncertainties of safety-critical SAS.

Among the proposed challenges, providing assurances that

3The questionnaire asked a clarification from participants that selected
disagree, but besides 23 of those, also 6 participants that selected agree
provided a clarification of their choice.



TABLE VIII
QUALITATIVE ANALYSIS – EXPLANATIONS OF ANSWERS TO RQ2D

Categories & codes # Example quote

Uncertainty management
Partial 8 “I think it would still be possible to

tackle uncertainties to a certain degree.
I think it [. . . ] depends on the case
on hand” ” it might not be possible
to handle it perfectly, but it can affect
some other aspects captured in the
model. Can be handled partially”,

Unlimited 12 “It is possible to handle the uncertainty,
but the system has to have additional
runtime mechanism to learn beyond
the model initially provided’ “feedback
mechanism can deal with unforeseen
events or with unmodelled dynamics”

Methods
Models evolution
Online model adaptation 4 “Parameter learning can be an answer

here,” “the controller of a SAS could in
principle be able to recognize its limita-
tions and resolve them by extending its
own functionalities, e.g., via a genetic
algorithm.”

Online model acquisition 2 “model creation and adaptation,” “the
system can acquire the new formalism
at runtime”

Techniques combination
Modelling formalisms 2 ”Alternatives modelling formalism can

be used in a complementary manner”
Other techniques 5 ”Take, for example human control in

the loop to resolve situations that the
model cannot capture yet”, ”The mod-
elling formalism can be combined with
another technique that could be trig-
gered when the model that initially was
conceived is not longer valid”

Alternative techniques
No models 2 “Could be handled without a model

using model-free [approach]”, ”preemp-
tive mechanisms without explicit rea-
soning can be employed (e.g., moving
target defense)”

Best effort 6 “Prepare to make non optimal deci-
sions”, ”Systems are built with a (usu-
ally small) finite set of actions they
can take.Often the best of this set
can be picked with (very) incomplete
information.”

adaptation decisions are correct with respect to the goals was

selected by 86% of participants, making self-adaptation proac-

tive instead of reactive was selected by 55% of participants,

57% of participants selected integrating machine learning into

the self-adaptation process, and ensuring the scalability of the

self-adaptation was selected by 63% of participants.

This question received several comments from respondents in

the free text box (49% of them filled the free text box). Table X

reports the answers, organised into two categories: comments

that refined or provided additional information to one of the

challenges listed among the options in the questionnaire, and

comments that pointed out other distinct challenges.

The comments that refined the suggested challenges in

the questionnaire relate to system characteristics that self-

adaptation should guarantee, and aspects that should be

included in the research of systems with assurances and using

machine learning. The main properties mentioned in comments

on system assurances were the safety, timeliness, reliability,

and trust. Across the answers, seven respondents urged for

caution and potential risk when applying self-adaptation to

safety-critical systems. For instance, respondents noted that

deciding actions in novel contexts is risky for safety-critical

systems both for reactive and proactive decisions, that the

utilisation of machine learning hinders the correct behaviour

of the system in first phases of its execution, and that machine

learning complicates the computation of formal guarantees

about the system behaviour.

The comments that pointed out other challenges for handling

uncertainty in safety-critical self-adaptive systems are organised

in three groups (the second half in Table X):

• Lack of understanding or incomplete knowledge of the

environment – Respondents noted that knowledge is

limited and that models are incomplete representations.

• Human in the loop – Deciding the most appropriate

granularity of control operations for human operators

is a challenge. Further, respondents emphasise the need

for self-explainable systems, for instance for self-adaptive

systems that work in cooperation with humans, and as part

of the provision of assurances generated by the system.

• Ethical and moral aspects – Some decisions raise moral

and ethical questions, which make the correct outcome

undefined or, at least, not univocal. Therefore, these type

of decisions must be taken by humans.

Key findings from RQ3:

• A large part of the community deems the assurances
guarantee (for instance for safety, timeliness, reliability) as
a key challenge for safety-critical self-adapting systems.

• Caution should be taken when applying self-adaptation
in safety-critical systems, in particular regarding novel
situations and in relation to the use of machine learning.

• Dealing with lack of knowledge, supporting humans in the
loop, and dealing with ethical aspects are key challenges
of safety-critical self-adapting systems.

V. DISCUSSION OF RESULTS

Unanticipated change. One of the key insights of our survey is

the disagreement about the ability of self-adaptive systems to

handle unanticipated change: 71% of the participants agree that

self-adaptive systems can deal with unanticipated change, while

the remaining 29% disagrees. Note that there is less contrast

in the SASO community with 86% and 14%, compared to the

rest with 60% and 40%. One of the participants that disagreed

wrote: “I haven’t seen proposal for creative thinking that enable

systems to do things they were not engineered for [...] If

they contact other components or services to find solutions to

unexpected issues, then they were engineered to do that.” This

position conflicts with the statements from those agreeing that

self-adaptive systems can handle unanticipated change. A major

argument for agreeing lays in the use of machine learning and

search-based techniques as expressed in “a self-adaptive system

should learn during runtime, so it should be able to deal with

unexpected changes” and “Our research on using GA to explore



TABLE IX
SURVEY QUESTION ANALYSED TO ANSWER RQ3

ID Question Responses (out of 51 participants)

RQ3 Handling uncertainty in safety-critical
self-adaptive systems (e.g., self-
driving cars) is difficult because of re-
maining open challenges associated
with (select all that apply):

Other (please specify)

Ensuring the scalability of self-adaptation

Integrating ML into the self-adaptation

Making the self-adaptation proactive

Providing assurances1

25

32

29

28

44

1i.e., that self-adaptation decisions are correct with respect to the specified goals

TABLE X
QUALITATIVE ANALYSIS – EXPLANATIONS OF ANSWERS TO RQ3

Categories & codes # Example quote

Refinements of pro-
posed challenges
Providing
assurances

11 “Ensuring the efficiency and reliability
of the self-adaptation”, “Providing as-
surances includes 3 aspects: timely as-
surances (in time for action), reachabil-
ity/selection of solution in time (guaran-
tee that a safety critical adaptation will
converge), explanation of adaptation
sufficient for the understanding+trust
(collaborating agents, humans or ma-
chines)”

Utilization of ma-
chine learning

3 “The real challenge associated with ML
here is to provide formal guarantees”.

Caution and risk 7 “Both reactive and proactive decisions
can be risky in novel contexts”, “[with
ML] the system will not behave cor-
rectly in these initial phases”

Other challenges
Incomplete knowl-
edge

6 “Lack of knowledge on how to handle
it, i.e., incomplete model”, “Lack of
knowledge about environment”, “In-
completeness of the knowledge and
consequently of the models represent-
ing the knowledge”

Human in the loop 7 “Providing the right granularity, API, etc.
for the human control is hard”, “[...]
self-explainablity of the system and the
role of humans –that is even if the
system does something super smart,
it works in cooperation with humans
which have no clue what the system
does and why”

Ethical aspects 3 “Moral and ethical questions which
are only to be answered by humans
(e.g., the well-known dilemma about
risking either the life of the driver of
those of passer-by in a self-driving car”,
“Ethical reasons: what is the ground
truth (correct outcome)?”

unknown unknowns shows you can adapt the adaptation to

new circumstances.” The current situation is probably best

reflected in: “Most self-adaptive systems are partly designed

using primitive adaptive mechanisms. They do have limitations

[...] but there are much better methods that do not” and “maybe

the current self-adapting systems deal with only anticipated

change, but all self-adaptive systems need to have mechanisms

to be able to deal with [unanticipated changes].” In conclusion,

as the ability of self-adaptive systems to handle unanticipated

change is subject of debate, the community would benefit from

a principled discussion about this topic. This would improve

our understanding of uncertainty and set the right expectations

for what self-adaptive systems can handle and what is beyond

their capabilities.

Support for unanticipated change. The survey participants

provided a rich palette of potential methods to equip self-

adaptive systems with support for handling unanticipated

change. Four main groups of methods can be distinguished. The

first group is software evolution, which is the traditional method

to enhance a software system with new functionality. Integrating

adaptation with evolution goes back to the pioneering work

of Oreizy et al. [7]. The second group is modeling and

abstraction. These methods highlight the need for modeling

techniques that allow incorporating unanticipated change in

some way in runtime models. This way, the feedback loop

system will be able to reason about these changes and take

them into account in the decision-making. The challenge here

will be in equipping a modeling technique with the ability to

incorporate change that was not anticipated. The third group is

the use of online techniques to handle unanticipated change as

exemplified by online synthesis. Synthesis techniques like [19],

[24] can automatically produce a controller given a model

of the target system, the set of controllable events, and the

controller goal. Nevertheless, supporting online synthesis for

unknown unknowns remains an open challenge. The fourth

and final group is exploiting machine learning and genetic

techniques. There is a strong belief that these approaches will

push the abilities of self-adaptation beyond what we have been

able to achieve so far. Several participants take even a stronger

position as reflected in the statement “machine learning should

be mandatory for appropriate adaptation.” In contrast, other

participants highlight that there is no free lunch, as expressed

in “I believe the real challenge associated with ML here is how

to provide formal guarantees of correctness, timeliness, safety,

and other important qualities that these system should have.”

Concretely addressing the different challenges associated with

these groups of methods will require substantial research.

Open challenges. The participants put assurances for self-

adaptive systems that operate under uncertainty as the top

challenge for the community, emphasizing the need to manage

the dichotomy between uncertainty and guarantees. Other

important challenges are proactive adaptation, integration with



machine learning, and scalability. Emerging challenges are self-

explainability and consideration of ethical aspects. Tackling

these challenges will require an extensive joint effort across

teams within the community, and collaboration with researchers

from other disciplines.

VI. THREATS TO VALIDITY

We assess threats to the validity of the study using the

guidelines proposed in [25]. We focus on construct validity

(extent to which we obtained the right measure and whether we

defined the right scope in relation to the study goal), external

validity (extent to which the findings can be generalized), and

reliability (extent to which we can ensure that our results are

the same if our study would be conducted again).

a) Construct validity: The survey required respondents

with a basic knowledge of self-adaptive systems and uncertainty

necessary to interpret the questions properly. We mitigated this

threat by selecting experienced participants at the main venues

of the community and invited additional experts ensuring

that the required basic knowledge was present. Additionally,

respondents could clarify issues in the free text provided with

the questions. Some questions may have been formulated such

that respondents were forced to provide an answer that may

not have objectively expressed their opinion. We mitigated this

threat by allowing the respondents to provide comments with

their answers. Another possible threat is a bias in formulating

the questions. To mitigate this risk, we used a refinement

process when defining the questions, where the four involved

researchers reviewed the questions, individually and as a group.

b) External validity: Generalization of the study results

might be a potential threat to validity. The main issue here

is the selection of the sample of the population that may not

have been representative. This may lead to study results that

may be imprecise. To that end, we selected participants at the

main venues of the community and invited additional experts,

increasing the confidence that the sample was representative.

c) Reliability: Data analysis and coding in particular are

creative tasks that are to some extent subjective. To mitigate

bias, two researchers performed the data analysis of each

question in an iterative way and then the results were cross-

checked by the two other researchers. Any differences where

discussed until we reached consensus. In addition, we made

all the material of the survey publicly available.

VII. CONCLUSION

We reported the results of a survey aimed at shedding light

on the perception of the research community on uncertainty in

self-adaptive systems. The survey generated multiple insights.

The majority of the participants consider that self-adaptive

systems can be engineered to cope with unanticipated change.

Uncertainty can be represented using parameters and structure

of runtime models, and the modeling formalism. Proposed

techniques to handle uncertainty include software evolution,

online modeling mechanisms, and learning techniques. The

survey results suggest the need for a research agenda centered

on assurances, proactive adaptation, integration with machine

learning, and scalability. Emerging challenges include self-

explainability and ethical aspects. We hope that these findings

will inspire valuable future research on self-adaptive systems.
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