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Abstract—In this article, a comprehensive method for para-
metric representation of wire trajectories, allowing accurate
geometric description of complex and arbitrarily oriented wire
bundles, is introduced. This is the starting point to develop a
computationally efficient numerical transmission-line (TL) model
for predicting the radiated susceptibility of arbitrarily oriented
bundles of wires, illuminated by (possibly) nonuniform electro-
magnetic fields. The proposed method foresees solution of the
field-to-wire coupling problem through suitable discretization and
sampling of the bundle geometry and the incident electromagnetic
field. Differently from previous models, where bundles parallel to
ground were assumed, the proposed model allows for arbitrary
bundle orientation by exploiting, first, exact projection of the
external field onto the bundle direction, and second, evaluation
of the actual wire length (instead of the longitudinal one) of
each TL section. Accuracy and computational efficiency of the
proposed method are assessed versus full-wave simulation for
two application examples, involving parabola-shaped and trefoil
knot-shaped wiring structures above ground. Although the strong
nonuniformity affecting these structures forces TL theory to work
very close to its limits, the achieved agreement is satisfactory
and the significant reduction of computational times makes the
proposed method suitable for approximate yet efficient prediction
of radiated susceptibility characteristics of complex wire bundles.

Index Terms—Field-to-wire coupling, multiconductor
transmission-line (MTL), nonuniform transmission lines,
radiated susceptibility (RS), random wire bundles.

I. INTRODUCTION

Complex hand-assembled cable geometries are widely ex-
ploited in several industrial sectors, e.g., in aerospace and
automotive systems. Due to the overall complexity of the
system where several data and power lines coexist in close
proximity, assuring the immunity of the whole system is a
critical task, since cables can quite efficiently pick up external
interference and convey it to the terminal units [1]. Hence,
starting from the early design stage, the availability of radiated
susceptibility (RS) prediction models can provide the designer
with essential information on the possible system-level noise
so to plan in advance suitable mitigation strategies assuring
system reliability (e.g., by optimization of the cable routing).

State-of-the-art approaches to investigate field-to-wire cou-
pling [2] involve full-wave numerical simulation, assuring
accurate prediction at the cost of quite long simulation times,
as well as techniques based on transmission-line (TL) theory,
which have the potential to provide a more computationally
efficient solution, by exploiting suitable simplifying assump-

tions. For cables installed in large and complex electromag-
netic (EM) environments, hybrid approaches have been devel-
oped to mitigate the excessive computational burden of full-
wave simulations [1], [3]–[5]. According to these approaches,
the nonuniform field impinging the bundle under analysis is
numerically evaluated (in the absence of the cable) by full-
wave simulation at discrete positions along the cable path. The
obtained field samples are then combined with a computational
efficient TL-based model of the wiring structure, regarded as
the cascade connection of approximately uniform line sections
(so called uniform cascade section method [6]) with induced
sources at the terminations evaluated by exploiting the field
samples numerically calculated.

In spite of bundle complexity, these approaches are proven
to provide accurate prediction of the noise induced at the
terminal sections on condition that the cable axis is ap-
proximately parallel to ground. Conversely, they suffer from
a significant lack of accuracy in case of wiring harnesses
exhibiting pronounced nonuniformity with respect to ground,
as often occurs in practical installations. Approaches based on
the so-called TL super theory [7], [8] can overcome this limi-
tation, but they are quite complex and not so computationally
efficient [9]. As an alternative solution, a modeling method
based on modal decomposition was developed in [9]. However,
since common-mode components are anyway modelled by the
method of moments (MoM), the method still suffers from low
computational efficiency.

This work contributes to the prediction of EM interference
in complex wiring harnesses, by developing an approximate
yet accurate numerical TL-based approach no longer con-
strained by the preliminary assumptions limiting the appli-
cability of previous models. Namely, the wiring bundles here
considered are arbitrarily oriented and strongly nonuniform,
with the twofold consequence that: first, they cannot be longer
regarded as approximately parallel to ground, and second,
basic assumptions of TL theory, such as for instance h � λ
(where h denotes the wire height above ground, and λ is the
wavelength), may be locally violated or only partially satisfied.

To this end, a general mathematical framework, based on
the Frenet frame [10], is introduced to provide the harness
under analysis with a suitable parametric representation. A
semianalytical model is firstly introduced, which is based on
the classical Agrawal model [11] applied to the aforesaid
mathematical representation of wire trajectories. This method,
here used as the reference to assess the accuracy of exact
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TL-based approaches, can assure accurate prediction of the
induced interference on condition that analytical expressions
are available not only for the wire trajectories, but also for the
external field. Moreover, it is usually prohibitive in terms of
computational time.

Although approximate, the numerical model here proposed
can assure comparable prediction accuracy. However, it out-
performs the semianalytical approach not only in terms of
computational efficiency, but also in terms of flexibility in the
acceptable input data. As a matter of fact, it can be efficiently
applied even when the external field and the wire trajectories
are only known at discrete points along the cable path.

Suitable examples involving wiring structures exhibiting
strong nonuniformity with respect to ground are presented in
order to prove the effectiveness of the proposed numerical
model. Despite the basic assumptions of TL theory are barely
satisfied, in most of the examples the maximum observed
discrepancies with respect to fullwave simulation are in the
order of a few decibels only.

The rest of this article is organized as follows. Section II
introduces the mathematical framework for parametric repre-
sentation of complex bundle geometries. Starting from such
a mathematical representation, in Section III, a semianalytical
RS model is firstly derived, followed by the development of
the approximate numerical RS model here proposed. Perfor-
mance of the proposed method w.r.t. full-wave simulation and
semianalytical TL-based prediction is investigated in Sections
IV and V by suitable test cases, involving parabola-shaped and
knot-shaped wiring structures, respectively. Finally, Section VI
concludes this article.

II. PARAMETRIC REPRESENTATION OF COMPLEX BUNDLE
GEOMETRIES

This Section introduces a general framework for parametric
representation of complex wiring harnesses. To this end, the
geometry of the cable bundle under analysis is modeled by
its center trajectory in terms of parametric curve in a 3-D
Euclidean space. For instance, by introducing the independent
variable u, the trajectory of a wire in the bundle is represented
by the curve Q(u) = [x(u), y(u), z(u)] , u ∈ [Ulower, Uupper],
where x(u), y(u) and z(u) denote the vertical, horizontal,
and longitudinal coordinate functions in a right-handed or-
thonormal system, respectively (see Fig. 1). If the ground plane
exists, it is usually located in the (y − z) plane.

To model a bundle of wires starting from the reference
path Q(u), a smoothly varying coordinate system needs to
be adopted such that the perpendicular plane to the path is
always well defined. To this end, the Frenet frame is adopted,
which is a moving frame along a 3-D curve, characterized by
orthogonal axis vectors [10]

t (u) =
Q′ (u)

‖Q′ (u)‖
(1)

b (u) =
Q′ (u)×Q′′ (u)

‖Q′ (u)×Q′′ (u)‖
(2)

n (u) =
b (u)× t (u)

‖b (u)× t (u)‖
(3)
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Fig. 1. Illustration of a 3-D wire trajectory Q(u) in Euclidean frame and
Frenet frame vectors at Q(u0).

where t(u) is the normalized tangent vector, b(u) is the nor-
malized binormal vector, and n(u) is the normalized normal
vector. Accordingly, the trajectory Qn(u) of the nth wire in
the bundle is represented as the combination of the reference
path Q(u) and its pertinent offset in the orthonormal plane as

Qn(u) = Q(u) + κ1,n(u)n(u) + κ2,n(u)b(u). (4)

By means of (4), bundles comprising N parallel wires can
be generated by enforcing invariant relative wire positions,
more complex wiring structures by properly selecting suitable
contour-related functions κ1,n(u) and κ2,n(u).

Although this work will mainly focus on the modelling of
arbitrary cable routing (and, hence, the presented examples
will involve a minimum number of wires only), it is worth
noticing that the geometrical representation in (4) is rather
general and can be easily exploited for the modeling of com-
plex wire bundles possibly exhibiting arbitrary cross sections.
Such an extension of the model proposed in this work can be
achieved by combining it with the methodology introduced in
[5], which allows accounting for random movements of the
wires along the cable length.

III. RS MODEL

Aim of this section is to derive a TL-based RS model,
characterized by wide applicability, high accuracy and mod-
erate computational burden, for the prediction of noise volt-
age/currents induced by a nonuniform EM field at the termi-
nations of an arbitrarily oriented wire bundle running above
ground. To this end, a semianalytical RS model is firstly
presented, whose limitations are afterward overcome by a
simplified yet accurate and more computationally efficient
numerical model.

A. Semianalytical Solution

According to TL theory, the N × 1 vectors of voltages
(VL,VR) and currents (IL, IR) induced at the terminal ends
of a N -wire bundle illuminated by an external EM field are
computed by resorting to the schematic representation in Fig.
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Fig. 2. MTL modeling of the general wire bundle for computation of
the terminal response. The thick line represents N wires and the thin line
represents the ground.

2. The wire bundle, modelled as a nonuniform multiconductor
TL (MTL), is subdivided into M sections with approximately
uniform cross section, and characterized by suitable chain-
parameter matrices Φ1, . . . ,ΦM with expression

Φm =

[
cos
(
β0L̄m

)
1N×N −jZC sin

(
β0L̄m

)
−jZ−1C sin

(
β0L̄m

)
cos
(
β0L̄m

)
1N×N

]
(5)

where ZC = c0L is the N×N characteristic impedance matrix
(c0 being the speed of light in free space and L being the p.u.l.
inductance matrix), β0 = ω/c0, ω is the angular frequency,
L̄m is the average actual wire length of section m, and 1N×N
is the N ×N identity matrix.

In this representation, the actual wire lengths of different
conductors belonging to the mth section are assumed to be
approximately identical. However, the resulting average length
of a specific section can be even significantly different from
its axial length.

Effects due to the impinging field are included by means
of lumped voltage sources (VSL, VSR) connected by the sides
of each line section, and evaluated according to the Agrawal
field-to-wire coupling model in [11]. Line solution is achieved
by enforcing at the line ends the port constraints due to the
terminal loads (matrices ZL, ZR).

For wiring harnesses with complex and highly non uni-
form geometry, two aspects of the evaluation of the chain-
parameter matrices associated with each line section are worth
to be mentioned. First, the actual wire length, instead of the
longitudinal section length, is to be considered. Second, the
p.u.l. parameters of each line section need to be evaluated
by considering the cross section perpendicular to the ground
plane. Since in a specific cross section, wire positions are
identified by different values of u, determining the actual wire
positions requires numerical solution of nonlinear equations,
cast by imposing the wire longitudinal coordinate constraint
and considering the pertinent parameter range.

Without loss of generality, let us consider the mth MTL
section, with common longitudinal coordinate bounded by
z ∈ [zBL, zBR] [the superscript (m) is hereinafter omitted for
brevity], and lower and upper parameter range given by

UX = [UX,1, uX,2, . . . , UX,N ] , X = L,R (6)

If the Agrawal formulation in [11] is adopted in combination
with the p.u.l. parameter matrices, the description of field
coupling onto the wires can be obtained as in [12], [13],
incorporating vectors of the scattered voltages and currents. By

solution of this representation, analytical expressions for the
induced terminal sources accounting for field-to-wire coupling
effects are obtained (more details on the derivation can be
found in [12]).

Specifically, for the nth wire with trajectory Qn(u) =
[xn(u), yn(u), zn(u)], where u ∈ [UL,n, UR,n], the equivalent
lumped voltage sources induced by the external field are cast
as the sum of two contributions as [13]

VSX,n = V
(l)

SX,n + V
(v)

SX,n, X = L,R (7)

the former, superscript (l), due to the longitudinal field com-
ponent, the latter, superscript (v), due to the vertical one [1],
[13]. The generators due to the longitudinal contribution take
different expressions at the left and right ends, whereas the
expression of the generators due to the vertical contribution
is the same at both ends. Specifically, those due to the
longitudinal component are calculated as

V
(l)

SL,n =

∫
Cn

sin [β0 (`n −Ln)]

sin (β0Ln)
[E (Qn) · ln] d`n

V
(l)

SR,n =

∫
Cn

sin (β0`n)

sin (β0Ln)
[E (Qn) · ln] d`n

(8)

where `n (u) is the curvilinear abscissa starting from
Qn(UL,n), i.e. `n (u) =

∫ u
UL,n

d`n (u); Ln is the actual length
of wire n within section m, i.e., Ln = `n (UR,n); ln =
dQn/d`n
‖dQn/d`n‖ = dQn/du

‖dQn/du‖ is the unit direction vector function;
Cn is the curvilinear path of the line integral in the pertinent
section. Eventually, E (Qn) = [Ex (Qn) , Ey (Qn) , Ez (Qn)]
denotes the vector of the incident electric field, which is
assumed to be continuously defined and known in u ∈
[UL,n, UR,n]. Hence, by introducing

gn (u) =

√(
dxn (u)

du

)2

+

(
dyn (u)

du

)2

+

(
dzn (u)

du

)2

(9)
the infinitesimal curvilinear abscissa d`n is expressed as
d`n (u) = gn (u) du, and the expressions in (8) are accordingly
reformulated as

V
(l)

SL,n =

∫ UR,n

UL,n

sin [β0 (`n −Ln)]

sin (β0Ln)
[E (Qn) · ln] gn (u) du

V
(l)

SR,n =

∫ UR,n

UL,n

sin (β0`n)

sin (β0Ln)
[E (Qn) · ln] gn (u) du.

(10)
Conversely, the generators due to the vertical component

take the expression

V
(v)

SX,n = −
∫ xn(UX,n)

0

Ex (x, yn (UX,n) , zn (UX,n)) dx

(11)
where X = L,R denotes the left and right termination.

If the analytic expression of the incident field E (Qn) is
available for every wire inside the bundle, the integrals in (10)
and (11) in some specific cases can be evaluated analytically.
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In general, they can be computed by resorting to numerical
integration methods.

B. Numerical RS Model
The solution approach presented in the previous section pro-

vides accurate prediction of the noise induced at the terminal
sections of the bundle under analysis. However, it generally
requires significantly large computational times, mainly due
to the numerical solution of the integrals in (10) and (11).
Moreover, since it requires a continuous representation of
the wire trajectories and of the incident field, it can be
actually applied on condition that the bundle geometry and
the characteristics of the incident field are quite canonical. For
instance, it is not applicable if the wire geometry and/or the
incident field are known in terms of discrete series of samples.

To overcome these limitations, approximate yet efficient
field-to-wire coupling models involving wire/TWP bundles
exhibiting deterministic [1] and random [3] cross sections
have been previously developed and validated. These models
assume that the bundle axis is approximately parallel to the
ground plane and evaluate to drastically simplify the evaluation
of the generators due to the longitudinal field contribution
by means of suitable approximations. In these models, the
bundle axis is assumed to be approximately parallel to the
ground plane, thus resulting in approximate values of the
longitudinal field contribution. The aforesaid assumption limits
the applicability of the models in [1] and [3] to well-controlled
cable layouts.

The numerical method presented in this section aims at
overcoming the aforesaid limitation, in order to allow interfer-
ence prediction in complex wire bundles with arbitrary local
orientation with respect to ground. Likewise the methods in [1]
and [3], the preliminary assumption is that the incident field
and the wire geometry are known by samples and linearly
interpolated along the bundle axis. However, the following
hold.

1) To evaluate the induced generators due to the longi-
tudinal contribution, the wires are considered to be
arbitrarily directed, straight, short line segments not
necessarily parallel to the longitudinal axis (z-axis).

2) To evaluate the induced generators due to the vertical
field component, different heights are considered at the
ends of each wire segment instead of constant height
above ground.

3) To evaluate the induced sources and the chain-parameter
matrices in Fig. 2, the actual wire length is considered
in each MTL section instead of its projection in the
longitudinal projection.

To this end, the incident electric field quantities at the
ends of the mth section and for the nth wire (i.e., evaluated
at u = UL,n and u = UR,n) are sampled as the real
parts Ek,RE (Qn (u)) (k = x, y, z) and the imaginary parts
Ek,IM (Qn (u)) of the vertical/horizontal/longitudinal compo-
nents.

According to Spadacini et al. [1], the first step for the deriva-
tion of the proposed numerical model foresees linear interpo-
lation of the field samples along Qn (with u ∈ [UL,n, UR,n])
in the three directions. This yields

E (Qn) ∼= [(axx+ bx) + j (cxx+ dx)]~ax

+ [(ayy + by) + j (cyy + dy)]~ay

+ [(azz + bz) + j (czz + dz)]~az

(12)

where ~ax, ~ay , and ~az are the unit vectors of the Cartesian
coordinate system, and

ak = [Ek,RE (Qn (UR,n))− Ek,RE (Qn (UL,n))]/Ln

bk = Ek,RE (Qn (UL,n))

ck = [Ek,IM (Qn (UR,n))− Ek,IM (Qn (UL,n))]/Ln

dk = Ek,IM (Qn (UL,n))

(13)

Besides, for the nth wire, the unit-direction vector function
in the pertinent range is approximated as

ln ∼= [xn (UR,n)− xn (UL,n)] /Ln · ~ax
+ [yn (UR,n)− yn (UL,n)] /Ln · ~ay
+ [zn (UR,n)− zn (UL,n)] /Ln · ~az

, [ξx, ξy, ξz]

(14)

By substituting (12)-(14) into (8) and (11), the induced
sources associated with the longitudinal and vertical field com-
ponents in (7) are obtained. Particularly, the sources associated
with the longitudinal field contribution are written as sum of
three-dimensional components as

V
(l)

SX,n =
∑

k=x,y,z

ξk [(ak + jck) ΣX + (bk + jdk) ΨX ] (15)

where X = L,R, and

ΣL =
sin (β0Ln)− β0Ln

β2
0 sin (β0Ln)

(16)

ΣR =
sin (β0Ln)− β0Ln cos (β0Ln)

β2
0 sin (β0Ln)

(17)

Ψ L
R

= ±cos (β0Ln)− 1

β0 sin (β0Ln)
. (18)

Conversely, the sources associated with the vertical field
contribution are calculated by considering x-direction compo-
nents only. This yields

V
(v)

SX,n =− [Ex,RE (Qn (UX,n)) + jEx,IM (Qn (UX,n))]

· xn (UX,n) .
(19)

Once the distributed voltage sources are determined, pre-
diction of the voltages/currents at the ends of the bundle
is obtained by solving the model in Fig. 2. Accuracy and
computational efficiency of this numerical model will be
assessed in the following Sections, where wiring structures not
satisfying the assumptions in [1] and [3] will be considered.
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Fig. 3. Parabola-shaped TLs under analysis: Projection on the (x− z) plane
(at y = 0).

IV. EXAMPLE I: PARABOLA-SHAPED WIRING
STRUCTURES

In this Section, the proposed RS model is applied to a
parabola-shaped TL above ground. Two examples with differ-
ent degree of curvature are considered in order to investigate
the impact of different nonuniformity with respect to ground.
Accuracy and computational effectiveness of the proposed nu-
merical model are assessed by comparison versus predictions
obtained by the semianalytical model in Section III-A and by
full-wave (MoM) simulation.

A. Geometric Description

For the sake of simplicity, the trajectory of the line conduc-
tor is located in the (x− z) plane, with axial length L = 1 m
and longitudinal coordinate from z = 0 to z = L. The wire
trajectory can be written as

x (u) = −p(u− 0.5L)
2

+ 0.25pL2 + h0

y (u) = 0

z (u) = u

(20)

where h0 = 5 mm denotes the initial height above ground
at the line ends, and p is a coefficient controlling the degree
of curvature. Two cases, i.e., p = 1 and p = 3 (see Fig. 3),
are studied. It is worth noticing that for p = 3 the structure
exhibits significant nonuniformity, with the actual wire length
(1.884 m) being approximately twice the longitudinal length
(1 m).

B. Prediction of the Terminal Voltages

In both cases, a bare wire with radius of 0.25 mm is
considered. Effects due to the vertical risers [14], [15] (i.e., the
wire segments connecting the wire ends to ground) are here
disregarded due to the negligible height of the wire terminal
sections. At both ends, the wire is connected to ground by an
impedance Z = 150 Ω. To provide well-controlled test cases
for assessing model validity, the EM field impinging the line
is modelled as a plane-wave field. Without loss of generality,

y
z

x

0E
Wiring structure 

ZRZL

Fig. 4. Parameters of the incident plane-wave field. The parabola-shaped
wiring structure is terminated to ground through equivalent Thevenin
impedance matrices at both ends.

this choice allows evaluating the electric field samples to be
input in the proposed MTL model by closed-form solution of
Maxwell equations [6], thus avoiding possible issues related to
numerical evaluation of the incident field. General incidence
conditions are assumed for the uniform plane-wave field
impinging upon the line. With reference to Fig. 4, a plane
wave with electric field strength E0 = 1 V/m, elevation angle
ϑ = 50◦, azimuth angle ψ = 20◦, and polarization angle
η = 60◦ is considered.

For calculation, the wire was evenly subdivided into 400
sections along the axial length, and pertinent per-unit-length
parameters were evaluated for each line section. The exploited
number of sections was selected as a tradeoff between accu-
racy and computational efficiency, as it assured a maximum
error below 1% (iterative procedure with respect to the number
of sections) in the prediction of terminal voltages by the
MTL-based RS model. Examples of the obtained results are
shown in Fig. 5, where predictions of the voltage induced at
the left TL end are compared. Despite the wiring structures
under analysis do not satisfy basic TL theory assumptions
(especially for p=3), a satisfactory agreement between the
predictions obtained by the two TL-based methods (blue and
red curves) and full-wave MoM simulation (green curves) can
be appreciated in the overall frequency interval from 100 kHz
up to 2 GHz. The result is particularly interesting for p=3,
where only slight discrepancies between TL solutions and
full-wave simulation are observed for frequencies up to 500
MHz. At higher frequencies, where h/λ > 1/3, the differ-
ences gradually increase due to phenomena that cannot be
predicted by TL theory (e.g., higher-order propagation modes,
re-radiation losses). Consistently, the predictions obtained by
the proposed numerical method and the semianalytical solution
are coincident in the whole frequency interval up to 2 GHz.
However, they significantly differ in terms of computational
times, as discussed in the next section.

C. Computational Efficiency

In the previous examples, terminal voltages were calculated
at 431 discrete frequency points (i.e., 100 logarithmically
spaced points per decade) in the interval from 100 kHz up to
2 GHz. All simulations were performed on a standard desktop
PC with an Intel(R) Core(TM) i5-7400 CPU running at 3.0
GHz and 16 GB of RAM. To accelerate the computation,
parallel computing, exploiting the 4 processors of the multi-
core CPU, was used both for the MoM solver and for the semi-
analytic model (by the Parallel Computing Toolbox available
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(a)

(b)

TL (semi-analytical)

TL (proposed)

MoM (reference)

TL (semi-analytical)

TL (proposed)

MoM (reference)

Fig. 5. Voltage induced at the left terminal of the parabola-shaped wire in
Fig. 4: (a) p = 1; and (b) p = 3.

TABLE I
COMPUTATIONAL TIME

MoM semi-analytical proposed

Parabola: p = 1 729.4 s 3769.6 s
5.8 s

Parabola: p = 3 1562.2 s 3943.4 s

Reference knot 2555.9 s 24384.5 s
14.0 sTight knot 1760.9 s 24088.9 s

Tall knot 3334.0 s 24202.3 s

in MATLAB). For consistent comparison of the computational
efficiency, where parallel computing was adopted, the sum
of the CPU times of all the processors was calculated. The
obtained computational times are collected in Table I. For TL-
based methods, the listed times have to be increased by 3.1 s,
which represents the time required to preliminary evaluate the
p.u.l. parameters (by the method in [16]) for 400 line cross
sections.

The comparison proves the effectiveness of the proposed
technique, which allows for a drastic reduction of computa-
tional times w.r.t. the other techniques. Particularly, the time
required for MoM-based simulations is strongly influenced by
the curvilinear segmentation of the wiring structure. In the
proposed examples, the number of required segments (using
fine mesh size) increased from 194 segments for p = 1 to
316 segments for p = 3, with a proportional increase of the
computational time which is nearly doubled in the second
example. Conversely, since TL-based approaches adopt the
same wire segmentation in both cases, the computational time
for p = 1 and p = 3 is nearly the same. However, the

prediction based on the semianalytic model is highly time-
consuming, even w.r.t. full-wave simulation due to complexity
and low efficiency in handling symbolic math in combination
with numerical integration. Conversely, the proposed method
allows very fast prediction in both cases.

V. EXAMPLE II: TREFOIL KNOT STRUCTURE

In this Section, the proposed method is applied to predict
field coupling onto a more complex wiring structure involving
a trefoil knot. While clearly in practical situations, cables do
not exhibit knots, we consider the trefoil knot a trajectory
suited to test the ability and robustness of TL theory to model
highly nonuniform and complex wire shapes. Indeed, in a tre-
foil knot, TL-theory assumptions are pushed to the limits as the
longitudinal coordinate is no longer monotonically increasing
along the entire extension of the line, and EM interactions
between neighbouring parts of the knot, not accounted for by
the proposed model, are possible.

A. Geometric Description

To provide a geometric description of trefoil knot structures,
several parametric representations, including trigonometric
functions [17] and polynomial functions [18], can be found in
the literature. Here, the polynomial notation is adopted, with
suitable rotation and scaling as


x (u) = −K1K2

(
u4 − 4u2

)
+ h0

y (u) = K1K3K4

(
u5 − 10u

)
cos θ −K1K4

(
u3 − 3u

)
sin θ

z (u) = K1K3K5

(
u5 − 10u

)
sin θ +K1K5

(
u3 − 3u

)
cos θ
(21)

where Ki (i=1,..,5) are scaling factors; h0 = 5 mm is the
vertical offset and θ is the rotation angle. In the following ex-
amples, the reference wire trajectory is generated by assuming:
u ∈ [−2, 2], K1 = 0.1, K3 = 0.2, h0 = 5 mm, and θ = 50◦.
Two different values of K2 are exploited, i.e., K2 = 0.5 and
K2 = 1, to deform the knot in the vertical direction (the larger
value corresponding to a taller knot). In a similar fashion, two
different values of K4 are used (K4 = 1 and K4 = 3) to
deform the knot in the horizontal direction (the larger value
corresponding to a larger knot), and two different values of
K5 are used (K5 = 0.5 and K5 = 1) to deform the knot in
the longitudinal direction. 3-D pictures of the generated knot
structures are shown in Fig. 6. The knot shown in the first
panel was obtained by setting the previous coefficients to the
values K2 = 0.5, K4 = 3, and K5 = 1, respectively. Such a
knot, characterized by a peak height of 0.205 m and total wire
length of 2.221 m, will be referred to as reference knot in the
following. The second knot is obtained from the previous one,
by reducing the horizontal thickness (i.e., by setting K4 = 1,
with K2 and K5 constant to the original value). This can be
appreciated in the second panel of Fig. 6, where the lateral
view of the original knot (left) is compared with the one of
the new knot (right). Such a knot, hereinafter denoted as tight
knot, is characterized by peak height of 0.205 m and total
wire length of 1.991 m. The third knot (hereinafter referred to
as tall knot) is obtained from the reference one by increasing
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TABLE II
KNOT CONFIGURATIONS UNDER ANALYSIS

Bundle K2 K4 K5 Peak height Length

Reference knot 0.5 3 1 0.205 m 2.221 m
Tight knot 0.5 1 1 0.205 m 1.991 m
Tall knot 1 3 1 0.405 m 2.683 m

Small knot 0.5 3 0.5 0.205 m 1.590 m

the vertical deformation (i.e., by setting K2 = K5 = 1 and
K4 = 3). Such a knot exhibits peak height of 0.405 m and
total wire length of 2.683 m. The front view of this knot
is shown in Fig. 6(d). Eventually, a fourth knot [hereinafter
referred to as small knot, as shown in 6(e)] is obtained from
the reference one by decreasing its longitudinal size (i.e., by
setting K2 = 0.5, K4 = 3, and K5 = 0.5). The peak height
is 0.205 m and total wire length is 1.590 m. Table II collects
relevant characteristics of the four knots under analysis.

B. Single-Wire Knot: Prediction of Terminal Voltages

To predict the voltages induced at the terminations of single-
wire knot geometries (i.e., the knot structures shown in Fig.
6), wire characteristics, terminal loads, and parameters of the
incident plane-wave fields are set as in the previous examples.
For TL modelling, pertinent p.u.l. parameters were evaluated
for 1000 line cross sections, ignoring the presence of other
segments belonging to the line trajectory and crossing the
cross section of interest. Predictions of the voltage induced at
the line left terminal, obtained by MoM-based and TL-based
methods, are compared in Fig. 7. The required computation
times are collected in Table I. For TL-based methods, the listed
times should be increased by 7.7 s for evaluating the p.u.l.
parameters by Clements et al. [16]. The comparison shows
that both TL-based methods can assure the same prediction
accuracy, as well as a general satisfactory agreement with
the prediction obtained by full-wave simulation in the whole
frequency interval up to 2 GHz. More specifically, TL-based
predictions are in very good agreement with MoM solution
for the reference knot, which is less critical w.r.t. to the
tall knot in terms of height above ground, and less affected
than the tight knot and small knot by near-field coupling
between neighbouring sections. Prediction accuracy is still
satisfactory also for the other three knots, even if the observed
discrepancies slightly increase with frequency in the hundreds
of megahertz range.

C. Knotted Wire-Pair: Prediction of Modal Voltages

To realize a knotted wire pair, an additional wire was
generated running parallel to the original one (denoted as wire
1), by exploiting (4) with κ1,2(u) = −1 mm and κ2,2(u) = 0.
Without loss of generality, the networks at the terminals of the
wire pair are modeled by the lumped circuits shown in Fig.
8, with ground impedances ZG, and series impedances ZS1,X ,
ZS2,X are introduced as

Z S1,X
S2,X

= ZD/2± Zδ (22)

(a)

(b)

(d)

(c)

x

y
z

x

y

z

x

y

z

x

y

z

x

y

z

(e)

2
K

5
K4

K

Fig. 6. Generated knot structures (reference trajectories). Reference knot with
(a) front and (b) lateral views. (c) Lateral view of tight knot, (d) front view
of tall knot, and (e) front view of small knot.

where subscript X = L,R denotes the left and right line-end,
respectively, ZD is the differential mode (DM) impedance of
the wire pair, whereas the impedance Zδ (0 ≤ Zδ < ZD/2)
accounts for possible imbalance w.r.t. ground affecting the
terminal networks. Accordingly, the port constraints at the left
(L) and right (R) ends are expressed by the impedance matrices

ZL = ZR =

[
ZD
2 − Zδ + ZG ZG

ZG
ZD
2 + Zδ + ZG.

]
(23)
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(a)

(b)

(c)

TL (semi-analytical)

TL (proposed)

MoM (reference)

TL (semi-analytical)

TL (proposed)

MoM (reference)

TL (semi-analytical)

TL (proposed)

MoM (reference)

(d)

TL (semi-analytical)

TL (proposed)

MoM (reference)

Fig. 7. Voltages induced at the right terminal of single-wire knots: (a)
Reference knot. (b) Tight knot. (c) Tall knot. (d) Small knot.

To predict the modal voltages at the line ends, the similarity
transformation matrices TV and TI are introduced, to relate
physical voltages/currents at the left (VL, IL in Fig. 2) and
right (VR, IR in Fig. 2) terminations with the corresponding
common mode (CM) and DM quantities as

S1,L
Z

G
Z

G
ZS2,L

Z

S1,R
Z

S2,R
Z

Fig. 8. Lumped-T networks at the terminals of the knotted wire pair.

[
VX,CM
VX,DM

]
= TV

[
VX,1
VX,2

]
,

[
IX,CM
IX,DM

]
= TI

[
IX,1
IX,2

]
(24)

where

TV =

[
1/2 1/2
1 −1

]
, TI =

[
1 1

1/2 −1/2

]
. (25)

For prediction of the induced CM voltages, the terminal net-
works are assumed to be balanced (i.e., Zδ = 0) and matched
to the line DM impedance. To this end, the characteristic DM
impedance of the knotted wire-pair was evaluated, and the
obtained value was assigned to ZD = 160 Ω. Without loss
of generality, in the simulation, the same value was assigned
also to ZG. The induced CM voltage (left end) evaluated by
the proposed numerical RS model is compared versus MoM
prediction in Fig. 9. The plots in the first panel were obtained
for the reference knot, those in the second panel for the tall
knot. The comparison substantially confirms the conclusions
already drawn for previous examples. Namely, for both knot
structures, the predictions obtained by the proposed method
reproduce pretty well the outcome of MoM simulation, with
discrepancies increasing in the hundreds of megahertz, where
differences in the order of a few decibels start to be observed.
As previously noted, model accuracy decreases as the vertical
size of the knot increases (see tall knot), and consequently the
dimension of the TL cross section is no longer negligible with
respect to the wavelength.

Since the two wires in the knot are on average at the
same height above ground, CM excitation is the dominant
effect in field-to-wire coupling, and the induced DM noise
is to be mainly ascribed to CM-to-DM conversion due to
imbalance of the terminal sections [1]. Hence, for prediction
of the induced DM voltages, a slight imbalance is introduced
between the two series impedances, that is Zδ = 5 Ω.
Meanwhile, the other impedances were assigned the values:
ZG = ZD = 160 Ω. Predictions of the DM voltages induced
at the left end of the knotted wire pairs under analysis are
compared versus MoM simulation in Fig. 10. On the whole,
the comparison confirms the effectiveness of the proposed
method also for the prediction of the DM voltages, even if
larger discrepancies w.r.t. MoM simulation are observed above
200 MHz approximately.

A small component of the DM current is directly induced
by the external field in the terminal loads. In general, this
component depends on the cross-sectional geometry of the
two wires in the line, is very small, and therefore hard
to predict due to high sensitivity to external effects such
as scattered field, cable orientation, vertical risers, etc. The
validation of the DM current previously discussed refers to
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(a)

(b)

TL (proposed)

MoM (reference)

TL (proposed)

MoM (reference)

Fig. 9. Predictions of the CM voltage induced at the left terminal of the
parallel-wire knots: (a) reference and (b) tall knot.

slightly imbalanced network configurations, where CM-to-DM
conversion takes place at the line ends and represents the
dominant contribution. That choice is motivated by the fact
that in practical installations, loads are generally not perfectly
balanced, and mode conversion in the load sections plays a
crucial role in determining the susceptibility of differential
pairs. In that case, the component of the DM current directly
induced by the external field in the terminal loads and due
to the cable structure cannot be validated as it represents a
minor contribution. Prediction of such a “pure” DM current
component (in a line configuration with balanced terminal
networks) is provided in the following by computing the
DM voltages induced across balanced loads, floating with
respect to ground. This was done by considering the same
knotted wire-pair structures (reference knot and tall knot),
with impedances ZD = 160 Ω (i.e., Zδ = 0 Ω) connected
between the terminals of the two wires in the knot so to
realize the balanced configuration (with floating terminations).
To incorporate these changes, the terminal constrains at the
knot ends were reformulated in terms of Norton equivalent
representation, instead of the original Thevenin formulation,
no longer possible in the case of terminations floating with
respect to ground. Simulation of these new test cases yielded
the results shown in Fig. 11.

As expected, the induced DM voltages are significantly
smaller in magnitude with respect to the previous cases. This is
especially true for the reference knot structure, which exhibits
a decrease in the induced DM voltage from -112.3 dBV to
-165.9 dBV at 100 kHz. For the tall knot, the induced DM
voltage is larger than for the reference knot, due to increased

(a)

(b)

TL (proposed)

MoM (reference)

TL (proposed)

MoM (reference)

Fig. 10. Predictions of the DM voltage induced at the left terminal of
the parallel-wire knots: (a) reference and (b) tall knot, with unbalanced
configuration.

coupling. In both cases, in spite of a few of discrepancies
(more evident for the tall than for the reference knot), which
have to be ascribed to structural characteristics of the wiring
structure only instead of CM-to-DM conversion as in the
previous examples, the proposed model yields predictions
in satisfactory agreement with those obtained by full-wave
simulation.

VI. CONCLUSION

In this work, a novel modelling framework has been pro-
posed for computationally efficient prediction of field-to-wire
coupling effects in arbitrarily oriented wiring harnesses. The
proposed approach combines an accurate parametric represen-
tation of wire trajectories, here obtained by resorting to the
Frenet frame, with an approximate TL-based numerical model
for RS prediction. Likewise previous hybrid approaches in the
literature [1], [3]–[5], the proposed numerical model does not
necessarily require a continuous mathematical representation
of wire trajectories and field distribution along the bundle
length, but their knowledge at discrete points along the cable
path only. With respect to those models, however, its appli-
cability is not limited to bundles approximately parallel to
ground, since the simplifying assumptions usually exploited by
those models are here removed. Accuracy and computational
efficiency of the proposed model have been investigated by
comparison versus full-wave (MoM) simulation of two wiring
structures exhibiting strong nonuniformity with respect to
ground, which is a parabola-shaped and a trefoil knot-shaped
line above ground. For the sake of completeness, simulations
were also carried out by exploiting an exact semianalytical TL
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(a)

(b)

TL (proposed)

MoM (reference)

TL (proposed)

MoM (reference)

Fig. 11. Predictions of the DM voltage induced at the left terminal of the
parallel-wire knots: (a) reference and (b) tall knot, with terminal sections
floating with respect to ground (balanced configuration).

model, whose predictions are taken as reference, since they
provide information on the maximum accuracy achievable by
TL-based modelling.

In terms of accuracy, the comparison proves that the pro-
posed model, although approximate, retains the same accu-
racy as the exact TL-based solution. Also, the comparison
with MoM simulation confirms that TL-based approaches
represent effective alternatives to full-wave simulation in a
wide frequency range, even for strongly nonuniform wiring
structures where basic assumptions of TL theory are violated
or partially satisfied. The comparison in terms of simulation
times indicates that the proposed numerical approach assures a
significant speed-up not only with respect to full-wave simula-
tion, but also with respect to the exact semianalytical solution
scheme, whose computational burden becomes even more
prohibitive than full-wave simulation for complex geometries,
such as the knot-shape wiring here considered.

Eventually, it is worth pointing out that although the exam-
ples presented in this work are limited to single wires or wire-
pairs only, the proposed methodology can be readily combined
with the one introduced in [5] to obtain a computationally
efficient tool for the prediction of RS in complex wiring
harnesses, involving several wires (or twisted-wire pairs) and
not only exhibiting arbitrarily shaped routing but also random
movements of the wires along the cable length.
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