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Abstract. Modelling natural composites, as the majority of real geomaterials,
requires facing their intrinsic multiscale nature. This allows to consider multi-
physics coupling occurring at the microscale, then reflected onto the macroscopic
behavior. Geotechnics is constantly requiring reliable constitutive models of natu-
ral composites to solve large-scale engineeringproblems accurately and efficiently.
This need motivates the contribution. To capture in detail the macroscopic effects
of microscopic processes, many authors have developed multi-scale numerical
schemes. A common drawback of such methods is the prohibitive computational
cost. Recently,MachineLearning based approaches have raised as promising alter-
natives to traditional methods. Artificial Neural Networks – ANNs – have been
used to predict the constitutive behaviour of complex, heterogeneous materials,
with reduced calculation costs. However, a major weakness of ANN is the lack of
a rigorous framework based on principles of physics. This often implies a limited
capability to extrapolate values ranging outside the training set and the need of
large, high-quality datasets, on which performing the training. This work focuses
on the use of Thermodynamics-based Artificial Neural Networks – TANN – to
predict the constitutive behaviour of natural composites. Dimensionality reduc-
tion techniques – DRTs – are used to embed information of microscopic processes
into a lower dimensional manifold. The obtained set of variables is used to char-
acterize the state of the material at the macroscopic scale. Entanglement of DRTs
with TANN allows to reproduce the complex nonlinear material response with
reduced computational costs and guarantying thermodynamic admissibility. To
demonstrate the method capabilities an application to a heterogeneous material
model is presented.
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1 Introduction

Multiscale simulation and homogenization have become crucial tools for modeling com-
plex materials, but require substantial computational resources, rendering their use in
industry and engineering practice difficult.

The growth of Artificial intelligence and more advanced computational resources
has led to an increasing use of machine learning-based methodologies to improve the
efficiency and accuracy of multiscale simulations. Machine learning (ML) algorithms
often use Dimensionality Reduction Techniques (DRTs) as an essential step in data
pre-processing. There are many works in literature that make use of ML tools for the
multiscale modeling of composite materials. [1] focuses on the use of ML techniques
to develop multiscale models for multi-permeability porous materials, while [2] focuses
on the use of Graph-Informed Neural Networks for solving general multiscale physics
problems, among many others (e.g., see [3]).

A limited number of works rely on physics-aware ANNs to speed up multiscale
simulations, resulting in black boxes whose results are difficult to justify from a physi-
cal standpoint. In this paper, we use Thermodynamics-based Artificial Neural Network
(TANN), see [4–6], for the multiscale modeling of micro-structured materials. TANN is
coupled with DRTs, the latter applied to microscopic information gathered from numer-
ical simulations to identify a set of Internal State Variables to use at the macroscale. We
provide a comparison of several DRTs, including POD, ICA, kernel PCA and autoen-
coders, and discuss the advantages and disadvantages of each approach for the goal at
hand. We propose an application using Drucker-Prager hardening elastic-plastic model
with cap, for a heterogeneous model of voxels with spatially correlated constitutive
parameters, that mimic a natural composite.

The work is articulated starting from a theoretical section summarizing the main
aspects of the employed methods (Sect. 2). In Sect. 3, the realization of the material
model and of the numerical database is described. Section 4 details the results obtained.
The article ends with conclusions on the obtained results.

2 Theoretical Framework

2.1 Dimensionality Reduction Techniques

The Proper Orthogonal Decomposition (POD) [7] and Principal Component Analysis
(PCA) [8] are linear techniques that are used to extract important features or patterns in a
dataset. POD, also known as the Karhunen-Loève decomposition, decomposes a dataset
into a set of orthogonal modes that represent the most significant features. PCA, on the
other hand, finds the directions in a dataset that account for the most variance. The POD
modes can be derived from the principal components, and the hierarchy of the modes
is determined by the singular values. The method is simply expressed by the following
modal decomposition formula:

X = Ũ S̃Ṽ ∗ → Z = Ũ ∗X (1)

Z is the reduced dataset, containing the POD coefficients, projections of X onto the POD
modes.
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Independent Component Analysis (ICA), see [9], is a technique that aims to identify
the underlying independent sourceswithin amultivariate signal by assuming that the data
is a linear combination of non-Gaussian sources.Mathematically, ICAcanbe represented
as an optimization problem in which the objective is to uncover a linear transformation
(matrix W) that maximizes the non-Gaussianity of the transformed data. Namely, Z =
WX .

In KPCA [10], a kernel function is used to map the data into a higher dimensional
feature space in which they become linearly separable. The first step in KPCA is to
compute the kernel matrix, which is a symmetric matrix whose entries are given by the
kernel function applied to all pairs of data points. The kernel matrix is then decomposed
into its eigenvectors and eigenvalues. The eigenvectors with the largest eigenvalues are
selected as the principal components. Finally, the original data is projected onto the
principal components, resulting in a lower-dimensional representation of the data.

Autoencoders (AE) are nonlinear dimensionality reduction neural networks, see [8].
AE are unsupervised learning algorithms that map inputs to intrinsic representations and
then back to themselves. Given an inputI ∈ R

n, AE learn an intrinsic representationR ∈
R
l, l � n, which is mapped back into I∗ ∈ R

n, imposing I∗ = I. The parametrization
is implemented by two functions: an encoder, NNE : Rn → R

l , and a decoder, NND :
R
l → R

n.

2.2 Random Field Generation Algorithms

There are numerous publishedmethods for generating realizations of stationary homoge-
neous spatially correlated randomfields. Thematrix decompositionmethod, as described
in [11], requires the definition of a discrete set of Np points at which the random field
will be sampled and then to create a covariance matrix, C, quantifying the correlation
between all sampling points. With the Cholesky decomposition, the lower triangular
matrix of C, L, is obtained. Then, a vector of correlated random variables, Y , is com-
puted by generating a vector of uncorrelated random numbers, X , from a unit normal
distribution, calculating Y = LX . Cholesky decomposition is an exact method, so the
simulated Gaussian field follows an exact multivariate Gaussian distribution.

2.3 Thermodynamics-Based Artificial Neural Networks for Multiscale Modelling

In [5, 6], the TANN framework has been used to homogenize the constitutive behavior
of a micro-structured heterogeneous inelastic cell.

TANN are based on the thermodynamics theory of Internal State Variables, see [12].
The theory seeks to describe the state of a history-dependent material using a set of
variables able to truck the microscopic irreversibilities occurring in the material, so as
to permit a description of the state local in time. The material model is obtained by
the definition of the Helmholtz free energy density function and the ISV evolution law.
Micro-structured heterogeneous materials lack a straightforward definition of macro-
scopic ISVs. The Authors proposed discovering an a priori unknown set of ISVs, Z ,
from dimensionality reduction of microscopic state information, encoded in what they
refer to as a set of InternalCoordinates (IC), ξ . After defining themacroscopic state space,
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S, the TANN framework can be used to learn from data the homogenized behavior of
the heterogeneous material in a thermodynamically consistent manner.

The training of the Helmholtz energy network,NNψ, is central to the thermodynamic
compatibility ensured byTANN.TheNNψ takes as input the state of thematerial to output
the Helmholtz energy. The latter is automatically differentiated to return the stresses,
� = ∂NN�

∂E , (fulfilling the First Principle) and to compute, together with the rates of

ISV, Ż , the rate of energy dissipation, D = − ∂NN�

∂Z · Ż . This latter is constrained to be
non-negative (fulfilling the Second Principle) using a regularization term included in the
definition of the loss function, L, to be minimized during the optimization procedure:

L = λ��� + λD
R�D (2)

with λ� and λD
R being weights for regulating the relative magnitudes of outputs, �� =

1
N

∑
i

∥
∥
∥�i − ∂NN�

∂E i

∥
∥
∥
1
and �DR = 1

N

∑
i

∥
∥
∥Relu

{
−

(
− ∂NN�

∂Z Ż
)

i

}∥
∥
∥
1
. The Re-ctified Linear

Unit – Relu is defined as Relu{x} = {x, x > 0; 0, else}, ‖·‖1 is used for the L1 norm, N
is the number of considered samples.

3 Material Model and Numerical Database

Numerical homogenization is frequently based on the statistical concept of a Represen-
tative Volume Element (RVE). The RVE is a region large enough to contain a sufficient
number of statistically independent realizations of the field, yet small enough to be com-
putationally tractable. The correlation length is used to define the spatial correlation of
the field, but it doesn’t dictate the size of the RVE. The RVE size may need to be larger
than the correlation length if the latter is small, in order to capture enough independent
realizations of the field. In the application at hand, we considered a simplified case, in
which the selected RVE is a cube of unitary dimensions. The correlation length of the
field has been assumed to be 0.3 times the RVE size. To generate the correlated ran-
dom field, we used Markov covariance function, with xij being the lag distance matrix
between two points of the domain and θc the correlation length.

ρ
(
xij, θc

) = exp

(

−xij
θc

)

(3)

The random generation algorithm outputs a standard normal correlated field. The latter
can be transformed to match any normal or log-normal distribution. We utilized the
procedure to assign constitutive parameters to the geometric field derived from the coor-
dinates of Gauss points of the computational model’s elements. Table 1 reports the mean
and the standard deviation of the parameters used.
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Table 1. Mean (μ̃) and standard deviation (σ̃ ) of the used constitutive parameters for the elastic-
strain hardening plastic Drucker-Prager constitutive model with cap. Parameters without std. Dev.
Are considered as homogeneous.

E(Mpa) ν(-) d (kPa) β(°) α(-) R(-) K(-) p′
0(kPa)

μ̃ 180 0.3 15 38 0.05 1.2 0.8 100

σ̃ 1 0.01 0.5 0.1 - - - 0.5

Fig. 1. a) Computational model of the RVE. The initial field of preconsolidation pressure p′
0 is

depicted. b) Comparison of the the reconstructed numerical correlation function VS the analytical
one.

The description of the constitutive parameters may be found at the link in reference
[13], in the ABAQUS user’s manual. Figure 1 depicts the computational model and the
field of initial pre-consolidation pressure, the model has been initialized with.

For the training of TANNs a dataset of 25000 sample has been generated from 5
dataset of 1000 samples, to which a change of observer has been applied four times.
This procedure has been implemented so that the network could learn objectivity from
data. The RVE has been subjected to macroscopic random strain paths, after an initial
monotonic volumetric compression up to 1e-3.

4 Results

After constructing the numerical database, we trained TANNs. At first, it was necessary
to collect the microscopic data in the set of IC, ξ . Elastic and plastic deformations and
maximum volumetric plastic deformations were utilized, the latter able to track volu-
metric hardening. The resulting number of IC’s DoFs was 13000. POD was applied for
the purpose of obtain ISVs, Z , from the IC set. Figure 2 displays the normalized singu-
lar values and their cumulative sum for the first 200 POD modes. The sum approaches
one with the considered modes, indicating a high degree of representativeness and a
consequent small reconstruction error. The use of POD gives 0.0153 compression ratio.
Starting from the reduced field, we applied further DRTs to obtain an extremely reduced
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set of ISVs. The ability to reconstruct the high-dimensional IC field determined the
choice of DRT to use.

According to the Coleman and Gurtin’s theory, the set of ISVs must trace and rep-
resent the material’s microscopic irreversible processes. Estimating the reconstruction
error is necessary to assess the ISV’s representativity. The latter is, however, difficult to
compute. In general, it is not possible to define an analytic inverse function for nonlinear
DRTs. In these cases, the reconstruction of the original field is accomplished by fitting
an additional function onto data. If the reconstruction error, obtained by the composition
of the reduction and reconstruction functions is small, it is possible to conclude that the
composition approximates well the identity operator. However, the reduced set is rep-
resentative only in a sense dictated by the reconstruction function; nothing ensures its
representativeness in a thermodynamic sense. To achieve the latter property, the reduction
function’s fitting should be incorporated into the TANN training procedure. Indeed, the
thermodynamic representativeness of the reduced set is so guaranteed by the successful
training of the networks.

Following this reasoning, ICA, KPCA, and AE were considered. In ICA, there is an
inverse function, so the reconstruction error can be calculated analytically. For KPCA,
an analytical inverse doesn’t exist. Nevertheless, after defining the kernel matrix, the
application of PCA and the hierarchical sorting ensures that the reduced field is as
representative as possible of the initial one, therefore, also thermodynamically repre-
sentativeness is ensured. Finally, encoders do not have analytical inverse, but are simple
enough to be incorporated into the TANN training procedure. In this case, it is not strictly
necessary to define a decoder in order to achieve field reconstruction. Indeed, if training
succeeds, it is concluded that the obtained reduced set is representative, no matter its
reconstruction. However, if there is the need of reconstructing themicroscopic field from
the macroscopic one, it is possible to train an additional decoder, outside (or inside) the
TANN training procedure.

A reduction dimension equal to 15 was chosen for all the DRTs to compare. This
was chosen after ensuring a corresponding ICA’s mean absolute reconstruction error of
1e-5. The training was done considering 10000 epochs, mini-batches of 1000 samples
and Nesterov accelerated Adam’s optimizer with learning rate 5e-5. The training was
successful for all DRTs. In the case of ICA and KPCA, where the dimensionality reduc-
tion was performed outside of the TANN training, each training epoch required 3 ms,
whereas the coupled training of the encoder required 15ms per epoch, on amachine with
32 cores. The encoder had 3 hidden layers of decreasing size (150, 100, 50 neurons) and
one output layer of 15 neurons, with tanh activation function. ICA fitting required 0.7 s.
KPCA took 13min and fifty seconds, including the fitting of an additional reconstruction
function.

Trained TANNs were evaluated in inference mode on an unseen dataset. Figure 3
depicts the results of the prediction on a 3D strain-controlled path to which a volumetric
strain was initially applied, followed by random increments. A very good agreement is
achieved. The encoder’s output contains some outliers. This is attributed to the coupling
of the encoder’s training with TANN, which causes a delay in achieving learning con-
vergence in 10000 epochs, resulting in a decreased accuracy. With ICA and KPCA, the
asymptotic learning value is found very early, between 300 and 200 epochs.
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Fig. 2. a) Normalized singular values and their cumulative sum considering the first 200 POD
modes obtained from the set of IC, ξ . b) Learning curves expressed in terms of the Mean Absolute
Error – MAE, considering ICA, kPCA and the Encoder dimensionality technique. 10000 epochs
have been used. Solid lines represent results on the training set, shaded lines below the solid ones
on the validation set.

Fig. 3. TANN predictions in inference mode on a set of unseen data. The network’s predictions
obtained considering the set of ISV obtained with ICA, kPCA and the encoder are compared.
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5 Conclusions

In this study, three DRTs have been applied on top of POD to define a set of ISVs for
the macroscopic state space definition of a heterogeneous medium. TANNs were sub-
sequently trained on a dataset of data derived from numerical simulations. The RVE
was obtained by assigning spatially correlated constitutive parameters to the elements
of the model’s structured mesh. All DRTs produced satisfactory results. ICA returned
excellent results while requiring the least amount of computational time, ensuring the
possibility of reconstructing microscopic fields. KPCA demonstrated to be a valid alter-
native, attractive if a linear method, like ICA, fails to generate satisfactory results. Unlike
encoders, KPCA fitting can be decoupled from TANN training. This is time saving and
makes it easier to fine-tune neural networks in the TANN architecture.
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