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INTRODUCTION
Efforts to reduce turbulent skin-friction drag are important for both

environmental and economic reasons. Various methods have been
proposed over the years, and among these, techniques that use active
predetermined wall-based actuation without feedback are particularly
noteworthy for their simplicity and effectiveness.

This study examines spanwise forcing [3], which has been proven
effective at high Reynolds and Mach numbers and offers significant
energy savings. The simplest and earliest variant of spanwise forcing
is the spanwise oscillation of a plane wall [2]. Although the spatially
uniform oscillation is not among the most efficient implementations, it is
considered here as the prototypical form of spanwise forcing, because its
working principle is shared by the other variants. The wall periodically
oscillates in the spanwise direction as a function of time C according to
a prescribed harmonic law
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where FF is the spanwise velocity component of the wall (the other
components are set to zero), and � and ) indicate the amplitude and
period of the oscillation.

The harmonic oscillation of the wall generates a spanwise cross-flow
that is periodic after space- and phase-averaging, and that superimposes
to and interacts with the turbulent flow. The phase-averaged spanwise
flow coincides (small deviations are present for large) ) with the analyt-
ical laminar solution F(! (H, C) of the second Stokes problem, hereafter
referred to as the Stokes layer or SL, which reads:
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where X is the SL thickness and H the wall-normal coordinate. Since
the maximum amplitude � of the wall oscillation only appears as a
multiplicative factor because of the linearity of the governing equations,
the SL is shaped by the remaining two parameters ) and X. These two
quantities are not independent, and once ) is set, X is determined as a
function of ) and the fluid kinematic viscosity by

X = X(! () , a) ≡
√
a)

c
, (3)

where the SL thickness X defined above is the wall distance where
the maximum spanwise velocity during the oscillation reduces to
� exp(−1) .

Starting from the early numerical studies of [2] and [1], the
available evidence indicate that there is an optimal oscillation pe-
riod )>?C , which corresponds to an optimal Stokes Layer thickness

X>?C = X(! ()>?C , a) , for which drag reduction is maximized. There
is general agreement that ) +>?C ≈ 100, corresponding to a penetration
depth of the SL of X+>?C ≈ 5.7.

Despite the evidence, there is no consensus on the physical interpre-
tation of these optimal values which can be understood in more than one
way. For instance, )>?C can be directly linked to other time scales in
the flow, such as the characteristic lifetime of near-wall coherent struc-
tures. Additionally, due to the flow’s convective nature, )>?C can be
translated into a longitudinal length scale through a convection velocity.
Furthermore, within the Stokes layer, the optimal period also defines
the maximum lateral displacement of the moving wall, �<0G = �) ,
which is another potentially significant length scale of the flow. The op-
timal period might also be seen as determining the optimal penetration
depth X>?C of the Stokes layer via equation 3, representing a diffusion
length scale in the wall-normal direction and a measure of the near-wall
mean spanwise shear. Our inability to distinguish among these various
interpretations reflects our current limited understanding of the overall
drag reduction mechanism associated with the oscillating wall setup.

The objective of this work is to advance this understanding by clar-
ifying the significance of the ()>?C , X>?C ) optimum. Based on DNS,
we move beyond the traditional concept of the oscillating wall and re-
move the constraint X = X(! () , a): we explore the complete () , X)
two-dimensional space of parameters and investigate the role of) and X
separately. In other words, instead of imposing the harmonic spanwise
oscillation of the wall to generate the SL, we enforce a mean spanwise
velocity profile of the form (2) at each time step, and vary X and )
independently.

METHODS
Direct numerical simulations (DNS) of the turbulent flow in an in-

definite plane channel are carried out, to study the effect of the Stokes
layer generated by the sinusoidal oscillations of the walls after its period
) and thickness X are decoupled. We remove the link (3) between )
and X(! that exists when a true Stokes layer is created by the oscillation
of the wall. An extended Stokes layer profile (ESL)
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is indeed enforced directly at each time step; the operator 〈·〉ℎ indicates
spatial averaging along the homogeneous directions. While enforcing
an arbitrary profile 〈F 〉ℎ (H, C) may suggest that the present numerical
experiments are mere thought experiments that are possible with DNS
only, it should be remarked that our procedure is equivalent to solving
the Navier–Stokes equations with the boundary condition (1) and an
additional volume forcing that is practically zero whenever the extended
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Stokes layer (4) reduces to the standard Stokes layer. We measure that
the two techniques almost provide the same results in terms of R, with
a small deviation only at large ) (see figure 1, where for ) + = 200 the
relative discrepancy is of 6%); the ESL always provides a smaller R
compared to the true SL. Here we define R = 100× (� 5 0 −� 5 )/� 5 ,0
with � 5 ,0 and � 5 the skin friction coefficient of the uncontrolled and
controlled case, respectively. The simulations are carried out at the
bulk Reynolds number '41 = *1ℎ/a = 7000 for all cases, which
corresponds to a friction Reynolds number of '4g = Dgℎ/a ≈ 400 in
the unforced case. The oscillating period is varied in the 10 ≤ ) + ≤ 200
range, while X varies between 2 ≤ X+ ≤ 20. The amplitude of the
forcing is set to �+ = 12.
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Figure 1: Drag reduction versus oscillation period for the oscillating
wall (black) and the present approach with X = X(! (red).

RESULTS

Figure 2 shows that, once X and ) are made independent, the max-
imum drag reduction on the SL line is not particularly meaningful in
view of the global R map. Along the SL line, a maximum R of ≈ 30%,
shown by the black symbol, is indeed found at () +>?C , X+) ≈ (100, 5.7) ,
but the position of the actual maximum in the two-dimensional plane is
larger and quite far from it. Indeed, the global maximum drag reduction
obtained with the ESL is R<0G ≈ 40%, found for () +, X+) ≈ (30, 14);
see the red symbol in figure 2. Hence, the maximum drag reduction is
significantly larger than that on the SL line, and is obtained by decreas-
ing the oscillating period from ) + = 100 to ) + = 30, while at the same
time increasing the SL thickness from X+ = 5.7 to X+ = 14. Note that,
when moving along the SL line, it is impossible to change ) and X in
opposite directions. The R map can be divided into different regions
according to the behaviour of the drag reduction at varying parameters
) and X. The area of the global optimum is quite broad, spanning the
region of 20 ≤ ) + ≤ 50 and 8 ≤ X+ ≤ 14; the values of X corre-
spond to the position of the buffer layer, where the near-wall cycle takes
place, suggesting that the maximum R is gained for the ESL effectively
interacting with the near-wall coherent structures of the wall. Where X
is very small the spanwise motion is confined in the viscous sublayer
where the turbulent activity is weak. Similarly, for small oscillating
periods R is relatively small and independent on X since the oscillating
period is too small compared to the flow time scales, and the resulting
oscillating motion and the incoming flow are decoupled. As) increases
above ) + > 30, the local optimum thickness X+ moves towards smaller
values, suggesting that with longer oscillating period the ESL is more
effective when its influence remains confined closer to the wall. For
large ) , R degrades quickly at large X. A possible explanation of the
suboptimal R is the spanwise instantaneous velocity field being quite
different from the laminar ESL due to the slow period of oscillation and
large X significantly interacting with the underling turbulence.

We conclude that the values ) + ≈ 100 and X+ ≈ 6 do not possess a

Figure 2: Drag reduction map in the () , X) space of parameters. The
black thick line indicates the X = X(! constraint. The red dot identifies
the point of maximum drag reduction, whereas the black dot indicates
themaximum along the line X = X(! () ) . The small black dots indicate
each point of the detaset.

special meaning and they are the optimum when we are constrained by
the control actuator to lie on the black line of figure 2; instead designing
a control which allows to decouple ) and X is able to provide a much
higher R.

The drag reduction potential of the present control needs to be put in
perspective accounting for both benefits, i.e. R and costs, i.e. energy
spent to enforce the control. %2 is the control power required to create the
ESL, when neglecting the losses of the actuation device. It is expressed
as a fraction of the pumping power needed to maintain a constant flow
rate. We measure that the power is a function of X only, once � is fixed:
the larger X, the smaller %2 .

To compare benefits and costs of the control we define the net energy
saving rate %=4C = R − %2 . For this � the oscillating wall leads to
a negative %=4C for all ) , meaning that at '4g = 400 the cost of the
actuation overcomes the actual savings. The ESL, instead, guarantees
the possibility of positive net benefits for some () , X) pairs, as the region
of large R corresponds to the region of relatively small %2 due to the
large X. For () +, X+) = (30, 20) we measure a non-negligible positive
%=4C ≈ 17%, which is noteworthy when compared to the negative net
balance of the oscillating wall at this value of �, whose maximum is
%=4C ≈ −30%. Also, note that in this work we are considering the
simplest variant of the spanwise forcing.

The positive net power saving obtained when) and X are decoupled
paves the way for the implementation of alternative actuators able to
enforce any velocity profile to the flow field in order to get the maximum
net benefit. The control law does not need to be the result of the choice of
the actuator as in the case of the wall oscillation, but more conveniently
the actuator can be designed to induce the desired control law to the flow
field. The profile of the resultant velocity is not constrained to follow
the law of Eq.(4) anymore and a body force leading to a velocity profile
able to target the mechanism which induces the reduction of drag can be
designed.
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