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ABSTRACT: Depending on the selected hyper-parameters, cluster weighted modeling
may produce a set of diverse solutions. Particularly, the user can manually specify the
number of mixture components, the degree of heteroscedasticity of the clusters in the
explanatory variables and of the errors around the regression lines. In addition, when
performing robust inference, the level of impartial trimming enforced in the estimation
needs to be selected. This flexibility gives rise to a variety of “legitimate” solutions. To
mitigate the problem of model selection, we propose a two stage monitoring procedure
to identify a set of “good models”. An application to the benchmark tone perception
data showcases the benefits of the approach.
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1 Introduction and model preliminaries

Assume to have observed a dataset {xi,yi}n
i=1 of n i.i.d. samples, where the

regression on Y varies across G groups, based on a vector X of explanatory
variables with values in Rd . Within this framework, the Gaussian Cluster
Weighted Robust Model (Garcı́a-Escudero et al., 2017) is based on the con-
strained maximization of the trimmed log-likelihood:

`trimmed(Θ|X,Y ) =
n

∑
i=1

z(xi,yi) log

[
G

∑
g=1

πgφ(yi;b′gxi +b0
g,σ

2
g)φd(xi;µg,Σg)

]
,
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subject to: λl1(Σg1)≤ cX λl2(Σg2) for every 1≤ l1 6= l2≤ d, 1≤ g1 6= g2≤G and
σ2

g1
≤ cyσ2

g2
for every 1 ≤ g1 6= g2 ≤ G. The 0-1 trimming indicator function

z(·, ·) tells us whether observation (xi,yi) is trimmed off, with trimming level
α% of observations being left unassigned by setting ∑

n
i=1 z(xi,yi)= bn(1−α)c.

The set {λl(Σg)}l=1,...,d denotes the eigenvalues of the scatter matrices Σg and
the constants cX and cy are respectively finite real numbers such that cX ≥ 1
and cy ≥ 1.

2 Tone perception data application
The tone perception dataset (De Veaux, 1989) is employed as a case study to
illustrate the proposed two-step monitoring procedure. In the first step, ded-
icated graphical and exploratory tools are employed for determining one or
more plausible values for the trimming level α. Specifically, group proportion
(black bars denote the trimmed units), total sum of squares decomposition (In-
grassia & Punzo, 2020), regression coefficients, standard deviations, cluster
volumes and Adjusted Rand Index (ARI) between consecutive cluster alloca-
tions are monitored within a grid of αs, as reported in Figure 1. For each
trimming level, the best model is selected according to a novel penalized like-
lihood criterion tailored for the CWRM framework, building upon the proposal
developed in Cerioli et al., 2018 for Gaussian mixtures. As it is clearly visible
for the plots in Figure 1, model parameters stabilize as soon as α is set higher
than 0.08, a value sufficient to trim off the level of contamination known to be
present in this dataset (Garcı́a-Escudero et al., 2017).

In the second stage, conditioning on the α selected in the previous step,
solutions stability and validity are fully investigated varying hyper-parameters
in E0 = {(G,cX ,cy) : G = 1, ...,4,cX ,cy = 21, ...,25}, as reported in Figure 2.
Darker and lighter opacity cells respectively indicate the sets of Bt best and
St stable solutions, for each optimal solution t, t = 1 . . . ,4, where optimality
is in the sense of the penalized criterion. The former set includes solutions
ARI-similar to the optimal and not worse than the next optimal, while the lat-
ter encompasses all solutions ARI-similar to the optimal, such that Bt ⊆ St .
In this example, solutions are assumed to be ARI-similar if the ARI between
the estimated partitions is higher than 0.7. It is interesting to notice that the
CWRM favors models with higher number of clusters with respect to the ac-
cepted truth of G = 2 (fourth optimal solution, stable in the entire grid of cX
and cy). The reason being that, contrarily to the standard mixture of regres-
sion, the CWRM treats the covariate as random, thus allowing the learning of
group-wise different distributions in the explanatory variable (Figure 3).

We have demonstrated the adequacy of our monitoring procedure in aiding
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Figure 1: Step 1, monitoring the choice of a plausible trimming level α, tone
perception data.
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Figure 2: Step 2: monitoring optimal solutions, in terms of validity and stabil-
ity. Trimming level α = 0.08, tone perception data.

practitioners in the hyper-parameters selection when fitting CWRM. Further-
more, by exploring the space of solutions a deeper understanding of the data
structure is achieved, uncovering sometimes unexpected yet valuable results.
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Figure 3: Estimated density on the explanatory variable, first optimal solution.
Trimming level α = 0.08, tone perception data.
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GARCÍA-ESCUDERO, L. A., GORDALIZA, A., GRESELIN, F., INGRASSIA,
S., & MAYO-ISCAR, A. 2017. Robust estimation of mixtures of regres-
sions with random covariates, via trimming and constraints. Statistics and
Computing, 27(2), 377–402.

INGRASSIA, SALVATORE, & PUNZO, ANTONIO. 2020. Cluster Validation for
Mixtures of Regressions via the Total Sum of Squares Decomposition.
Journal of Classification, 37(2), 526–547.


