
20

A Troubling Analysis of Reproducibility and Progress
in Recommender Systems Research

MAURIZIO FERRARI DACREMA, SIMONE BOGLIO, and PAOLO CREMONESI,

Politecnico di Milano, Italy

DIETMAR JANNACH, University of Klagenfurt, Austria

The design of algorithms that generate personalized ranked item lists is a central topic of research in the field

of recommender systems. In the past few years, in particular, approaches based on deep learning (neural) tech-

niques have become dominant in the literature. For all of them, substantial progress over the state-of-the-art

is claimed. However, indications exist of certain problems in today’s research practice, e.g., with respect to the

choice and optimization of the baselines used for comparison, raising questions about the published claims.

To obtain a better understanding of the actual progress, we have compared recent results in the area of neu-

ral recommendation approaches based on collaborative filtering against a consistent set of existing simple

baselines. The worrying outcome of the analysis of these recent works—all were published at prestigious

scientific conferences between 2015 and 2018—is that 11 of the 12 reproducible neural approaches can be out-

performed by conceptually simple methods, e.g., based on the nearest-neighbor heuristic or linear models.

None of the computationally complex neural methods was actually consistently better than already existing

learning-based techniques, e.g., using matrix factorization or linear models. In our analysis, we discuss com-

mon issues in today’s research practice, which, despite the many papers that are published on the topic, have

apparently led the field to a certain level of stagnation.1

CCS Concepts: • Information systems→ Recommender systems; Collaborative filtering; • General and

reference → Evaluation;

Additional Key Words and Phrases: Recommender systems, deep learning, evaluation; reproducibility

ACM Reference format:

Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, andDietmar Jannach. 2020. A TroublingAnalysis

of Reproducibility and Progress in Recommender Systems Research. ACM Trans. Inf. Syst. 39, 2, Article 20

(January 2021), 49 pages.

https://doi.org/10.1145/3434185

1 INTRODUCTION

Personalized recommendations are a common feature of many modern online services, e.g., on
e-commerce, media streaming, and social media sites. In many cases, these recommendations are

1This article significantly extends or own previous work presented in References [19, 23].

Authors’ addresses: M. Ferrari Dacrema, S. Boglio, and P. Cremonesi, Politecnico di Milano, Milano, Italy; emails: maur-

izio.ferrari@polimi.it, simone.boglio@mail.polimi.it, paolo.cremonesi@polimi.it; D. Jannach, University of Klagenfurt, Kla-

genfurt, Austria; email: dietmar.jannach@aau.at.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1046-8188/2020/01-ART20 $15.00

https://doi.org/10.1145/3434185

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://doi.org/10.1145/3434185
mailto:permissions@acm.org
https://doi.org/10.1145/3434185
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3434185&domain=pdf&date_stamp=2021-01-06

20:2 M. Ferrari Dacrema et al.

generated using collaborative filtering (CF) techniques [7]. Such techniques leverage the preference
or activity profiles of a large user community to predict which are the most relevant items for the
individual customer. Early technical approaches to build collaborative filtering recommender sys-
tems (RS) were based on nearest-neighbor techniques and date back to the 1990s [41, 58]. In the
following years numerousmachine learning approaches were proposed for the top-n recommenda-
tion task, which is to rank the available items according to their assumed relevance for the user. In
the most recent years, recommendation methods based on deep learning (DL) or “neural” technol-
ogy have become particularly popular. While these methods are often computationally complex,
their solid success in other application areas—such as language or image processing—led to deep
learning techniques nowadays dominating the recommender systems research landscape.
However, there are a number of indications that using increasingly deeper learning methods

is not as beneficial as one would expect. For example, in two recent papers [39, 78], the authors
report that for a certain information retrieval task recent neural methods are actually not better
than long-existing non-neural ones. In the domain of time series prediction, Makridakis et al. [46]
compared various statistical methodswith traditional and recent neuralmethods and observed that
statistical methods were mostly favorable over even the most recent machine learning techniques.
In the area of recommender systems, the empirical analyses in References [44, 45] showed that
sometimes almost trivial methods can outperform the latest neural methods for the task of session-
based recommendations. These findings are, however, not tied to recent deep learning approaches
alone. The observation that the reported improvements in the literature for certain retrieval tasks
“don’t add up” was put forward back in 2009 [3]. Most often, the reason for such phantom progress

lies in the choice and poor optimization of the baselines used in the experiments. Lin [40], while
recognizing the progress made by transformer models for certain tasks of document retrieval,
observed it is not rare to find articles comparing neural ranking algorithms only against weak
baselines, raising questions regarding the empirical rigor in the field. For the domain of rating
prediction for recommender systems, Rendle et al. [57] found that many algorithms that were
published between 2015 and 2019 actually did not outperform longer-existingmethods, when these
were properly tuned.
In their paper, Rendle et al. attribute the problem not only to poorly optimized baselines but also

to the sometimes missing standardized benchmarks. In some sense, this finding is surprising, since
the research community over the last decades has indeed developed certain standards regarding the
evaluation of top-n recommendation algorithms. Typically, the input to an algorithm is a matrix of
user-item interactions and the task is to compute relevance scores for the missing entries or just to
rank the items. A number of public datasets exists that can be used for reproducible evaluation, as
well as various well-established evaluationmetrics. Finally, the technical details of newly proposed
algorithms are often laid out in great detail in scientific papers and sometimes authors even share
the code they used in their experiments.
This methodological approach for benchmarking algorithms seems very solid at first sight

and suitable to determine if an algorithm is favorable over another in a specific combination of
(i) performance measure, (ii) evaluation procedure, and (iii) dataset, at least when we assume that
both algorithms are properly optimized. However, the claims made in many research papers are
much more general. As can be observed in other fields of computer science, many papers claim a
significant improvement over the “state-of-the-art” but do not explicitly state such claim to be only
supported under very specific experimental conditions. In today’s recommender systems research
scholarship the researcher has ample freedom in selecting the specific experimental conditions,
i.e., which metrics, which protocol, which datasets, and which baselines to use.
Given these observations regarding potential methodological issues in our field, we were won-

dering to what extent recent deep learning methods actually help to achieve progress in creating

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:3

top-n recommendation lists based on user-item rating matrices. To that purpose, we conducted an
extensive set of experiments in which we tried to reproduce the results reported in papers that
were recently published in top-tier scientific conferences. We scanned the proceedings of several
conference series and identified 26 relevant papers. We could reproduce 12 (46%) of them with rea-
sonable effort. After fine-tuning a number of established baselines algorithms, it turned out that in
8 of the reproducible cases, simple and long-known approaches (e.g., based on nearest neighbors)
outperformed the latest neural methods. Furthermore, when including established linear models
based on machine learning (e.g., based on matrix factorization), we found that only 1 of 12 recent

neural methods was clearly better than the non-neural baselines. And even in this case, this was true
for only one of the considered datasets. Overall, these results indicate certain signs of stagnation in
the context of applying machine learning methods for top-n recommendation tasks, despite many
papers published every year claiming substantial progress.
The rest of the article is organized as follows. Next, in Section 2, we describe how we selected

relevant works considered in our study. Section 3 provides details about our researchmethodology,
and Section 4 lists our results in detail. The potential reasons for the observed phenomena are
finally discussed in Section 5.

2 IDENTIFYING RELEVANT AND REPRODUCIBLE WORKS

To make sure our research is neither focusing on a few hand-picked examples nor singling out
any individual researcher, we followed a systematic approach to identify recent papers that are
relevant for our analysis. To obtain a suitable sample for our research, we considered papers that
fulfilled the following constraints.

(1) Topic. The paper proposed a new neural collaborative filtering recommendation method
for top-n recommendation tasks. Hybrid techniques with a collaborative filtering compo-
nent were considered as well. We limited ourselves to works that focus on the traditional
item ranking task. Papers that dealt with other tasks, e.g., session-based recommendation
or group recommendation, were not considered to be in the scope of our study. Further-
more, to be considered, a paper had to report at least one ranking or classification accuracy
metric. Papers that focused solely on rating or relevance prediction tasks, e.g., using the
RMSE, were not taken into account.

(2) Publication date. The paper was published between 2015 and 2018 in one of the fol-
lowing conferences: SIGIR, KDD, TheWebConf (WWW), IJCAI, WSDM, ACM RecSys. All
of the mentioned conferences are typical outlets for recommender systems research in
computer science. Furthermore, all of them, except ACM RecSys, are rated with A∗ in the
Australian CORE ranking system. ACM RecSys, in contrast, is entirely focused on recom-
mender systems, which is why we included it in the study as well. We identified relevant
papers by scanning the proceedings of these conference series in a manual process.

(3) Reproducible experimental setup. The experimental setting was reproducible, with
reasonable effort, based on source code published by the authors. This constitutes a pre-
condition for the reproducibility of the published results.2

• In particular, the source code should include the implementation of the model and its
data structures, a train loop, and a way of computing the recommendations; see also the
discussions by Collberg and Proebsting [15]. For some of the relevant papers we found

2In theory, research papers should contain all relevant information that are needed to implement the proposed algorithm.

In reality, however, certain details are sometimes omitted in length-restricted conference papers. For that reason, and to

ensure that the results that we report here are reliable, we followed a conservative approach and limited ourselves to the

papers where the original authors themselves provided an implementation of their method.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:4 M. Ferrari Dacrema et al.

Table 1. Statistics of Relevant and Reproducible Works on Deep Learning Algorithms

for Top-n Recommendation per Conference Series from 2015 to 2018

Conference Rep. Setup ratio Reproducible Setup Non-Reproducible Setup
KDD 3/4 (75%) [32], [37], [73] [67]
IJCAI 5/7 (71%) [29], [80], [79], [13], [77] [51], [76]
WWW 2/4 (50%) [30], [38] [66], [22]
SIGIR 1/3 (30%) [21] [48], [12]
RecSys 1/7 (14%) [81] [65], [8], [60], [68], [34], [71]
WSDM 0/1 (0%) [75]
Total 12/26 (46%)

that some source code was published but was missing major parts, e.g., it consisted
only of a skeleton of the algorithm, or did not work. For those papers that were deemed
relevant but for which the source code was not publicly available or was not runnable,
we contacted all authors of the papers by e-mail. When there was no positive response
after 30 days, we considered the source code of the paper to be not available.

• At least one of the datasets that were used in the original paper for evaluation was
publicly available. In some cases, the authors also provided the data splits for training
and testing that were used in their experiments. If the data splits were not available,
then the experimental setup of the papers was considered as reproducible only if they
contained sufficient information about data pre-processing and splitting.3

Following this approach, we identified 26 relevant papers. Of these, 12 were considered having
a reproducible experimental setup, according to our classification scheme. Table 1 summarizes
which works were considered relevant and which ones had a reproducible setup.4

Our first contribution in this work is therefore an analysis of the reproducibility—at least when
using our specific practical definition—of research works published on neural collaborative filter-
ing. We generally found that the share of papers that can be reproduced based on the provided
source code by the authors is still relatively low. When looking at the statistics over the years, we
can observe a certain trend towards authors sharing their source code more often. One possible
reason is that reproducibility in general is considered a positive point in the reviewing process,
e.g., at KDD.

3 EVALUATION METHODOLOGY

The core of our study was to re-run the experiments reported in the original papers following the
original experimental methodology, including additional baseline methods which were systemat-
ically fine-tuned just like the newly proposed methods.
To ensure the reproducibility of this study, we share all the data, the source code used for pre-

processing, hyperparameter optimization, algorithms, and the evaluation as well as all hyperpa-
rameter values and results online.5

3In case we encountered problems with the provided code, the data, or the reproduction of the results, we also contacted

the authors for assistance.
4Among the papers with a reproducible experimental setup, there were some works where the numerical results could not

be reproduced exactly, namely, References [77, 79, 80]. The reproducibility of the numerical results is however not a criterion

for the inclusion or exclusion of the algorithm in our analysis. Our approach therefore combines aspects of reproducibility

and replicability according to the terminology in the SIGIR guidelines: https://sigir.org/wp-content/uploads/2018/07/p004.

pdf; see also ACM Artifact Review and Badging: https://www.acm.org/publications/policies/artifact-review-badging.
5https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://sigir.org/wp-content/uploads/2018/07/p004.pdf
https://sigir.org/wp-content/uploads/2018/07/p004.pdf
https://www.acm.org/publications/policies/artifact-review-badging
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:5

3.1 Measurement Approach

Our analysis of the relevant papers shows that researchers use all sorts of datasets, evaluation
protocols, and metrics in their experiments, see also Section 5.2. To make our analyses and com-
parisons as fair as possible, we decided to run our evaluations in exactly the same way as the
authors of the originally proposed method did, i.e., using their datasets, their protocol, and their
performance metrics. To obtain a broader understanding of the model performance, we also in-
cluded additional baselines.6

To ensure all algorithms are evaluated under the same conditions, we re-factored the original
code so that we could include it in our evaluation framework along with the additional baselines.
The core algorithm implementations remained unaltered. We evaluated the algorithms using the
datasets reported in the original papers, provided that they were either publicly available or shared
by the authors. We also used the original train/test split whenever the authors shared it; otherwise,
we created the data split ourselves following the information provided in the original paper.
Extensive hyperparameter optimization was performed for all examined baselines. For the in-

vestigated neural methods, in all but one case, we relied on the optimal hyperparameters reported
in the original papers. This is appropriate, as we used the same datasets and evaluation procedures
in the experiments. The only exception is the SpectralCF algorithm (Section A.12), for which we
performed a new hyperparameter optimization ourselves due to an issue with the provided dataset
splits, as will be discussed later. Since the number of epochs and the stopping criteria are usually
not described in the original papers, for all machine learning models we select the number of
epochs via early stopping, see also Section 3.3.

The optimal hyperparameters were selected via a Bayesian search [2, 26, 31], using the Scikit-
Optimize7 implementation. We considered 50 cases for each algorithm during this search. The
first 15 of them were used as initial random points. Once the optimal hyperparameters were de-
termined, including the number of epochs, the final model was fitted on the union of train and
validation data using those optimal hyperparameters. The considered hyperparameter ranges and
distributions are listed in Appendix B.

3.2 Baselines

Over the last 25 years, a multitude of algorithms of different types were proposed. To obtain a
picture that is as broad as possible, we selected algorithms of different families for inclusion in our
measurements. An overview of all used baselines is given in Table 2 and the respective hyperpa-
rameter ranges are reported in Appendix B.
Our analysis shows that a large variety of other baselines is used in the works we investigated.

This variety of baselines (together with the variety of datasets) represents one of the underlying
problems that we identified, because it limits the comparability of results across papers. In our
work, we therefore benchmark the proposed models against a consistent set of known algorithms
of different families.

3.2.1 Popularity-based Ranking. Recommending the most popular items to everyone is a com-
mon strategy in practice. The method TopPopular implements this non-personalized recommen-
dation approach. The popularity of an item is determined by its number of implicit or explicit
ratings in the given dataset.

6An alternative would have been to integrate all methods in one unified framework for evaluation, as done in Reference

[44], and evaluate them on a set of representative datasets. This approach would allow a direct comparison of neural

approaches as in Reference [45], which was, however, not the goal of our work.
7https://scikit-optimize.github.io/.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://scikit-optimize.github.io/

20:6 M. Ferrari Dacrema et al.

Table 2. Overview of Baseline Methods

Family Method Description

Non-personalized TopPopular Recommends the most popular items to everyone [18]

Nearest-neighbor
UserKNN User-based k-nearest neighbors [58]
ItemKNN Item-based k-nearest neighbors [61]

Graph-based
P3α A graph-based method based on random walks [16]
RP3β An extension of P3α [54]

Content-based and

Hybrid

ItemKNN-CBF ItemKNN with content-based similarity [43]
ItemKNN-CFCBF A simple item-based hybrid CBF/CF approach [50]
UserKNN-CBF UserKNN with content-based similarity
UserKNN-CFCBF A simple user-based hybrid CBF/CF approach

Non-Neural

Machine Learning

iALS Matrix factorization for implicit feedback data [33]
pureSVD A basic matrix factorization method [18]
SLIM A scalable linear model [36, 52]
EASER A recent linear model, similar to auto-encoders [63]

3.2.2 Nearest-neighbor Methods. Nearest-neighbor techniques were used in the early Grou-
pLens system [58] and first successful reports of collaborative filtering systems also used nearest-
neighbor techniques [41]. We consider both user-based and item-based variants, UserKNN and
ItemKNN.
Many variants of the basic nearest-neighbor prediction scheme were proposed over the years,

see Reference [10] for an early performance comparison. In this work, we therefore consider dif-
ferent variations of the nearest-neighbor techniques as well. For both UserKNN and ItemKNN, the
following hyperparameters can be set and were optimized in our experiments, their ranges are
reported in Appendix B.

• Neighborhood Size: This main parameter determines how many neighbors are considered
for prediction.

• Similarity Measure: We made experiments with the Jaccard coefficient [55] as well as Cosine
[61], Asymmetric Cosine [1], Dice-Sørensen [20], and Tversky [69] similarities. Some of
these similarity measures also have their own parameters, as reported in Appendix B, which
we optimized as well.

• Shrinkage: As proposed in Reference [5], we used a parameter (the shrink term) to lower
the similarity between items that have only few interactions in common. The shrinkage is
applied to all similarities.

• Feature Weighting: Using feature weighting for ratings was proposed in Reference [74]. In
our experiments, we both tested configurations with no weighting and weighting with ei-
ther the TF-IDF or the BM25 scheme.

• Normalization: This setting determines if we should consider the denominator in the simi-
larity measure as normalization. Only some of the similarity measures have this parameter.

3.2.3 Graph-based Methods. Traditional nearest-neighbor models consider “direct” neighbor-
hoods by computing similarities between pairs of objects. Graph-based models can help to
overcome this possible limitation relying on a broader interpretation of neighborhoods. In our
study, we consider two such graph-based methods called P3α [16] and RP3β [54]. Both methods
often lead to good recommendation quality at low computational cost. Interestingly, based on the
comparatively limited number of citations they received, these two methods appear to be almost

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:7

unknown in the community and seldom used as baselines, despite the fact that they are very sim-
ple, effective and have been published in top-tier venues.

• P3α : This method implements a two-steps randomwalk from users to items and vice-versa,
where the probabilities to jump between users and items are computed from the normal-
ized ratings raised to the power of α . The method is equivalent to a KNN item-based CF
algorithm, with the similarity matrix being computed as the dot-product of the probability
vectors [16]. In addition to what is described in the original algorithm, we normalize each
row of the similarity matrix with its l1 norm. The hyperparameters of the algorithm include
the size of the neighborhood and the value for α .

• RP3β : This is an improved version of P3α proposed in Reference [54]. In RP3β , each similarity
between two items is computed with P3α and divided by the popularity of the items raised
to the power of β . Again, we normalize each row of the similarity matrix with its l1 norm.
If β is 0, then RP3β is equivalent to P3α . The hyperparameters of the algorithm are the size
of the neighborhood and the values for α and β .

3.2.4 Content-based and Hybrid Methods. Some of the neural methods investigated in this arti-
cle include side information about items or users. We have therefore included two simple baselines
that make usage of content information.

• ItemKNN-CBF,UserKNN-CBF: A neighborhood-based content-based-filtering (CBF) ap-
proach, where we compute the item (or user) similarities based on the items’ (or user’s)
content features (attributes) [43]. We tested the same set of similarity measures described
for the collaborative KNN methods (Jaccard coefficient, Cosine, Asymmetric Cosine, Dice-
Sørensen and Tversky similarity). The hyperparameters are the same as for the ItemKNN
and UserKNN methods.

• ItemKNN-CFCBF, UserKNN-CFCBF: A hybrid algorithm based on item-item (or user-
user) similarities and described in Reference [50]. The similarity between items is computed
by first concatenating, for each item, the vector of implicit ratings (collaborative features)
and the vector of item attributes (content features) and by later computing the similarity
between the concatenated vectors. In case of user-user similarities the algorithm operates
in a similar way, concatenating the vector of implicit ratings of each user with the user’s
content feature vector. The hyperparameters and similarity measures are the same as for
ItemKNN, plus a parameterw that controls the relative importance of the content features
with respect to the collaborative features. When w is 0, this algorithm is equivalent to the
pure collaborative versions, either ItemKNN or UserKNN.

3.2.5 Non-neural Machine Learning Approaches. A wide variety of machine learning models
were proposed for top-n recommendation tasks in the literature. In our experiments, we included
a number of comparably basic models from the literature as representatives of which methods
were often considered the state-of-the-art in pre-neural times.

• Matrix Factorization (MF) Techniques: The application of matrix decomposition methods
for collaborative filtering problems was investigated already in the early years of recom-
mender systems [9], and became a de-facto standard after the Netflix prize competition
(2006–2009). We made experiments with many variants, but will limit our discussion to two
main techniques that proved to consistently lead to competitive results among the different
MF techniques.
— iALS: In their seminal work [33], Hu et al. proposed an Alternating Least Squares

approach for implicit feedback datasets, which turns implicit feedback signals into

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:8 M. Ferrari Dacrema et al.

confidence values. The authors also proposed a particular optimization method that has
the advantage of scaling well on larger datasets. A number of hyperparameters can be
tuned for the method, including the number of latent factors, the confidence scaling and
the regularization factor.

—PureSVD: This method corresponds to a basic matrix factorization approach as pro-
posed in Reference [18]. To implement PureSVD, we used a standard SVD decomposition
method provided in the scikit-learn package for Python.8 The only hyperparameter
of this method is the number of latent factors.

• Sparse Linear Models (SLIM): SLIM was proposed as a well-performing regression-based
method for top-n recommendation tasks in Reference [52]. In our work, we use the more
scalable variant proposed in Reference [36] (SLIM ElasticNet), which learns the item sim-
ilarity matrix one item at a time (e.g., one columnw at a time) by solving a regression prob-
lem in such a way that the interactions for the target item y are learned by using all other
interactions as training data. To implement SLIM ElasticNet we used a standard ElasticNet
solver provided in the scikit-learn package for Python.9 The hyperparameters of this
method include the ratio of l1 and l2 regularizations as well as a regularization magnitude
coefficient.

• EASE
R : In a recent article [63] the author showed that an “embarrassingly shallow” linear

model, which shares similarities with an auto-encoder, can produce highly accurate recom-
mendations that often outperform existing and muchmore complex techniques. A peculiar-
ity of this model is the existence of a closed-form solution for the training objective, which
results in very fast training. The only hyperparameter is the choice of the regularization
factor. This algorithm has been published in 2019 and, as such, the papers covered by our
study could not include EASER as a baseline. However, we include EASER to investigate
whether shallow auto-encoders are able to provide, on average, more accurate recommen-
dations with respect to complex deep-learning architectures.

3.3 Early-stopping Approach

Many machine learning models are trained for a number of epochs in which the model’s perfor-
mance varies, first increasing and then stabilizing, while usually exhibiting some degree of vari-
ance. The number of epochs therefore represents another important parameter to be determined.
However, it is worth noting that in the articles we have analyzed neither the number of epochs nor
the stopping criteria are usually mentioned. The procedure in which this parameter was chosen
in the original articles is therefore not clear. Looking at the code shared by the authors we could
observe that, in some cases, the number of epochs was inappropriately selected via an evaluation
done on the test data, therefore causing information leakage from the test data. In other cases, the
reported metric values were inappropriately taken from different epochs.
Early stopping is a widely used technique to select the optimal number of train epochs and

is available in many libraries like Keras.10 The idea of early stopping is to periodically evaluate
the model on the validation data, while the model is being trained, and stop the training when
for a certain number of validation steps the model quality has not improved over the best solution

8https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html.
9https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html.
10For early stopping in Keras, see https://keras.io/callbacks/#earlystopping.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://keras.io/callbacks/#earlystopping

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:9

Table 3. Overview of Reproducible Papers

Paper Conference

Collaborative Deep Learning for Recommender Systems (CDL) [73]11 KDD ’15
Collaborative Variational Autoencoder for Recommender Systems [37]12 KDD ’17
Neural Collaborative Filtering [30]13 WWW ’17
Deep Matrix Factorization Models for Recommender Systems [77]14 IJCAI ’17
Variational Autoencoders for Collaborative Filtering [38]15 WWW ’18
NeuRec: On Nonlinear Transformation for Personalized Ranking [80]16 IJCAI ’18
CoupledCF: Learning Explicit and Implicit User-item Couplings in
Recommendation for Deep Collaborative Filtering [79]17

IJCAI ’18

DELF: A Dual-Embedding based Deep Latent Factor Model for
Recommendation [13]18

IJCAI ’18

Outer Product-based Neural Collaborative Filtering [29]19 IJCAI ’18
Leveraging Meta-path based Context for top-n Recommendation with a
Neural Co-attention Model [32]20

KDD ’18

Collaborative Memory Network for Recommendation Systems [21]21 SIGIR ’18
Spectral Collaborative Filtering [81]22 RecSys ’18

found so far. Early stopping has the advantage of selecting the number of epochswith a transparent
criterion, avoiding arbitrary manual optimization, and often results in shorter training times.
To implement early stopping, we use two independent copies of the current model. One is the

model that is still being trained, the other is the model frozen at the epoch with the best rec-
ommendation quality found so far. If the trained model, after further epochs, exhibits better rec-
ommendation quality than the best one found so far, then the best model is updated. Since the
evaluation step is time consuming, we run five train epochs before each validation step. Moreover,
we choose to stop the training if for five consecutive validation steps the recommendation quality
of the current model is worse than the best one found so far.

4 RESULTS—ANALYSIS OF REPRODUCIBILITY AND PROGRESS

In this section, we summarize the main observations of our experiments. For each analyzed paper,
we describe the basic idea of the method and the summary of our results. A more detailed analysis
is reported in Appendix A, where we describe (i) the baseline algorithms and datasets that were
used in the original paper; (ii) the outcomes reported in the original work; (iii) our results after
including and optimizing additional baselines.

11https://github.com/js05212/CDL.
12https://github.com/eelxpeng/CollaborativeVAE.
13https://github.com/hexiangnan/neural_collaborative_filtering.
14The source code was not publicly available but the authors shared it with us upon request.
15https://github.com/dawenl/vae_cf.
16https://github.com/cheungdaven/NeuRec.
17https://github.com/zhqgui/CoupledCF.
18The source code was not publicly available but the authors shared it with us upon request.
19https://github.com/duxy-me/ConvNCF.
20https://github.com/librahu/MCRec.
21https://github.com/tebesu/CollaborativeMemoryNetwork.
22https://github.com/lzheng21/SpectralCF.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://github.com/js05212/CDL
https://github.com/eelxpeng/CollaborativeVAE
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/dawenl/vae_cf
https://github.com/cheungdaven/NeuRec
https://github.com/zhqgui/CoupledCF
https://github.com/duxy-me/ConvNCF
https://github.com/librahu/MCRec
https://github.com/tebesu/CollaborativeMemoryNetwork
https://github.com/lzheng21/SpectralCF

20:10 M. Ferrari Dacrema et al.

Fig. 1. Overview of Neural Methods. Arrows indicate when a newer method used another one as baseline

in the experiments.

The analyzed papers were published between 2015 and 2018. We organize the discussion of
the papers mostly by year of publication. The list of considered papers is shown in Table 3. An
overview of the temporal development and the dependencies between the approaches can be found
in Figure 1.
The experimental evaluation reported in this article required significant computational effort.

In total, we report the recommendation quality of more than 900 trained models (counting both
baselines and reproducible deep learning algorithms). When taking into account the hyperparam-
eter tuning procedure, 41,000 models were fitted, corresponding to a total computation time of 253
days.23

4.1 Collaborative Deep Learning for Recommender Systems (CDL)

Method. CDL is the earliest method in our analysis, published at KDD ’15 [73].24 CDL is a hybrid
method that applies deep learning to jointly learn a deep representation of content information and
collaborative information. Technically, it is a probabilistic feed-forward model for joint learning
of a stacked denoising autoencoder and collaborative filtering.

Result summary. According to our experiments, simple hybrid baselines outperform CDL in
three of four datasets. On a dense dataset, CDL is also outperformed by pure collaborative

23The computation time refers to the total instance time for one AWS instance p3.2xlarge, with 8 vCPU, 30GB RAM, and

one Tesla V100-SXM2-16GB GPU. The detailed measurements are available in the online material.
24https://github.com/js05212/CDL.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://github.com/js05212/CDL

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:11

baselines with recommendation lists shorter than 100 items. CDL is only better than our base-
lines on one small and very sparse dataset with only one interaction per user in the training set.
From a methodological perspective, there is no indication of why comparably long list lengths,
up to 300, were used for evaluation in the paper and why no measurements were reported for list
lengths below 50, which is commonly the case in the literature.

4.2 Collaborative Variational Autoencoder (CVAE)

Method. Like CDL, the CVAE method [37]25 is a hybrid technique that relies both on content
information and collaborative features for recommending. The work was published at KDD ’17.
Technically, the model learns deep latent representations from content data in an unsupervised
manner and also considers implicit relationships between items and users from both content and
ratings. Unlike previous works proposing denoising autoencoders, CVAE learns a latent distribu-
tion for content in the latent space instead of the observation space through an inference network.

Result summary. While CVAE, according to the original experiments, outperforms previous neu-
ral methods including CDL [73], our experiments indicate these neural methodswere not necessar-
ily strong baselines. Our own experiments confirm the improvements of CVAE over the previous
CDL method. However, similarly to CDL, simple hybrid methods outperformed CVAE in three of
four datasets. CVAE is instead superior in one very sparse dataset that had only one interaction
per user in the training set.

4.3 Neural Collaborative Filtering (NCF)

Method. TheNeural network-based Collaborative Filtering (NCF) [30]26 framework was presented
at WWW ’17 and rapidly became very influential, being used as a baseline for most later neural
recommendation approaches, as shown in Figure 1. The framework generalizes matrix factoriza-
tion in a way that the commonly used inner product is replaced by a neural architecture, which
can learn different types of functions from the data and therefore can also model non-linearities.
Different variants are considered in the paper: Generalized Matrix Factorization, Multi-Layer Per-
ceptron, and Neural Matrix Factorization, where the last one, called NeuMF is an ensemble of the
other two. In our evaluation, we only consider Neural Matrix Factorization, because this method
led to the best results.

Result summary. In our experiments, we could observe that, for one of two datasets, nearest-
neighbor methods outperform NCF on all measurements. For the other dataset, NFC was better
than the nearest-neighbor techniques, but not better than non-neural machine learning methods.
Regarding methodological issues, we observed in the original source code that the number of
training epochs, which should be optimized on the validation set, was erroneously optimized on
the test data.27

4.4 Deep Matrix Factorization (DMF)

Method. Deep Matrix Factorization Models (DMF) were proposed at IJCAI ’17 [77].28 As an input
to their model, the authors first build a user-itemmatrix from explicit ratings and implicit feedback,
which is then used by a deep structure learning architecture. One key aspect here is that a common
low-dimensional space for representing users and items is used. Furthermore, the authors develop

25https://github.com/eelxpeng/CollaborativeVAE.
26https://github.com/hexiangnan/neural_collaborative_filtering.
27In addition, Rendle et al. [56] confirmed that NCF is not able to consistently outperform simple non-neural baselines and

experimentally showed that learning a dot product with a multilayer perceptron is not trivial.
28The source code was not publicly available but the authors shared it with us upon request.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://github.com/eelxpeng/CollaborativeVAE
https://github.com/hexiangnan/neural_collaborative_filtering

20:12 M. Ferrari Dacrema et al.

a new loss function based on cross entropy that considers both implicit feedback and explicit
ratings.

Result summary. The proposed method is outperformed on three of four datasets by our long-
known baselines. Only for one very sparse dataset, the proposed method was better than our
baseline methods, in particular with respect to the Hit Rate.29 Regarding methodological aspects,
we observed in the source code that the Hit Rate and NDCG results are reported as the best value
obtained by evaluating on the test data during training, regardless of the epoch. In our experiments,
we report the results associated to the epoch selected via early stopping on the validation data.

4.5 Variational Autoencoders for Collaborative Filtering (Mult-VAE)

Method. In Reference [38],30 the authors propose a collaborative filtering method for recommen-
dation based on implicit feedback using variational autoencoders. The method is called Mult-VAE

and was presented at WWW ’18. Technically, the paper introduces a generative model with multi-
nomial likelihood and a different regularization parameter for the learning objective, and uses
Bayesian inference for parameter estimation. The authors furthermore show that there is an effi-
cient way to tune the parameter using annealing.

Result summary. We could reproduce the results reported in the original paper for two of three
datasets and found that the proposed method outperforms all neighborhood-based baselines on
all metrics by a large margin. The algorithm also outperforms all non-neural machine-learning
baselines on one dataset. For the second dataset, however, the SLIM method was better when the
optimization target was the same as the evaluation measure (NDCG).

4.6 NeuRec: On Nonlinear Transformation for Personalized Ranking

Method. NeuRec [80]31 was presented at IJCAI ’18. The work aims at learning user-item relation-
ships from implicit feedback and combines latent factor models with neural networks to capture
both linear and non-linear dependencies in the data. Technically, the user-item interaction matrix
is first mapped into a low-dimensional space with multi-layered networks. Recommendations are
then generated by computing the inner product of item and user latent factors. A user-based and
an item-based variant are proposed.

Result summary. Even though the authors published a runnable implementation of their method
and provided detailed information on the hyperparameters, we could not obtain the results re-
ported in the original paper. We contacted the authors but even with their help the reason for this
differences could not be clarified. In our experiments, the method is consistently outperformed
by many of our baselines on three of four commonly used datasets. Only on one small dataset
and for one individual measure at a short list length the proposed method is slightly better than
our baselines. Regarding methodological aspects, we found again that the number of epochs was
erroneously optimized on the test data, furthermore based on the provided source code, the best
results of NeuRec are reported for different measures at potentially different training epochs. In
our experiments, we report the results associated to the epoch selected via early stopping on the
validation data.

29The Hit Rate measures if a single hidden true positive was part of the top-n recommendation list, see, e.g., Reference [79]

for a formal definition. The metric is similar to Recall.
30https://github.com/dawenl/vae_cf.
31https://github.com/cheungdaven/NeuRec.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://github.com/dawenl/vae_cf
https://github.com/cheungdaven/NeuRec

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:13

4.7 CoupledCF: Learning Explicit and Implicit User-item Couplings

Method. CoupledCF [79]32 was also presented at IJCAI ’18. The approach is based on the obser-
vation that users and items in real-world datasets are not independent and identically distributed.
The proposed method therefore aims to learn implicit and explicit couplings between users and
items and to thereby leverage available side information (e.g., user demographics, item features)
more effectively. Technically, a complex architecture is used, involving a CNN for learning the
couplings based on the side information and a deep CF model that considers explicit and implicit
interactions between users and items.33

Result summary. For one of two datasets, the non-deep machine learning models were consis-
tently better than the proposed method. For the second dataset, nearest-neighbor methods were
preferable. Regarding methodological aspects, from the available source code, we could observe
that the number of training epochs was selected using the test data and that the provided data
splits exhibits inconsistencies with the splitting procedure described in the paper. Furthermore, as
described in the original paper, the default hyperparameters for some baselines are used, meaning
they were not properly optimized.

4.8 DELF: A Dual-embedding-based Deep Latent Factor Model for Recommendation

Method. The DELFmodel [13],34 presented at IJCAI ’18, was designed for top-n recommendation
tasks given implicit feedback data. Inspired by previous work (NSVD) [53], the authors propose to
learn dual embeddings to capture certain interactions in the data. Instead of using only the common
user embedding, the authors propose to learn an additional item-based user embedding and vice
versa for item embeddings. The embeddings are then combined to model non-linear interactions
between users and items within a deep learning architecture. Through this approach the authors
generalize ideas of NSVD and Neural Collaborative Filtering (NCF). Two variants of the approach,
DELF-MLP and DELF-EF were investigated in the original paper.

Result summary. Two datasets, MovieLens and Amazon Music, were used for the evaluation. On
the movies dataset, DELF was consistently outperformed by our machine learning baselines. The
performance of DELF on the music dataset was, however, substantially better than all baselines.
An investigation of this phenomenon revealed that when using the Amazon Music with a time-
based splitting criterion, more than half of the test items never appeared in the training set, which
is an uncommon setup for evaluating pure collaborative filtering approaches. The relatively high
accuracy ofDELF therefore stems from its tendency to push cold items—for which it could not have
learned anything in the training phase—to the top end of the recommendation lists. An additional
experiment in which cold items are not considered in the evaluation—which is a more suitable
setup when evaluating pure collaborative filtering methods—shows that the performance of DELF
again drops below that of the machine learning baselines. Looking at methodological aspects, like
in other works discussed here, the authors did not optimize the number of epochs on the validation
set but took the best values obtained when testing.

32https://github.com/zhqgui/CoupledCF.
33The claim that the outer product of embeddings is equivalent to an image and that the CNN allows to model embedding

correlations has been later questioned by Ferrari Dacrema et al. [24]. Similar considerations apply for ConvNCF, discussed

in Section 4.9.
34The source code was not publicly available but the authors shared it with us upon request.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://github.com/zhqgui/CoupledCF

20:14 M. Ferrari Dacrema et al.

4.9 Outer Product-based Neural Collaborative Filtering (ConvNCF)

Method. The ConvNCF method [29]35 was presented at IJCAI ’18. Its main idea is to explicitly
model the pairwise correlations between the dimensions of the embedding using an outer product.
With this technique, the authors aim to create an interaction map, which is more expressive than
existing methods that use simple concatenations of embeddings or element-wise products.33

Result summary. Two datasets were used for the evaluation, traditional nearest-neighbor base-
lines are consistently better than the proposed method on one dataset and better except for one
measurement on the other. Regarding methodological aspects, based on the provided source code
the number of epochs, as in other papers, was determined on the test data. Furthermore, the au-
thors decided to set the embedding size to the constant value of 64 for all baselines. However, the
embedding size is a hyperparameter to be tuned for each dataset and for each embedding-based
algorithm, as different models with different objective functions or training procedures will likely
require different values for it.

4.10 Leveraging Meta-path-based Context (MCRec)

Method. TheMCRec [32]36 method was published at KDD ’18. It is a hybrid method that uses side
information about the recommendable items in the recommendation process. The side information
is represented as a network structure, and meta-paths are relation sequences that connect objects
in this graph. Technically, the authors use a priority-based sampling technique to select more
informative paths instances and a novel co-attention mechanism to improve the representations
of meta-path-based context, users and items.

Result summary. The authors provided an implementation that had the meta-paths hard-coded,
and we therefore could reliably reproduce the results only for the small MovieLens dataset. For
this dataset, however, it turned out that the traditional item-based nearest-neighbor technique was
better than MCRec on all performance measures.
In the context of this work, additional problems were identified based on the provided source

code. For example, the accuracy metrics reported by the source code correspond to the maximum
values that are obtained across different epochs when evaluating on the test data. Furthermore,
in the original article, the hyperparameters of the examined baselines were said to be taken from
the original papers and not optimized for the datasets used in the evaluation. Finally, the NDCG
metric was implemented in an uncommon way.

4.11 Collaborative Memory Network for Recommendation System (CMN)

Method. Collaborative Memory Networks (CMN) [21]37 was presented at SIGIR ’18, and it
represents a collaborative-filtering approach based on memory networks and neural attention
mechanisms. The underlying idea of the approach is to combine latent factor with neighborhood
(memory-based) approaches in a non-linear fashion.

Result summary. For two datasets of three, the recent CMNmethodwas outperformed bymost of
the simpler baselines. On the third dataset, CMNwas much better than our personalized baselines,
but this dataset has such a skewed distribution that recommending the most popular items to
everyone was by far the most effective method in this evaluation. The relatively good performance
of CMN in this setting is therefore attributed to the higher popularity bias of CMN.

35https://github.com/duxy-me/ConvNCF.
36https://github.com/librahu/MCRec.
37https://github.com/tebesu/CollaborativeMemoryNetwork.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://github.com/duxy-me/ConvNCF
https://github.com/librahu/MCRec
https://github.com/tebesu/CollaborativeMemoryNetwork

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:15

Fig. 2. Normalized popularity distributions of the train and test splits for SpectralCF, the value 1 corresponds

to the most popular item in that split. For a random split, as can be seen in panel (b), the normalized values

of both splits are, on average, similar. In the split provided by the original authors, however, as can be seen

in panel (a), train and test data have quite different distributions.

4.12 Spectral Collaborative Filtering (SpectralCF)

Method. SpectralCF, presented at RecSys ’18 [81],38 is a graph-based approach. Users and items
are represented as a bipartite graph. The novelty of this method is a convolution approach that op-
erates on the spectral domain. The method considers both proximity and connectivity information
in the graph, which is assumed to be particularly helpful for cold-start problems.

Result summary. In our initial experiments, we found that the algorithm was competitive with
our baselines only for one of three datasets. Specifically, it was the dataset for which the authors
shared the train-test split. An investigation revealed the distribution of the data in the provided
test set was very different from what we would likely obtain by applying a random sampling
procedure. After creating the train-test splits by our own, we found that SpectralCF does not work
as expected and consistently exhibits lower performance when compared with personalized and
even non-personalized baselines.
To illustrate the data splitting problem, we compared the popularity distribution of the items in

the training and the test split in the provided data; see Figure 2(a). The figure plots the normalized
popularity (i.e., the popularity of an item over the popularity of the most popular item) for both
training and test items. Items are ranked based on their popularity in the training set, with the
most popular training items being on the left. In case of a true random split, the normalized popu-
larity values of the items in the training and the test split should be relatively close. However, the
figure shows the split provided by the authors has some major deviations. Figure 2(b) shows the
popularity distributions of our random split, which are almost identical between training and test
sets.

5 DISCUSSION

Our work indicates that rather limited progress was made through deep learning approaches ap-
plied to the classic top-n recommendation problem, at least when considering the papers that were
analyzed in the present work and that were published at top-level scientific conferences. While

38https://github.com/lzheng21/SpectralCF.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://github.com/lzheng21/SpectralCF

20:16 M. Ferrari Dacrema et al.

many papers claiming to make advances over the state of the art were published, these mostly
seemed to amount to phantom progress. In this section, we will review the possible causes for the
apparent stagnation in this field. We hope that an increased awareness of these causes can help
ensuring progress in the future and lead to the development of even more powerful top-n recom-
mendation approaches. We will structure our discussions along three dimensions: reproducibility,
methodology, and fundamental considerations. Please note that almost all discussed issues are not
tied to deep learning techniques, and our article should therefore not be understood as a criticism
of deep learning in general or in recommender systems research.

5.1 Reproducibility

The reproducibility statistics for the conferences we analyzed in this study are reported in Table 1.
Using our specific criteria, we found that 12 of 26 papers could be reproduced based on the pro-
vided code and publicly available data sets. In recent years, we could observe an increased trend
for researchers to share the source code of their algorithms and experiments, probably due to
the increased importance of reproducibility as a criterion in the academic peer-reviewing process.
Nonetheless, we found that for more than half of the papers the source code was either not pro-
vided or it was lacking important details to the extent that a reliable reproduction of the results
was made difficult or impossible.
The reasons for not sharing the code, not even in private with other researchers, sometimes

remain obscure. Technically, a scientific paper should contain all necessary information for oth-
ers to reproduce the work. Nonetheless, providing the artifacts (code, data sets) that were used
in the experiments is important, as details may sometimes be missing from the papers, e.g., for
space reasons, that could have a significant impact on the observed results. Generally, however,
establishing reproducibility in the context of algorithmic proposals, as discussed in our article,
is relatively easy compared to other disciplines. Nowadays, applied research in deep learning is
mostly based on public libraries and freely accessible software tools. Virtualization technology can
also be leveraged effectively to make the entire software environment used for the experiments
available to the community. Furthermore, while many algorithms have some non-deterministic el-
ements, the overall performance is usually quite stable over several runs, which should allow other
researchers to obtain at least comparable results when using the artifacts of the original authors.
Sometimes, researchers argue that they cannot provide the code because of the rules of the orga-

nization employing them. In some cases, the data used in the experiments is also notmade available
to the community, which means that no one will ever have the chance to verify, and possibly con-
test or falsify, the claimed results under the exact same conditions. This puts academic researchers
in a certain dilemma. The scientific community is highly interested in both real-world problems
and solutions that work in practice. From a scientific perspective, however, reproducibility and
verifiability (or falsifiability) are the main guiding principles of scientific research.
In the context of our study, we contacted the authors of papers where the artifacts were not

publicly available.While some of the authors responded to our inquiries and shared their codewith
us, we found that in the great majority of cases (10 of 14 for non-reproducible papers), we received
no reply.We can only speculate about the reasons for these phenomena. Clearly, providing code for
others can lead to a substantial amount of extra work for the researcher. Furthermore, if reviewers
do not put much emphasis on this, there might be not enough incentives for the researcher to go
the extra mile [15, 64]. At the same time, publishing all artifacts can make certain assumptions or
limitations of a method more obvious, e.g., when the scalability of a method is limited. In general,
however, it should be in the interest of the community, and hence of researchers themselves, that
others can reproduce, confirm or falsify their results, as this is a cornerstone of scientific research

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:17

in the first place. For a discussion of the role of reproducibility as a scientific principle in other
areas of computer science, see, e.g., Reference [25].

5.2 Methodological Issues

Throughout the article, we reported a number of methodological issues that contributed to the
limited progress we have observed in the analyzed articles. Here, we summarize our main obser-
vations.

• Choice of baselines: Algorithms for top-n recommendation problems have been investigated
for decades, and now it is less than clear what represents the state-of-the-art. Determining
the state-of-the-art can be difficult or even impossible due to the fact that there exist no
general “best” algorithm. In fact, performance rankings of algorithms depend on a variety
of factors, including the dataset characteristics or the evaluation procedure and measure.
Another observation is that often only complex machine learning methods are considered
as baselines. Comparably simple methods like P3α and RP3β are not widely known in the
community, even though they were published at top-level venues and often lead to strong
results.

• Propagation of weak baselines: Nowadays, methods like NCF are often considered as com-
petitive state-of-the-art baselines, even though our analysis showed that they are often not
better than relatively simple and well-known techniques.

• Lack of proper tuning of baselines: This is probably the most striking observation of our
analysis and is not specifically tied to deep learning approaches [57] or to recommendation
problems [39, 40]. Researchers apparently invest significant efforts in optimizing their own
newmethod but do not pay the same attention to their baselines. Sometimes, authors simply
pick the hyperparameter settings reported to be optimal from a previous paper, even though
those may refer to a different dataset or experimental procedure. Probably, this behavior
might be the result of a confirmation bias, i.e., the tendency to search for results that affirm
rather than refute prior research hypotheses.

Regarding the choice of the baselines, we found that in some cases researchers reuse the ex-
perimental design that was used in previous studies, i.e., they use the same datasets, evaluation
protocol, and metrics, to demonstrate progress. This is in principle very meaningful as it helps
the comparison of results. However, this also means that the experimental setup is not questioned
anymore, because it has been used by many researchers before. Some papers in our present study
are based on two quite small CiteULike datasets that were used in some early deep learning pa-
pers. These datasets were reused by other authors later on, without questioning if these quite small
datasets were representative for a larger set of real-world recommendation problems or whether
they were useful at all to analyze certain phenomena. In our analysis, we even found that the
Epinions dataset had such characteristics that the non-personalized recommendation of the most
popular items was favorable over any personalized technique.
In general, the reuse of experimental designs is still the exception rather than the norm. In

our analysis, we found that researchers use a large variety of evaluation protocols, datasets, and
performance measures in their experiments. This is expected in articles having different goals
and aimed at different scenarios. However, in most cases, there is no particular argumentation on
why a certain metric is used or why particular datasets from a certain domain serve as a basis
for the research. To illustrate these phenomena, we show in Table 4 which datasets were used for
evaluation in the reproducible papers.
Besides the fact that 12 reproducible articles used 18 different datasets, the authors also relied on

quite a number of different data splitting procedures, including leave-one-out, leave-last-out, 80/20

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:18 M. Ferrari Dacrema et al.

Table 4. Datasets Used by Reproducible Papers

Dataset Paper Dataset Paper

Amazon Movie [77] Amazon Music [77], [13]
CiteULike-a [21], [37], [73] CiteULike-t [37], [73]
Epinions [21] FilmTrust [80]
Frappe [80] Gowalla [29]
LastFM [81], [32] Movielens Hetrec [80]
Movielens100K [32], [77] MovieLens1M [81], [30], [80], [79], [13]
MovieLens20M [38] MSD [38]
Netflix Prize [73], [38] Pinterest [21], [30]
Tafeng [79] Yelp [81], [32], [29]

training/test split, hold-out of users, or retain only 1 or 10 interactions per user. When evaluating,
researchers somewhat arbitrarily used 50, 100, or 1000 negative samples per positive sample for
ranking. Moreover, the metrics–including the Hit Rate, Precision, Recall, MAP, or NDCG—were
measured on a variety of cut-off thresholds between 1 and 300. In addition, several pre-processing
strategies were applied, for example, retaining only users or items with an arbitrary minimum
number of interactions. In most cases, no justification is provided for why a particular choice of
pre-processing, metrics and cut-off was selected and which relevant scenario aims to represent. As
a result—as recently pointed out by Reference [11]—each of these choices can lead to comparisons
that are vulnerable to misinterpretation and that may lead to different or even opposite outcomes,
depending on the exact combination of the used settings.
One possible way to obtain a better understanding regarding what represents the state-of-the-

art could be the adoption of standardized evaluation setups, where all regarded algorithms are
evaluated in the same experimental conditions. Such an approach was for example followed in
Reference [44] for session-based recommendation problems, where the same set of measurements
was applied for various datasets. In pre-neural times, such comparisons were often enabled by
the use of recommender systems libraries like MyMediaLite39 or LibRec,40 which also included
evaluation code. In contrast, the works analyzed in our study mostly implemented the evaluation
routines from scratch, leading to certain problems as discussed in the article.
Regarding the issue of baselines often not being properly tuned, one problematic factor with

deep learning methods is that most of them are computationally complex, and some of them have
a large number of hyperparameters to tune. Furthermore, it is usually also possible to vary the
structure of the network in terms of the layers and nodes in each layer. An exhaustive search
through the hyperparameter space for a large number of network architectures is therefore often
not possible in reasonable time.
Regarding absolute running times, let us consider a few examples.41

• The often-cited NCF (NeuMF) method (Section A.3) needs four hours to train on one of
our machines for the popular MovieLens1M dataset. Training the best-performing SLIM
method on the same machine and dataset requires only 4 minutes. Interestingly, the more

39http://www.mymedialite.net/index.html.
40https://www.librec.net/.
41All reported measurements were made on the same hardware: one AWS instance p3.2xlarge, with 8 vCPU, 30 GB RAM,

and one Tesla V100-SXM2-16 GB GPU. All deep-learning algorithms (with the exception of CDL) were trained using the

GPU. All of our baselines were trained only on the CPUs. The detailed measurements are available in the online material

(Section 3).

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

http://www.mymedialite.net/index.html
https://www.librec.net/

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:19

recent EASER method has better accuracy than NeuMF, but only needs about 12 s for train-
ing on the same machine. Training NeuMF on the slightly larger Pinterest dataset (1.5M
interactions) took more than two days, which is again much higher when compared to the
training times of SLIM (12 min) or EASER (2 min).

• Similar observations can be made for the early CDL method (Section A.1). On the larger
CiteULike-a dataset with about 55k interactions, CDL needs almost two hours for train-
ing, the EASER method 2 min, and our well-performing ItemKNN CFCBF hybrid less than
10 seconds to pre-compute the neighborhoods.

• The Mult-VAE method (Section A.2), which significantly outperformed our baselines on
one dataset, seems to be also favorable over both baselines and other neural methods in
terms of training times. For the relatively largeMovieLens20M dataset, training needs about
21 min on our machine. This is much faster than the SLIM algorithm, which needs almost
two hours and was competitive with Mult-VAE on the other dataset. EASER , which is on
par or better than SLIM, is again favorable here, requiring only about 3 min for training.

• The algorithm with the longest training time on our machine is DMF. Its best variant, based
on binary cross entropy, requires almost 5 days of training on the MovieLens1M dataset,
while the simple iALS baseline, which outperforms DMF on all measures, requires only
4 min of training.

Limited scalability is not a methodological issue per se, and we do not argue that scalability
necessarily has to be a main focus of academic researchers, in particular when it comes to new
technical ideas and proposals. Once the ideas are assumed to be viable and effective, questions
related to the practical deployment can be addressed in subsequent research, e.g., by using more
shallow models that implement the same concepts.
However, today’s often enormous costs for tuning the baselines may lure researchers into taking

hyperparameter settings from previous papers—even though they were determined for different
evaluation setups—and reuse them in their own experiments. Another possible consequence of
the sometimes high computation costs can be that researchers often do not apply cross-validation
procedures. Instead, they rather base their conclusions on one single train-test split of the data.
For this reason, in many research works the statistical significance of the observed outcomes is
not reported.
Besides the general issues reported so far, we observed a number of further more technical is-

sues. These include uncommon implementations of rankingmeasures, non-randomized data splits,
reporting best results across different epochs, and determining the best number of epochs on the
test set.

5.3 Fundamental Issues

Among the factors that may contribute to the apparent stagnation observed both in this study
and in other fields [3, 46] are today’s incentive mechanisms in the academic system and our es-
tablished research practices; see also Reference [42]. Regarding the incentive system, researchers
are more and more evaluated based on the citations their works receive. This might lead to the
phenomenon that researchers develop a tendency to investigate problems that are popular and
(easily) “publishable” [72]. With the current strong interest in neural algorithms [39], papers that
do not propose or use deep learning approaches might get criticized by reviewers for not using
state-of-the-art technology. It therefore might appear much easier to publish a neural approach
than other works, even though the true value of these complex models is not always fully clear.
Furthermore, with the thinness of the reviewer pool, the “mathiness” of many papers [42] and

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:20 M. Ferrari Dacrema et al.

the sheer amount of machine learning papers submitted every year, it becomes more and more
difficult to identify those works that truly move the field forward.
One particularly seductive aspect in the context of algorithmic works on top-n recommenda-

tion is that there is an implicit general agreement about how research in this area should be done.
Unlike in other types of recommender systems research, e.g., research that involves user studies,
the experimental offline evaluation design approach is generally pre-determined and is not ques-
tioned. Generally, to have a paper accepted at one of the prestigious conferences considered in this
article, one has to (at least) propose a new technical approach that outperforms some state-of-the-
art methods on one evaluation protocol and on at least a couple of established metrics and publicly
available datasets. Which dataset is used often seems arbitrary, and today’s papers in most cases
do not motivate their work based on domain-specific considerations or an underlying theory.42

Researchers are also flexible in terms of their evaluation method. As discussed above, various pro-
tocol variants and accuracy measures are used today, and in most papers the selection of measures
is not explained. Finally, as discussed throughout the article, it is difficult to know what represents
the state-of-the-art in a certain area or for a specific subproblem.
All these degrees of freedom make it very tempting for researchers to focus on accuracy im-

provements for top-n recommendation, where it is in some sense easy to “prove” progress and
where no special research design has to be developed and argued for. However, the established
research model, as discussed, allows for a lot of arbitrariness. For example, a novel algorithm may
be compared against a baseline using a number of accuracy metrics at different cut-off lengths
on multiple datasets. The probability of finding some combinations of measures and datasets by
which the novel algorithm seems to outperform the baseline increases with the number of cases
examined [28].
Online machine learning competitions as hosted, e.g., on Kaggle,43 represent the other extreme.

On Kaggle and also in specific recommender systems challenges, the dataset and the evaluation
method are pre-defined by the organization running the competition. Furthermore, participants do
not see the test set and usually do not measure the recommendation quality by themselves, which
avoids, as we have discovered in our study, a potential source of mistakes. One typical criticism of
such online competitions is that they result in a “leaderboard chasing” culture, which can lead to
limited innovation.
All in all, current research practice can easily create an illusion of progress in terms of accuracy

improvements. But even when this progress is real, a further obstacle lies in us not even knowing
with certainty whether these accuracy improvements will lead to better recommendations in prac-
tice, neither in terms of business value nor in terms of the quality perception by users. In fact, a
number of research works indicate that algorithms with higher offline accuracy do not necessarily
lead to better perceived recommendation quality [4, 17, 27, 47, 59]. For this reason, recommender
systems research is different from other areas like image recognition or natural language process-
ing (e.g., automated translation), where accuracy improvements can often directly lead to better
systems.
This problem of focusing solely on accuracy optimization has actually been well known in the

recommender systems community for many years [49], and the “hyper-focus on abstract metrics”
is also common to other areas of applied machine learning research [72]. As shown in compara-
tive evaluations like [44], however, there usually is no best model, and the ranking of algorithms
depends on many factors like dataset characteristics or evaluation approach. While there is no
doubt that being better able to predict the relevance of items for individual users is something

42See also Reference [35] for a satirical discussion of this general problem in machine learning.
43https:///www.kaggle.com.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https:///www.kaggle.com

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:21

useful, considering only abstract accuracy measures appears to be a strong oversimplification of
the problem.

5.4 Reproducibility and Progress: Guidelines and Best Practices

The analyses in this article point to several common issues that may lead to limited reproducibil-
ity and progress. Based on these observations, we provide a set of guidelines and best practices
for algorithms research in recommender systems. The guidelines relate both to methodological
aspects, i.e., how to ensure that progress is made, and publication aspects, i.e., which information
should be reported in research papers and which materials should be provided publicly. Moreover,
we provide recommendations for journal editors and conference chairs to improve reproducibility
and progress in the discipline.

5.4.1 Methodology. Generally, researchers should select a wide, diverse and optimized set of
baselines to reduce the chance of reporting progress that is only virtual.

Include baselines algorithms from different families. In our results there was no in-
dividual algorithm, or even no single family of algorithms (e.g., neighborhood-based,
machine-learning, non-personalized), which was superior to the others in all experimen-
tal configurations. Therefore, researchers should strive to include well-optimized baseline
algorithms of different families in their experiments and not limit themselves to a certain
class of algorithms, e.g., deep learning baselines.

Systematically optimize all algorithms. All algorithms in the comparison must be opti-
mized for each tested dataset and for the given evaluation protocol andmetrics. A compar-
ison between optimized and non-optimized algorithms is meaningless. It cannot inform
us if a new method advances the state of the art. The optimization must include all rel-
evant parameters and all baselines, even the simplest, including, for example, the shrink
term for neighborhood-based approaches, which is known to sometimes lead to substan-
tial performance gains. Also the number of training epochs for learning approaches is a
parameter to be tuned on validation data.

Carefully choose the hyperparameter optimization strategy.Another issuewe observed
for several papers but have not highlighted so far is that authors often do not report the
details of the applied hyperparameter optimization strategy. The chosen strategy can,
however, have a significant impact on the results. The commonly used Grid Search ap-
proach has certain limitations, in particular that the results may be strongly affected by
how the value ranges of continuous valued hyperparameters are discretized. Since even
Random Search has shown to be often favorable over Grid search [6], the use of Random
search or Bayesian strategies is recommended.

5.4.2 Reproducibility. As pointed out by Cockburn et al. in Reference [14], the pressure to pub-
lish academic works encourages researchers to consciously or unconsciously adopt not well jus-
tified methodologies—such as excluding certain users or items from the datasets—to make their
findings look stronger. While such decisions can be entirely appropriate if properly motivated,
engaging in selective reporting of results is not: flexible data analysis and selective reporting can
dramatically increase the risk of only virtual progress. For example, if a researcher collects 10
accuracy metrics and only reports the significant ones (with significance level at 0.05), then the
probability of reporting a progress that is only virtual jumps from 5% to 40%.
While in principle a paper should contain all necessary information to reproduce the results,

this is often conflicting with the space limitations most publication outlets enforce. The following

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:22 M. Ferrari Dacrema et al.

is a list of details that should be reported as a minimum in a paper and it is based on The Machine

Learning Reproducibility Checklist44 adopted, e.g., by NeurIPS ’18 and NeurIPS ’19:

State underlying assumptions. The assumptions the model relies upon (e.g., data proper-
ties) should be clearly stated and, when necessary, verified to be true for the evaluation
setup at hand. For example, the claim that interaction maps derived from the outer prod-
uct of embeddings are equivalent to images and that CNNs allow to model the embedding
correlations (CoupledCF [79] and ConvNCF [29]) was not directly verified in the original
articles and was later questioned by Ferrari Dacrema et al. [24].

Be clear about data pre-processing. All pre-processing steps should be described and the
removal of data should be clearly motivated. In some of the articles we analyzed (DMF
[77] and NeuRec [80]), pre-processing reduced the size of the dataset by more than 80%.
Drastic subsampling of the dataset may entirely change its properties.

Report hyperparameter optimization details. The article should either explicitly mention
or provide a reference to the range and distribution of each hyperparameter, and should
report the method that was used to select them. This includes the number of epochs the
model was trained for and early-stopping criteria.

Given that small details in the implementation of complex models can matter a lot, what pub-
lished in a paper alone is often not sufficient to ensure reproducibility of results. Therefore, it is
important for authors to also provide a publicly available implementation. The following guide-
lines are partially based on those adopted by NeurIPS.45 In essence, it should be made as easy as
possible for other researchers to redo the experiments.

Publish the source code of all models, including the baselines. We often observed in
our analysis that researchers only published the core training and prediction routine of
the newly proposed model. We could not find any article providing the source code for
the baselines, when those were not already publicly available as part of other projects,
and only few published the source code for both the pre-processing and splitting of the
datasets (Mult-VAE [38] and NeuRec [80]).

Provide the datasets. The used datasets, or pointers to them, should be published. If possible,
then the train and test splits should be published as well.

Make the reproduction easy for others. Authors should specify all software requirements
and dependencies of their software, including the specific version. Provide installation
scripts and machine-readable dependency descriptions. It is also desirable to provide
scripts that execute the entire experimental pipeline, from pre-processing, to training,
evaluation, and collection of metrics.

Use persistent repositories. Institutional repositories or DOIs should be preferred to per-
sonal webpages, since the latter can have a much shorter lifespan making previously
published links unavailable [70].46

5.4.3 Mitigation. In the spirit of mitigating the current issues in phantom progress, our recom-
mendation to journal editors and conference chairs is to promote submissions replicating previous

44https://www.cs.mcgill.ca/∼jpineau/ReproducibilityChecklist-v2.0.pdf.
45https://github.com/paperswithcode/releasing-research-code.
46For example, at the time of our analysis we found that the provided links to two datasets (Tafeng and Frappe) were not

active anymore. We could only use these datasets, because other researchers had uploaded them independently as part of

other publications.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist-v2.0.pdf
https://github.com/paperswithcode/releasing-research-code

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:23

studies. Replications of studies contribute to elevate confidence and robustness in findings beyond
what is possible from a single study.
However, themain obstacle to reproducibility studies is a publication bias in which reproducibil-

ity papers are accepted for publication at a much lower rate than those providing novel results [14].
Therefore, we encourage editors and chairs to educate reviewers on the research value of replicat-
ing previous studies.

6 CONCLUSION

Our work reveals that despite the large number of new methods that are published on the topic
of top-n recommendation every year, the progress in this field may actually seem limited, at least
when considering the papers analyzed in this work. Our analysis shows that sometimes even rel-
atively simple methods lead to performance levels that are similar or even better than the most
recent complex neural methods. In other cases, the computationally expensive neural methods
did not outperform well-established matrix factorization approaches or linear models. A number
of issues contribute to the observed phenomena. We not only identified different methodological
problems but also found that the choice of the baselines and often the lack of a proper optimiza-
tion of these baselines represent key issues that hamper our progress. These phenomena however
are not specific to the domain of recommender systems or to neural approaches. In the context of
the use of deep learning techniques for the important top-n recommendation task, our analyses in
some ways indicate that the power of deep learning has not been leveraged yet to the full extent
as it was done in other applications areas. This, as a result, leads to a number of avenues for future
research on neural methods for recommender systems.
Increasing the reproducibility of published research was identified as one of possible strategies

to mitigate some of the observed problems. In the information retrieval research community, ques-
tions of replicability and reproducibility have recently received more attention, probably thanks in
part to the surprising results from References [3, 39, 78]. An increased awareness and correspond-
ing initiatives are also advisable for the recommender systems community. However, even with
better reproducibility, fundamental problems of algorithms-based recommender systems research
remain. The reason is that, unlike in some IR tasks, better retrieval or prediction performance does
not necessarily lead to recommendations that are better in terms of the users’ quality perception
or in terms of the business value for providers.
In the end, these problems lead to a certain stagnation of the research field. A large number of

researchers hunt for the “best” model, even though there are many indications that no such model
exists, as the performance ranking of algorithms depends on many factors. Overall, a paradigmatic
shift is therefore required in terms of how we evaluate recommender systems. In the future, it is,
however, not only important to address the methodological issues observed in this article. We also
should reconsider how much we can actually learn from offline experiments and computational
accuracy measures alone. This, for example, calls for multi-method evaluation approaches that
(i) consider the human in the loop and (ii) for research works that are more based on theoretical
considerations than on network architecture engineering.

APPENDIX

A DETAILED ANALYSIS FOR REPRODUCIBLE ARTICLES

In this part of the Appendix, we discuss the analyzed papers in more detail and provide selected
numerical results.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:24 M. Ferrari Dacrema et al.

A.1 Collaborative Deep Learning for Recommender Systems (CDL)

Datasets. The evaluation in the original paper is based on three datasets. Two of them are data
samples that were previously collected from the CiteULike platform and which were already used
in earlier research. One dataset is based on rating data from the Netflix Prize competition, aug-
mented with content information by the authors. In our evaluation, we considered only the Ci-
teULike datasets, because the content information used in combination with the Netflix dataset
is not publicly available. Two versions of the CiteULike dataset were considered, a dense ver-
sion CiteULike-a and a sparser one CiteULike-t. Both datasets are relatively small (135k and 205k
interactions, respectively). For each of these datasets, experiments were made in two sparsity con-
figurations. These configurations are described by a parameter P , which defines how many in-
teractions per user are left in the training set (with the rest going to the test set). For parameter
P , values 1 and 10 were reported, which correspond to 5.5k and 55.5k training interactions, re-
spectively. Note that with P = 1 there is only one training interaction per user in the training
dataset.

Evaluation. Several baseline techniques were explored, among them a number of hybrid matrix
factorization approaches, a content-based deep learning technique designed for music recommen-
dation, as well as Collaborative Topic Regression , a method combining Latent Dirichlet Allocation
on the content and collaborative filtering on the interactions. For evaluation purposes, P interac-
tions for each user were randomly sampled to be part of the training set as mentioned above. The
average results of five evaluation runs are reported. The authors report Recall for comparably long
list lengths (50 to 300), and Mean Average Precision for list length 300.

Results and Discussion. The authors found their method to outperform all baselines on all mea-
sures. We could reproduce their results based on the provided code and dataset.47 To optimize the
baselines in our own evaluation, we used 20% of the training set as a validation set.48 After opti-
mization, our results show that CDL—in three of four configurations (CiteULike-a with P=10 and
CiteUlike-t with P=1 and P=10)—was consistently outperformed by our simple hybrid technique
(ItemKNN CFCBF) and, in many cases, also by the pure content-based method (ItemKNN CBF).
Only when removing all but one user interaction from the CiteULike-a dataset (with P=1) CDL
was, by a large extent, better than any of our baselines. In particular, in the settings where P=1,
pure collaborative filtering techniques were, as expected, not competitive.
Table 5 shows exemplary results for the CiteULike-a dataset (P=10), with about 55k interac-

tions in the training dataset. Detailed results for all datasets can be found in the online appendix
(Section 3). In the table, we highlight in bold those entries where a baseline outperformed CDL.We
can observe that, for shorter and much more typical list lengths, even the simplest collaborative
filtering approaches outperform CDL. The iALS method based on matrix factorization for implicit
feedback data was better with respect to CDL in all measurements and cutoff lengths. Finally, the
best results were achieved with the pure content-based method that uses only item features to
recommend similar items (ItenKNN CBF).

47In the source code the authors provided it is reported that the original evaluation contained an error such that the

absolute values of the evaluation metrics was higher than the correct one, although the relative performance ordering of

the algorithms remained unaltered. Once this error is fixed we can reproduce their results.
48Information about the validation set size was not provided in the original paper. In the evaluation scenario where P=1,

due to the presence of only 1 training instance per user, any sampling would result in cold users. Therefore, in this scenario,

the validation data is also contained in the train data. In the evaluation scenario where P=10, training and validation data

are disjoint.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:25

Table 5. Selected Results for the CDL Method on the CiteULike-a Dataset with P=10

REC@50 REC@100 REC@150 REC@200 REC@250 REC@300
TopPopular 0.0040 0.0078 0.0103 0.0204 0.0230 0.0258
UserKNN CF jaccard 0.0806 0.1207 0.1480 0.1705 0.1887 0.2034
ItemKNN CF cosine 0.0989 0.1441 0.1752 0.1982 0.2156 0.2300
P3α 0.0907 0.1341 0.1636 0.1865 0.2055 0.2206
RP3β49 0.0963 0.1408 0.1692 0.1908 0.2090 0.2239
EASER 0.0839 0.1253 0.1546 0.1797 0.1988 0.2128
SLIM 0.0876 0.1308 0.1583 0.1821 0.2005 0.2165
PureSVD 0.0715 0.1079 0.1313 0.1491 0.1636 0.1759
iALS 0.0779 0.1388 0.1834 0.2186 0.2472 0.2706

ItemKNN CBF cosine 0.1989 0.2835 0.3402 0.3844 0.4193 0.4492

ItemKNN CFCBF cosine 0.1858 0.2816 0.3445 0.3930 0.4335 0.4642

CDL 0.0580 0.1108 0.1546 0.1946 0.2314 0.2640

We highlight in bold those entries where a baseline outperforms CDL.

From a methodological perspective, there is no indication of why comparably long list lengths
were used for evaluation in the paper and why no measurements were reported for list lengths
below 50, which is commonly the case in the literature.

A.2 Collaborative Variational Autoencoder (CVAE)

Datasets and Evaluation. The CVAEmethod is evaluated in the same way as the CDL approach, i.e.,
two datasets from CiteULIke are used and different sparsity configurations are evaluated. Likewise,
the authors of CVAE measure Recall at different (long) list lengths. As an additional baseline, the
authors include the CDL [73] method described in the previous section. The hyperparameters for
all baseline methods were optimized using a validation set that is, however, not described.

Results and Evaluation. We could reproduce the results for CVAE.50 Table 6 shows the results of
our experiments for the CiteULike-a dataset with P=10, again using the same evaluation measures
and protocol as used in the original paper.
The baseline results shown in Table 6 are identical to those of Table 5—as they were done on

the same dataset and with the same evaluation protocol—except that Table 6 has an additional
row for the results for the CVAE method. Again, the simple hybrid baselines outperform the more
complex CVAE method on all measures on this dataset. We can, however, observe that CVAE is
indeed consistently better than the CDL method, which is the main baseline method in Reference
[37]. For the other dataset and sparsity configurations, our results are similar to what was reported
in the previous section on CDL.
Overall, the authors of CVAE could show an advance with respect to CDL, but our results in-

dicate that CDL did not represent a strong baseline method. In the remainder of this article, we
will observe the following phenomenon several times: a neural method is introduced as improving
the state-of-the-art, and subsequent works only focus on outperforming this new neural method,
without considering alternative baselines.

49We report RP3β [54] for completeness although the DL algorithm we evaluate here predates its publication.
50In the source code the authors provided it is reported that the original evaluation contained an error such that the

absolute values of the evaluation metrics was higher than the correct one, although the relative performance ordering of

the algorithms remained unaltered. Once this error is fixed, we can reproduce their results.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:26 M. Ferrari Dacrema et al.

Table 6. Experimental Results for the CVAE Method for the CiteULike-a with P=10

REC@50 REC@100 REC@150 REC@200 REC@250 REC@300
TopPopular 0.0040 0.0078 0.0103 0.0204 0.0230 0.0258
UserKNN CF jaccard 0.0806 0.1207 0.1480 0.1705 0.1887 0.2034
ItemKNN CF cosine 0.0989 0.1441 0.1752 0.1982 0.2156 0.2300
P3α 0.0907 0.1341 0.1636 0.1865 0.2055 0.2206
RP3β51 0.0963 0.1408 0.1692 0.1908 0.2090 0.2239
EASER 0.0839 0.1253 0.1546 0.1797 0.1988 0.2128
SLIM 0.0876 0.1308 0.1583 0.1821 0.2005 0.2165
PureSVD 0.0715 0.1079 0.1313 0.1491 0.1636 0.1759
iALS 0.0779 0.1388 0.1834 0.2186 0.2472 0.2706
ItemKNN CBF cosine 0.1989 0.2835 0.3402 0.3844 0.4193 0.4492

ItemKNN CFCBF cosine 0.1858 0.2816 0.3445 0.3930 0.4335 0.4642

CVAE 0.0805 0.1569 0.2232 0.2760 0.3250 0.3687
CDL 0.0580 0.1108 0.1546 0.1946 0.2314 0.2640

We highlight in bold those entries where a baseline outperforms CVAE.

A.3 Neural Collaborative Filtering (NCF)

Datasets. Two datasets were used for evaluating the method, one rating dataset fromMovieLens
(MovieLens1M)52 and one dataset with implicit feedback from Pinterest.53 The Pinterest dataset
was pre-processed by removing all users with less than 20 interactions. After pre-processing, the
dataset contained 1.5 million interactions. For the MovieLens rating dataset, all 1 million ratings
were transformed to 1 to mimic an implicit-feedback dataset, with missing entries transformed
to 0.

Evaluation. The authors use a leave-last-out procedure to evaluate their method. For each user,
the last interaction (based on its timestamp) is put into the test set. The resulting data splits used
in the experiments are shared by the authors. To avoid to compute scores for all recommendable
items, which is considered too time-consuming by the authors even for datasets of modest size,
the performance of the algorithms is measured by determining how the last hidden item is ranked
within other 100 randomly sampled items. Hit Rate (HR) and NDCG at list length 10 are used as
performance metrics [79].

As personalized baselines, the authors include Matrix Factorization with Bayesian Personalized
Ranking (BPR) matrix factorization, the eALS method from 2016 and the ItemKNN method. The
original hyperparameter optimization is done on a validation set obtained by randomly selecting
one interaction per user. For the ItemKNN method, the number of neighbors was varied, but no
other configurations were tested by the authors (e.g., shrink term or normalization). According to
the reported experiments, the NCF method, and in particular the NeuMF variant, outperforms all
baselines on all dataset on all performance measures.

Results and Discussion. We could reproduce the reported results. However, the analysis of the
provided source code shows that the number of training epochs was chosen by maximising the
Hit Rate on the test data. Since the number of epochs is a parameter like any other, it must be
fixed before testing, e.g., through early stopping on a validation set. In our experiments, for each

51We report RP3β [54] for completeness although the DL algorithm we evaluate here predates its publication.
52https://grouplens.org/datasets/movielens/.
53https://sites.google.com/site/xueatalphabeta/academic-projects.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://grouplens.org/datasets/movielens/
https://sites.google.com/site/xueatalphabeta/academic-projects

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:27

Table 7. Experimental Results for NCF (MovieLens 1M)

HR@1 NDCG@1 HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1051 0.1051 0.3048 0.2064 0.4533 0.2542
UserKNN CF asymmetric 0.1921 0.1921 0.5070 0.3546 0.6768 0.4100
ItemKNN CF asymmetric 0.1843 0.1843 0.4906 0.3400 0.6627 0.3956

P3α 0.1791 0.1791 0.4846 0.3352 0.6460 0.3876
RP3β54 0.1836 0.1836 0.4935 0.3419 0.6758 0.4011

EASER 0.2225 0.2225 0.5629 0.3986 0.7192 0.4494

SLIM 0.2207 0.2207 0.5576 0.3953 0.7162 0.4468

PureSVD 0.2132 0.2132 0.5339 0.3783 0.6937 0.4303
iALS 0.2106 0.2106 0.5505 0.3862 0.7109 0.4382

NCF (NeuMF variant) 0.2088 0.2088 0.5411 0.3803 0.7093 0.4349

We highlight in bold those entries where a baseline outperforms NCF.

Table 8. Experimental Results for NCF (Pinterest)

HR@1 NDCG@1 HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.0467 0.0467 0.1665 0.1064 0.2740 0.1409
UserKNN CF jaccard 0.2898 0.2898 0.7038 0.5056 0.8655 0.5583

ItemKNN CF asymmetric 0.2903 0.2903 0.7117 0.5096 0.8766 0.5633

P3α 0.2853 0.2853 0.7022 0.5024 0.8700 0.5571
RP3β54 0.2966 0.2966 0.7151 0.5149 0.8796 0.5685

EASER 0.2909 0.2909 0.7070 0.5077 0.8684 0.5604

SLIM 0.2913 0.2913 0.7059 0.5072 0.8679 0.5601

PureSVD 0.2630 0.2630 0.6628 0.4706 0.8268 0.5241
iALS 0.2811 0.2811 0.7144 0.5061 0.8761 0.5590

NCF (NeuMF variant) 0.2801 0.2801 0.7101 0.5029 0.8777 0.5576

We highlight in bold those entries where a baseline outperforms NCF.

algorithm (including NCF), we therefore report the performancemeasure for the number of epochs
that was considered optimal based on the validation set.
Tables 7 and 8 report our results for both the MovieLens and Pinterest datasets. We report the

results for list length 10, as in the original paper. Since the authors in Reference [30] also plot the
results at different list lengths from 1 to 10, we also include measurements at list lengths 1 and 5
for comparison purposes.
On the well-known MovieLens dataset (Table 7), NeuMF was competitive against the simple

baselines, however was outperformed by all but one non-neural machine learning methods. On
the Pinterest dataset (Table 8), NeuMF could only outperform PureSVD, which is not optimized
for implicit feedback datasets. Most non-neural machine learning techniques, were often either
similar or better than NeuMF.55 These findings have been confirmed in a recent article by Rendle

54We report RP3β [54] for completeness although the DL algorithm we evaluate here predates its publication.
55It shall be noted here that after the first publication of our results [23], the authors of NeuMF provided us with an alter-

native configuration of their method, which included new hyperparameter values taken from alternative hyperparameter

ranges, and requiring other slight changes in the training procedure. While this new configuration led to slightly improved

results for their method, the results of our analysis were confirmed. In this context, we would like to clarify that for all

neural methods investigated here better configurations than those reported in the original papers may indeed exist. Finding

such configurations, e.g., in the form of better hyperparameter ranges or alternative network structures, is, however, not

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:28 M. Ferrari Dacrema et al.

et al. [56], which discussed the problem of learning a dot product with multilayer perceptrons.
The article shows that this is not a trivial task and that the computation cost of using a neural
model can be unpractical for production environments where efficient algorithms based on the
dot product are available.
As a side observation, we can see that machine learning methods were clearly favorable over

simple techniques for the MovieLens dataset. For the Pinterest dataset, however, it turns out that
this advantage diminishes—at least in this experiment—and that a well-tuned ItemKNN method
led to similar and sometimes better performance than machine learning techniques.

A.4 Deep Matrix Factorization (DMF)

Datasets. Experiments were made on four public datasets: the two smallest MovieLens datasets
(100k and 1M),56 and two publicly available datasets collected fromAmazon.com (for theMovie and
Music domains).57 All datasets contain ratings on a 1 to 5 scale. The datasets were pre-processed (if
needed) so that there were at least 20 ratings for each user. Furthermore, for the Amazon datasets
only, items were considered for which more than 5 ratings existed.
The Amazon Music data set that resulted from the pre-processing step was shared by the au-

thors. It however contains users with less than 20 interactions and items with less than 5 ratings.
Therefore, it remains unclear how exactly the filtering was done. To keep the results presented
in this article consistent across datasets, we have pre-processed all datasets—including Amazon
Music—as described in the original paper, and we have not used the Amazon Music dataset shared
by the authors. We also run our experiments on the Amazon Music dataset shared by the authors:
the relative performance between baselines and DMF (not reported here) do not change with re-
spect to the results reported here.

Evaluation. The evaluation procedure is leave-last-out similar to the one used for the NCF
method. For each user, the last interaction (based on its timestamp) is held out and ranked to-
gether with 99 negative (non-interacted) random items.58 The Hit Rate and NDCG at list length
10 are used as metrics. The data splits that were used in the experiments were not shared by the
authors; therefore, we created data splits based on the information in the paper.
As personalized baselines, the authors consider NCF [30] as well as the baselines reported in that

article, i.e., eALS and ItemKNN. However, the authors used NCF with binarized feedback, while
DMF used explicit feedback. Hyperparameters for the machine learning methods were tuned on a
validation set built from the training set by randomly sampling one interaction per user, and the
authors report that eALS and NCF were tuned as in the original papers. For the ItemKNN method,
no details about neighborhood sizes or the used similarity function are provided.

Results and Discussion. We reproduced the experiments reported by the authors based on the
code that was provided to us upon request. We ran DMF with both loss functions that were also
evaluated in the paper but could not confirm that the normalized version nce leads to accuracy
improvements over the binary version bc. Our results however revealed that for three of four
datasets one of the simple baselines outperformed DMF on both measures.
Table 9 shows the results for the MovieLens datasets, which are among the most often used

ones in the literature. The results obtained by DMF are better than traditional nearest-neighbor

the goal of our work. Instead, our goals are to assess the reproducibility of existing works and to compare the best reported

results against existing baseline techniques.
56https://grouplens.org/datasets/movielens/.
57http://jmcauley.ucsd.edu/data/amazon/.
58The paper reports that 100 negative items are used, as described for NCF. However, the source code provided by the

authors uses 99 negative items. In our experiments, we have used 99 negative items.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:29

Table 9. Experimental Results for DMF for the MovieLens1M (Left) and MovieLens100k (Right) Datasets

HR@10 NDCG@10
TopPopular 0.4418 0.2475
UserKNN CF asymmetric 0.6324 0.3779
ItemKNN CF cosine 0.6347 0.3808

P3α 0.6097 0.3639
RP3β59 0.6304 0.3726

EASER 0.6693 0.4100

SLIM 0.6825 0.4209

PureSVD 0.6570 0.4015
iALS 0.6947 0.4257

DMF nce 0.6266 0.3768
DMF bc 0.6731 0.4033

HR@10 NDCG@10
TopPopular 0.4145 0.2342
UserKNN CF asymmetric 0.5994 0.3492
ItemKNN CF tversky 0.6026 0.3506

P3α 0.5717 0.3421
RP3β59 0.5685 0.3270

EASE R 0.6089 0.3571
SLIM 0.6238 0.3765

PureSVD 0.5877 0.3555
iALS 0.6142 0.3691

DMF nce 0.5930 0.3410
DMF bc 0.6026 0.3623

We highlight in bold those entries where a baseline outperforms DMF.

Table 10. Experimental Results for DMF for the Amazon Music (Left) and Amazon Movies (Right) Datasets

HR@10 NDCG@10
TopPopular 0.5308 0.3037
UserKNN CF cosine 0.6694 0.4798
ItemKNN CF cosine 0.6647 0.4880

P3α 0.6588 0.4823

RP3β59 0.6754 0.4912

EASER 0.6600 0.4836

SLIM 0.6469 0.4744
PureSVD 0.5912 0.4190
iALS 0.6600 0.4880

DMF nce 0.4799 0.3371
DMF bc 0.6659 0.4815

HR@10 NDCG@10
TopPopular 0.5794 0.3489
UserKNN CF cosine 0.7327 0.5132
ItemKNN CF asymmetric 0.6986 0.4914

P3α 0.6972 0.5028
RP3β59 0.7107 0.5078

EASER - -
SLIM 0.6981 0.5005
PureSVD 0.6021 0.4156
iALS 0.7352 0.5230
DMF nce 0.6832 0.4677
DMF bc 0.7818 0.5417

EASER results for Amazon Movies are missing, because the code required too much memory. We highlight in bold those

entries where a baseline outperforms DMF.

baselines on the MovieLens1M dataset, but slightly worse than those obtained with the iALS and
SLIM. For the smaller MovieLens100k dataset, the observed ranking is generally similar and again
iALS and SLIM outperform DMF on both measures.
The detailed results for the Amazon datasets are shown in Table 10. The results for EASER are

missing for the Amazon Movies dataset, as the author-provided Python implementation of the
method needed too much memory. For the Amazon Music dataset it is interesting to observe that
the simple UserKNN and RP3β methods work better here than other machine learning models,
and also better than DMF. For the Amazon Movies dataset, the DMF method was actually much
better than all other methods on both measures. In particular the gains in terms of the Hit Rate
are substantial and much higher than the second best method iALS.
Like for the case of CDL and the CVAE methods described in Sections A.1 and A.2, a better

performance could only be observed for one of the datasets. In the case of CDL and CVAE better

59We report RP3β [54] for completeness although the DL algorithm we evaluate here predates its publication.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:30 M. Ferrari Dacrema et al.

results were obtained for very sparse datasets with only one training interaction per user. Looking
at the Amazon Movies dataset characteristics in the context of the DMF method, we can see that it
is extremely sparse after the pre-processing step, in which 80% of the interactions were removed.
In the end, there are 878k remaining interactions for over 80k movies. The Amazon Music dataset
is even sparser. After the pre-processing step, which removes more than 94% of the interactions, it
has only 46k interactions for 18k items. Further investigations are necessary to better understand
why DMF works so well in this case, which could help us design algorithms that also work well
on other datasets with similar characteristics.
Regarding methodological aspects, we found that the authors reported the best Hit Rate and

NDCG results across different epochs. We therefore report the numbers here that were obtained
after determining a suitable number of epochs on the validation set. In that context, the provided
code shows that the authors sample different negative items to be used for testing in each train-
ing epoch. This seems questionable as well, in particular when considered in combination of the
practice of reporting the best value for each metric across epochs. In our experiments, we use the
same negative item set for all evaluations.
From a conceptual perspective, the authors argue that they combine implicit feedback and ex-

plicit feedback in their approach. While this might be true in some interpretation, the authors
mainly rely on the explicit ratings and add zeros to the empty matrix cells. Furthermore, when
comparing their method with NCF, they only fed the binarized data to NCF, even though this
method could deal with explicit rating data as well.

A.5 Variational Autoencoders for Collaborative Filtering (Mult-VAE)

Datasets. The authors use three datasets for evaluation. The first two datasets contain explicit
feedback in the form of movie ratings (MovieLens20M60 and Netflix61). The third dataset contains
play counts for musical tracks. All datasets are binarized. For the movie datasets, ratings higher
than three are considered positive signals and only users with more than five interactions are
retained. For the music dataset, users with more than 20 interactions are retained; tracks that were
listed less than 200 times are filtered out. After pre-processing, the datasets are still relatively large,
having between 10 and almost 57 millions interactions.62

Evaluation. Four machine learning models are used as baselines, iALS, SLIM, NCF [30] (see
Section A.3) and the Collaborative Denoising Autoencoder (CDAE) method proposed in Reference
[75] in 2016. For evaluation purposes, the datasets are split into training, validation and test splits
by holding out users. For instance, for the MovieLens20M dataset (136k users overall), 10k users
are removed for validation and 10k users are removed for testing. For each hold-out user, 80%
of the interactions are used as user profile, and the remaining 20% are used as ground truth to
measure the performance metrics. The models are optimized for NDCG@100 on the validation
set. Performance results for Recall@20 and Recall@50 are reported as well.
Note that to be able to use matrix factorization baselines on cold users we built the cold users’

latent factors based upon both their user profile and the latent factors of the warm items. In par-
ticular, we added a hyperparameter to the matrix factorization models to select how those cold
user’s latent factors are estimated, either via an item-based similarity or an item embeddings aver-
age; see Reference [18]. The first case is inspired by the folding-in technique [62] for the PureSVD
model. It can be mathematically derived that PureSVD has an equivalent ItemKNN formulation,

60https://grouplens.org/datasets/movielens/.
61https://www.kaggle.com/netflix-inc/netflix-prize-data.
62We did not run experiments for the music dataset as the original paper did not contain sufficient information to guarantee

we used the dataset in the exact same way as the authors.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-inc/netflix-prize-data

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:31

Table 11. Results for Mult-VAE for the MovieLens20M Dataset

REC@20 NDCG@20 REC@50 NDCG@50 REC@100 NDCG@100
TopPopular 0.1441 0.1201 0.2320 0.1569 0.3296 0.1901
UserKNN - - - - - -
ItemKNN CF asymmetric 0.2937 0.2444 0.4486 0.3087 0.5709 0.3527

P3α 0.2620 0.2168 0.4047 0.2742 0.5287 0.3182
RP3β 0.3006 0.2501 0.4540 0.3133 0.5797 0.3583

EASER 0.3530 0.3074 0.5147 0.3755 0.6353 0.4196

SLIM 0.3356 0.2920 0.4893 0.3576 0.6110 0.4017
PureSVD 0.2935 0.2514 0.4371 0.3117 0.5544 0.3538
iALS 0.2968 0.2496 0.4406 0.3090 0.5631 0.3521
Mult-VAE 0.3541 0.2988 0.5222 0.3690 0.6517 0.4158

UserKNN could not be applied because of the evaluation protocol (hold-out of users). We highlight in bold those entries

where a baseline outperforms Mult-VAE.

Table 12. Results for Mult-VAE for the Netflix Dataset

REC@20 NDCG@20 REC@50 NDCG@50 REC@100 NDCG@100
TopPopular 0.0786 0.0762 0.1643 0.1159 0.2717 0.1570
UserKNN - - - - - -
ItemKNN CF cosine 0.2091 0.1970 0.3387 0.2592 0.4598 0.3092

P3α 0.1960 0.1759 0.3325 0.2412 0.4633 0.2962
RP3β 0.2210 0.2053 0.3633 0.2739 0.4932 0.3281

EASER 0.2681 0.2591 0.4170 0.3334 0.5471 0.3890

SLIM 0.2555 0.2479 0.4002 0.3203 0.5299 0.3752

PureSVD 0.2271 0.2184 0.3593 0.2840 0.4784 0.3342
iALS 0.1956 0.1839 0.3138 0.2410 0.4216 0.2862
Mult-VAE 0.2615 0.2423 0.4127 0.3167 0.5456 0.3730

UserKNN could not be applied because of the evaluation protocol (hold-out of users). We highlight in bold those entries

where a baseline outperforms Mult-VAE.

in which the similarity matrix is the product of the items’ latent factor matrix by its transpose.
In this case a further parameter is introduced to control the number of neighbors, as in the other
neighborhood-based methods. In the second case the latent factors of a user are the product of the
user profile and the items’ latent factors, resulting in the average of the embeddings of the items
the user interacted with. Both methods proved effective.

Results and Discussion. Using the code, the data splits and information about the seed for the
random number generator that the authors provided, we could reproduce the results from the
paper. In the original paper NDCG@100 is used as an optimization goal, however no reason is
provided for this, as well as why Recall@20 and Recall@50 are used as additional measures, but
not, e.g., Recall@100. To obtain a more comprehensive picture, we made additional measurements
at the corresponding but missing cut-off values: Recall@100, NDCG@20 and NDCG@50. Table 11
shows our results for the MovieLens20M dataset and Table 12 those for the Netflix data.

For the MovieLens dataset, we observed a positive result and could confirm the claims made by
the authors of Mult-VAE. On all measurements, both the original and the additional ones, Mult-
VAE leads to better performance results than all baseline methods that were available at the time

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:32 M. Ferrari Dacrema et al.

the algorithm was proposed. SLIM is the second best method in this evaluation, with performance
results that are around 1% to 2% lower in terms of the NDCG.
For the Netflix dataset, the claims of the authors could not be confirmed to the full extent. In

terms of NDCG, which is the optimization criterion, SLIM outperformsMult-VAE at all list lengths.
Mult-VAE is however better in terms of Recall.
Overall, with Mult-VAE a method was found that was easy to reproduce, thanks to all needed

material being made by the authors publicly available. Furthermore, as our results indicated, the
method consistently outperformed previous methods at least on one well-known and comparably
large dataset. We could also confirm that EASER leads to improvements over Mult-VAE in most
cases, supporting the claim that shallow models are a competitive solution.

A.6 NeuRec: On Nonlinear Transformation for Personalized Ranking

Datasets. The authors use four public datasets for their evaluations (MovieLens1M,63 HetRec,64

FilmTrust,65 Frappe66). Three of them contain movie ratings, which are binarized by converting all
ratings to 1 and the missing entries to 0. The largest dataset (MovieLens1M) comprises 1 million
interactions. The fourth dataset (Frappe) is from the domain of mobile app recommendation and
contains about 100k interactions, reduced to 20k after pre-processing, which consisted of the re-
moval of multiple interactions between the same user-item pairs. Data splits were not provided
online but could be reproduced based on the information in the paper.

Evaluation. The authors use five random training-test splits (80%/20%) for evaluation and report
the average results. As performance metrics, the authors use Precision and Recall at list lengths 5
and 10, as well as Mean Average Precision, MRR, and the NDCG, at list length 10.
As non-trivial baselines, the authors consider SLIM, BPR matrix factorization, NeuMF and the

GMFmodel, which is part of NCF [30]. Information about hyperparameter tuning for the baselines
is not provided except for GMF and NeuMF, which are said to use the “default” configuration
as described in the original article. Hyperparameters for NeuRec were determined through grid
search and the finally used values are reported in the paper in detail. The number of training epochs
is not reported in the paper.67 As usual, we selected the number of epochs via early stopping on a
validation split.

Results and Discussion. Even though the authors published a runnable implementation of their
method and provided detailed information on the hyperparameters, we could not obtain the results
reported in the original paper. We contacted the authors, but we were not able to reconstruct an
experimental pipeline (from pre-processing to hyperparameter optimization) that led to results
that were comparable to the ones reported in the original paper. In the end, the reason for this
discrepancy could not be clarified. The outcome of our evaluation is that NeuRec is outperformed
on any data set and almost on any measure by at least one, but usually several, of the baselines in
our comparison.
Since the detailed results are comprehensive, given the number of datasets and evaluation mea-

sures, we only provide in Table 13 the results for the most commonly used MovieLens1M dataset
and for list lengths 5 and 10. All other results can again be found in the online appendix (Section 3).

63https://grouplens.org/datasets/movielens/.
64https://grouplens.org/datasets/hetrec-2011/.
65https://www.librec.net/datasets/filmtrust.zip.
66The original download link was not active anymore at the time or our analysis. We provide an alternative download link

https://github.com/hexiangnan/neural_factorization_machine/archive/master.zip.
67According to an exchange of emails with the authors, the training was done for a large number of epochs and the best

performance values on the test set were reported.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/hetrec-2011/
https://www.librec.net/datasets/filmtrust.zip
https://github.com/hexiangnan/neural_factorization_machine/archive/master.zip

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:33

Table 13. Experimental Results for NeuRec for the MovieLens1M Dataset

@5 @10

PREC REC MAP NDCG MRR PREC REC MAP NDCG MRR

TopPopular 0.2105 0.0402 0.1531 0.0689 0.3621 0.1832 0.0685 0.1168 0.0939 0.3793

UserKNN CF asymmetric 0.4212 0.1065 0.3441 0.1674 0.6399 0.3617 0.1726 0.2774 0.2230 0.6509

ItemKNN CF asymmetric 0.3995 0.0984 0.3244 0.1563 0.6179 0.3452 0.1590 0.2618 0.2084 0.6293

P3α 0.4041 0.1007 0.3286 0.1596 0.6250 0.3456 0.1627 0.2627 0.2121 0.6362

RP3β 0.4080 0.1007 0.3325 0.1602 0.6260 0.3508 0.1639 0.2676 0.2137 0.6374

EASER 0.4488 0.1134 0.3717 0.1779 0.6620 0.3857 0.1820 0.3035 0.2364 0.6717

SLIM 0.4437 0.1106 0.3692 0.1749 0.6578 0.3813 0.1770 0.3003 0.2321 0.6679

PureSVD 0.4123 0.0987 0.3371 0.1586 0.6266 0.3575 0.1624 0.2722 0.2132 0.6380

iALS 0.4164 0.1036 0.3373 0.1635 0.6327 0.3628 0.1702 0.2743 0.2200 0.6443

INeuRec 0.3280 0.0663 0.2554 0.1110 0.5003 0.2839 0.1094 0.2027 0.1500 0.5129

UNeuRec 0.2098 0.0395 0.1560 0.0684 0.3663 0.1856 0.0688 0.1199 0.0944 0.3852

We highlight in bold those entries where a baseline outperforms NeuRec.

Looking at the results, we observe that on the MovieLens dataset even the simplest baselines
are better than NeuRec and that the performance of the best baselines is better by a large margin.
For the HetRec and FilmTrust datasets (not shown in detail here), the picture is mostly the same.
Finally, for the small and rarely used Frappe dataset, NeuRec actually leads to the best results for
Precision@5, but is outperformed, e.g., by RP3β on all other measures.68

Regarding methodological aspects, we found again that researchers optimized the number of
epochs on the test set and apparently reported the best results of NeuRec for different measures at,
potentially, different training epochs. Furthermore, it is unclear from the paper if hyperparameter
optimization was done for the baselines. For the NCF method, the authors state that they used
the “configuration” proposed in the original paper, but it is unclear if this refers to the network
structure, the hyperparameters, or both.

A.7 CoupledCF: Learning Explicit and Implicit User-item Couplings

Datasets. Experiments were made on two public datasets, theMovieLens1M69 rating dataset and
a dataset called Tafeng70 containing grocery store transactions. The Tafeng dataset has about 750k
transactions (i.e., less than the MovieLens1M dataset), but is much more sparse as it contains many
more users and items. The explicit ratings in the MovieLens1M dataset are transformed into bi-
nary ratings, where each rating is considered as a positive interaction. Both datasets contain side
information about users and items that is used by the CoupledCF algorithm. Therefore, we have
included item-based and user-based content techniques among the baselines. The authors of the
paper provided us with the train-test splits, including the sampled test negative items they had
used during the evaluation.

Evaluation. A leave-one-out procedure is used, where for each user one random interaction is
put in the test set. For evaluating the performance, 99 items are sampled for which there was no
interaction for the given user. The 100 items are then ranked by the algorithm and the Hit Rate

68We point out that the Frappe dataset is very small and exhibits very unstable results depending on the random split. In

particular, compared to the results reported in the original paper, our TopPopular algorithm exhibits results that are four

times higher; also NeuRec’s values are two times higher.
69https://grouplens.org/datasets/movielens/.
70The original download link was not active anymore at the time or our analysis. We provide an alternative download link

https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset

20:34 M. Ferrari Dacrema et al.

and the NDCG are used to evaluate the performance. Cut-off list lengths between 1 and 10 were
considered.
The hyperparameters of the proposed model were systematically fine-tuned by the authors. In-

formation about hyperparameter tuning for the baselines is not provided. The considered baselines
include NCF [30], and Google’s Wide&Deep method. From the original source code, we observed
that the authors reported the best results for each metric on the test data across different epochs.
Since this is inappropriate, we report the values of the metrics after the optimal number of epochs
is chosen with early stopping on the validation set.

Results and Discussion. We could not fully reproduce the results by the authors based on the
provided code and data splits. Different variations of the proposedmodel were tested in the original
paper. We used the best-performing one (CoupledCF) in our experiments as well as their simplest
variant (DeepCF), where the former is the only one for which we could fully reproduce the results.
Since there were some apparent issues regarding the way the authors did the sampling, which
we discuss below, we recreated the train-test splits according to the descriptions in the paper. We
also used a validation set for hyperparameter tuning. While the numerical results obtained using
the split provided by the original authors and the one generated by us are different, the relative
ordering of the algorithms in terms of their recommendation quality remains the same. We report
the results obtained on the data split generated by us. As previously mentioned, we observe there
were some apparent issues regarding the way the authors sampled the negative items. For both
Movielens and Tafeng the negative item data contains duplicates leading to many users (72% for
Movielens, 28% for Tafeng) having less of the desired 99 negative items, e.g., some have only 93. For
the Tafeng dataset, cumulatively, almost 3,000 negative items (0.1% of the total number of negative
items) also appeared as train items or test items for that same user. If the number of unique negative
items is not constant, then different users will be evaluated under slightly different conditions, in
particular, the recommendation problem becomes easier as the number of negatives decreases due
to the reduction in the pool of alternatives the recommender has to choose from. We nonetheless
assume that the impact of these inconsistencies will generally be small, since both the original
split and the one generated by us exhibit the same ranking of the algorithms in terms of their
performance. More strikingly, however, for 8% of the users in the Tafeng dataset, we observed
problems regarding the usefulness of the test data. Some of these users have a test item but no
negative items, meaning that there is only a single item that can be ranked and even a random
recommender will exhibit perfect recommendations. Other users have negative items but no test
item, meaning that no correct recommendations are possible.
Our experimental results are shown in Table 14 (MovieLens) and Table 15 (Tafeng).
For the MovieLens datasets, we can observe that CoupledCF is almost consistently able to

outperform the simple neighborhood-based methods and the hybrids (except for very short list
lengths). However, relatively simple non-neural methods like iALS and EASER are consistently
better than CoupledCF. The differences between the CoupledCF and the DeepCF variant are tiny
and the simpler DeepCF is sometimes even better. This stands in contrast to the results in the
original article, where the differences were large.
For the Tafeng dataset, even the nearest-neighbor methods outperform CoupledCF by far. Only

the pure content-based baselines do not reach the performance level of CoupledCF. Generally, on
this dataset, the performance of the proposed method is at the level of the TopPopular baseline.
The simpler DeepCF method also leads to better accuracy results than the CoupledCF variant.
Looking at methodological aspects, it seems that the baselines were not properly optimized

and default hyperparameters were used. Furthermore, from the provided code it seems that the
number of epochs was determined on the test set, as was done in other papers examined in this

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:35

Table 14. Experimental Results for CoupledCF for the MovieLens1M Dataset

HR@1 NDCG@1 HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1593 0.1593 0.4217 0.2936 0.5813 0.3451
UserKNN CF asymmetric 0.3546 0.3546 0.6914 0.5343 0.8114 0.5735
ItemKNN CF cosine 0.3305 0.3305 0.6682 0.5080 0.7940 0.5488

P3α 0.3316 0.3316 0.6543 0.5031 0.7687 0.5402
RP3β 0.3464 0.3464 0.6743 0.5198 0.7959 0.5591

EASER 0.4003 0.4003 0.7258 0.5738 0.8343 0.6093

SLIM 0.3906 0.3906 0.7116 0.5625 0.8315 0.6014

PureSVD 0.3735 0.3735 0.7088 0.5522 0.8132 0.5861

iALS 0.3816 0.3816 0.7121 0.5581 0.8200 0.5933

ItemKNN CBF asymmetric 0.0884 0.0884 0.2586 0.1752 0.3780 0.2137
UserKNN CBF tversky 0.1714 0.1714 0.4427 0.3108 0.6065 0.3636
ItemKNN CFCBF cosine 0.3328 0.3328 0.6694 0.5107 0.7985 0.5526
UserKNN CFCBF dice 0.3555 0.3555 0.6869 0.5328 0.8008 0.5698
DeepCF 0.3550 0.3550 0.7017 0.5388 0.8272 0.5794
CoupledCF 0.3522 0.3522 0.7018 0.5374 0.8247 0.5775

We highlight in bold those entries where a baseline outperforms CoupledCF.

Table 15. Experimental Results for CoupledCF for the Tafeng Dataset

HR@1 NDCG@1 HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.2654 0.2654 0.5194 0.3965 0.6549 0.4402
UserKNN CF cosine 0.3215 0.3215 0.5412 0.4369 0.6415 0.4693

ItemKNN CF cosine 0.3314 0.3314 0.5424 0.4427 0.6376 0.4735

P3α 0.3245 0.3245 0.5503 0.4437 0.6404 0.4730

RP3β 0.3202 0.3202 0.5525 0.4424 0.6470 0.4732

EASER 0.3272 0.3272 0.5452 0.4417 0.6435 0.4736

SLIM 0.3233 0.3233 0.5438 0.4389 0.6476 0.4726

PureSVD 0.2462 0.2462 0.4889 0.3714 0.6260 0.4156
ItemKNN CBF asymmetric 0.0589 0.0589 0.0958 0.0769 0.1467 0.0931
UserKNN CBF asymmetric 0.2464 0.2464 0.4654 0.3600 0.5798 0.3970
ItemKNN CFCBF asymmetric 0.3331 0.3331 0.5434 0.4442 0.6314 0.4727

UserKNN CFCBF asymmetric 0.3424 0.3424 0.5882 0.4713 0.6937 0.5055

DeepCF 0.2647 0.2647 0.5244 0.3995 0.6583 0.4428
CoupledCF 0.2641 0.2641 0.5175 0.3948 0.6499 0.4377

We highlight in bold those entries where a baseline outperforms CoupledCF.

work. A specific problem in this work also lies in the creation of the train and test splits, which are
inconsistent with the description reported in the article and are likely the result of an erroneous
splitting procedure.
Further methodological problems were discussed in a recent article by Ferrari Dacrema et al.

[24], which questioned the claim that embedding maps derived from the outer product of the
embeddings are analogous to images. The article shows that embedding maps do not have a se-
mantically relevant topology and do not share image properties, therefore the use of CNNs is not
well justified. Moreover, contrary to what stated in the original paper, CoupledCF does not benefit

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:36 M. Ferrari Dacrema et al.

Table 16. Experimental Results for DELF on the MovieLens Dataset

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
TopPopular 0.3302 0.2229 0.4696 0.2674 0.6577 0.3148
UserKNN CF asymmetric 0.5205 0.3635 0.6852 0.4168 0.8329 0.4542

ItemKNN CF cosine 0.4936 0.3426 0.6677 0.3989 0.8243 0.4387

P3α 0.4945 0.3438 0.6574 0.3965 0.7952 0.4313
RP3β 0.5138 0.3559 0.6809 0.4102 0.8276 0.4475

EASER 0.5716 0.4064 0.7258 0.4566 0.8516 0.4887

SLIM 0.5706 0.4038 0.7306 0.4557 0.8586 0.4882

PureSVD 0.5513 0.3891 0.7021 0.4382 0.8303 0.4708

iALS 0.5643 0.3975 0.7228 0.4489 0.8354 0.4776

DELF MLP 0.5168 0.3587 0.6809 0.4119 0.8342 0.4508
DELF EF 0.4805 0.3305 0.6504 0.3852 0.8043 0.4243

We highlight in bold those entries where a baseline outperforms DELF.

from the additional parameter space provided by the embedding correlations that can be removed
from the model without altering its accuracy.

A.8 DELF: A Dual-embedding-based Deep Latent Factor Model for Recommendation

Datasets. Two public rating datasets are used for the evaluation. One is the well-known Movie-

Lens1M71 dataset and the other one theAmazonMusic72 dataset. The rating datasets were binarized
by transforming each non-zero rating to 1. Pre-processing was applied so that for both datasets
only users were retained for which more than 20 interactions were observed. Through this pre-
processing, the Amazon Music dataset was reduced to less than one tenth of its original size in
terms of interactions (only 76k interactions for 40k items remain in the Amazon Music dataset).
The Amazon Music dataset contains, on average, only 2 interactions per item. Due to this, when
the train-test split is performed according to the timestamp, 52% of the items in the test data are
cold (i.e., they never appear in the train data for any user). An evaluation so strongly oriented to-
wards cold items is particularly surprising, considering that DELF is a pure collaborative algorithm
that, as such, cannot be able to learn a representation for any of those cold items.

Evaluation. The evaluation procedure was similar to the one used for NCF as discussed in Sec-
tion A.3: a leave-last-out procedure was applied using the interaction timestamp, the hidden ele-
ment was ranked within 99 randomly sampled negative items, and the Hit Rate and the NDCG at
a cut-off length of 10 were used as performance measures. The non-trival baselines include BPR
matrix-factorization, iALS, DMF as discussed in Section A.4, and two variants of the NCF model
[30] described in Section A.3.

The hyperparameters for the proposed model were systematically optimized on a validation set
built with the second most recent interaction. No information is provided regarding the hyperpa-
rameter optimization of the baselines.

Results and Discussion. We reproduced the results using a validation set that we constructed in
the same way as reported by the authors. NDCG@10 was used as an optimization criterion.
The obtained results are shown in Table 16 (MovieLens1M) and Table 17 (Amazon Music). For

the MovieLens1M dataset, all our machine learning baselines outperformed DELF on all measures.

71https://grouplens.org/datasets/movielens/.
72http://jmcauley.ucsd.edu/data/amazon/.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon/

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:37

Table 17. Experimental Results for DELF for the Amazon Music Data When

the Recommendation of Cold Items Is Allowed

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
TopPopular 0.2452 0.1726 0.3057 0.1921 0.3744 0.2094
UserKNN CF cosine 0.3248 0.2544 0.3760 0.2708 0.4376 0.2864
ItemKNN CF asymmetric 0.3204 0.2566 0.3711 0.2731 0.4327 0.2886

P3α 0.3188 0.2524 0.3684 0.2684 0.4300 0.2839
RP3β 0.3155 0.2494 0.3684 0.2663 0.4272 0.2811

EASER - - - - - -
SLIM 0.3199 0.2577 0.3678 0.2730 0.4354 0.2900
PureSVD 0.2627 0.2141 0.3084 0.2290 0.3537 0.2405
iALS 0.3319 0.2604 0.3717 0.2732 0.4229 0.2860
DELF MLP 0.2986 0.2339 0.3619 0.2542 0.4561 0.2778
DELF EF 0.5422 0.3632 0.7439 0.4290 0.8578 0.4583

EASER results are missing, because the code required too much memory on these datasets. We highlight in bold

those entries where a baseline outperforms DELF.

Table 18. Experimental Results for DELF for the Amazon Music Data When

the Recommendation of Cold Items Is Not Allowed

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
TopPopular 0.2474 0.1730 0.3041 0.1913 0.3738 0.2090
UserKNN CF cosine 0.3150 0.2495 0.3471 0.2600 0.3738 0.2668

ItemKNN CF asymmetric 0.3090 0.2506 0.3401 0.2609 0.3717 0.2689

P3α 0.3074 0.2465 0.3373 0.2564 0.3689 0.2644

RP3β 0.3046 0.2434 0.3379 0.2543 0.3651 0.2611

EASER - - - - - -
SLIM 0.3101 0.2526 0.3411 0.2625 0.3711 0.2701

PureSVD 0.2627 0.2141 0.3084 0.2290 0.3542 0.2406
iALS 0.3319 0.2604 0.3706 0.2729 0.4109 0.2831

DELF MLP 0.2905 0.2239 0.3275 0.2361 0.3787 0.2489
DELF EF 0.2883 0.2224 0.3313 0.2364 0.3831 0.2496

EASER results are missing, because the code required too much memory on this dataset. We highlight in bold

those entries where a baseline outperforms DELF.

The traditional UserKNNmethod is also competitive with DELF on this dataset. OnAmazonMusic,
however, DELF EF leads to substantially better accuracy results than all baselines. Aswe previously
observed, the test data of Amazon Music contains an anomalously high number of cold items, for
which pure collaborative filtering approaches cannot learn a representation.
To assess if the performance of DELF EF is due to this uncommon test dataset, we ran additional

experiments in which we removed the cold items from the test sets. This allows us to assess the
true modeling capacity of the approach. The results are shown are shown in Table 18 (Amazon
Music) and Table 16 (MovieLens1M). Compared to the situation where cold items are considered
in the test set, the recommendation quality of DELF EF drops below many of our baselines for the
AmazonMusic dataset. For the MovieLens dataset, where there are no cold items, the performance
does not change much as expected. Overall, these observations lead to the conclusion that DELF
EF has a tendency to push never seen items to higher ranks of the recommendation list, i.e., higher

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:38 M. Ferrari Dacrema et al.

than the previously seen negative samples. This might be a consequence of the DELF EF heuristic,
which takes the the popularity of the items into account.
Overall, when considering only situations where cold items are not recommended, DELF was

never the best-performing one. For the MovieLens1M data, iALS, EASER , and SLIM outperformed
DELF on all measures. The UserKNN method was also consistently better in terms of the NDCG
(the optimization criterion).
On the Amazon dataset, iALS was better than all other methods. Furthermore, all neighborhood

models and SLIM outperformed the new methods in all but one measurement (NDCG@20). A
consistent “win” for DELF method was only observed over the PureSVD method.
Looking at methodological aspects, like in other works discussed here, the authors did not op-

timize the number of epochs on the validation set but took the best values using the test. This is a
methodological issue leading to information leakage from the test data.

A.9 Outer Product-based Neural Collaborative Filtering (ConvNCF)

Datasets. The proposed method is evaluated on two public implicit-feedback datasets, Gowalla73

and Yelp74. Both datasets contain multiple implicit interactions at different timestamps for the
same user-item pair. These interactions are merged by keeping only the earliest for each user-item
pair.75 Both dataset have been filtered by removing items with less than 10 interactions and users
with less than 2 (Gowalla) or 10 (Yelp) interactions. The Yelp dataset has about 69k interactions
after processing. The Gowalla dataset is sparser and with more interactions (1.2M). Both filtered
datasets with their train/test splits have been provided by the authors.

Evaluation. Each dataset is split into training and test data according to a leave-last-out protocol.
Evaluation is done by randomly selecting 999 negative items, and the algorithm has to rank these
items together with the hidden item. Different methodological issues were observed, as will be dis-
cussed below. The Hit Rate and the NDCG at different list lengths are used as evaluation measures.
Hyperparameter optimization is done via a validation set, except for the embedding size, which is
kept constant for all methods.

Results and Discussion. We could reproduce the results using the code and the data provided by
the authors. The results for the Yelp dataset are shown in Table 19. Those for the larger Gowalla
dataset are given in Table 20.

For the Yelp dataset, ConvNCF is consistently outperformed by the traditional nearest-neighbor
methods, RP3β , and SLIM. The other baselines outperform ConvNCF as well in most cases. For
the Gowalla case, ConvNCF is slightly more competitive. In all but one measurement, however, it
is outperformed by the UserKNN method. Interestingly, the simple machine learning methods do
not work better on this dataset than the simple baselines.
A number of methodological issues were observed with this article. First, based on the pro-

vided source code the number of epochs, as in other papers, was determined on the test data.
Furthermore, the authors decided to set the embedding size to the constant value of 64 for all
baselines. However, the embedding size is a hyperparameter to be tuned for each dataset and for
each embedding-based algorithm, as different models with different objective functions or train-
ing procedures will likely require different values for it. There were also issues with the provided
test splits. Negative test samples contained duplicates and partially overlapped with the train
data. This results in virtually no user having the correct number of 999 unique negative items.

735http://dawenl.github.io/data/gowalla_pro.zip.
74https://github.com/hexiangnan/sigir16-eals.
75For the Gowalla dataset the authors use the first interaction appearing in the file as the earlier interaction.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

5http://dawenl.github.io/data/gowalla_pro.zip
https://github.com/hexiangnan/sigir16-eals

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:39

Table 19. Experimental Results for ConvNCF for the Yelp Dataset

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
TopPopular 0.0817 0.0538 0.1200 0.0661 0.1751 0.0799
UserKNN CF asymmetric 0.2131 0.1400 0.3209 0.1747 0.4482 0.2068

ItemKNN CF cosine 0.2521 0.1686 0.3669 0.2056 0.4974 0.2385

P3α 0.2146 0.1395 0.3211 0.1737 0.4442 0.2049

RP3β 0.2202 0.1431 0.3323 0.1793 0.4667 0.2132

EASER 0.2349 0.1557 0.3419 0.1902 0.4617 0.2205

SLIM 0.2330 0.1535 0.3475 0.1904 0.4799 0.2238

PureSVD 0.2011 0.1307 0.3002 0.1626 0.4238 0.1938
iALS 0.2048 0.1348 0.3080 0.1680 0.4319 0.1993

ConvNCF 0.1947 0.1250 0.3059 0.1608 0.4446 0.1957

We highlight in bold those entries where a baseline outperforms ConvCF.

Table 20. Experimental Results for ConvNCF for the Gowalla Dataset

HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
TopPopular 0.2188 0.1652 0.2910 0.1884 0.3803 0.2110
UserKNN CF cosine 0.7131 0.5879 0.7939 0.6142 0.8532 0.6293

ItemKNN CF tversky 0.7047 0.5864 0.7790 0.6105 0.8331 0.6244

P3α 0.6926 0.5703 0.7674 0.5948 0.8158 0.6071

RP3β 0.6836 0.5525 0.7723 0.5814 0.8361 0.5976

EASER - - - - - -
SLIM 0.6365 0.5284 0.7083 0.5517 0.7608 0.5651
PureSVD 0.5653 0.4482 0.6627 0.4798 0.7393 0.4993
iALS 0.6460 0.5081 0.7554 0.5436 0.8356 0.5641
ConvNCF 0.6702 0.5233 0.7799 0.5590 0.8623 0.5799

EASER results are missing, because the code required too much memory on this dataset. We highlight in bold those

entries where a baseline outperforms ConvCF.

Furthermore, the users having less than 980, are only 1% for Gowalla but a remarkable 60% for
Yelp, with a minimum of 938 negative items.76

In addition, a recent article by Ferrari Dacrema et al. [24] questioned the claim that embed-
ding maps derived from the outer product of the embeddings are analogous to images. The article
shows that embedding maps do not have a semantically relevant topology and do not share image
properties, therefore the use of CNNs is not well justified. Moreover, contrary to what stated in the
original paper, ConvNCF does not allow to model the embedding correlations that can be removed
from the model without altering its accuracy.

76We report that at the time of our experiments the published version of the algorithm contained a bug that caused infor-

mation leakage from the test data. Items not present in the train data were divided in two categories, those not present in

the test data were sampled as negative items during the training of the model, while those present in the test data were

not. Items unobserved in the train data should all be potential negative items to be sampled during training, regardless

of the test data, otherwise test items will be advantaged over other items. This bug was later fixed on the public Github

repository. In our experiments, during the training we only relied upon train data and never used any information from

the test data.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:40 M. Ferrari Dacrema et al.

A.10 Leveraging Meta-path-based Context (MCRec)

Datasets. Three datasets are used for the evaluation. The historicalMovieLens100k77 dataset, an-
other small data set containing listening logs from Last.fm,78 and a dataset containing user feed-
back from Yelp.79 With almost 200k ratings, the Yelp dataset is the largest one. The available meta-
data includes genres for movies, artists for tracks, and city and category for businesses. Only for
the MovieLens100k dataset the used data splits are publicly available. The rating information in
the datasets is transformed to binary data.

Evaluation. The datasets are split into 80% training and 20% test splits. Ten percent of the training
data are used for validation. The algorithm is evaluated by ranking the positive items of a user
against a set of negative items randomly sampled among the items the user did not interact with.
For each user, a set of exactly 50 negative items is sampled for each of the user’s test items. The
negative interactions in train and test data are disjoint.80 For theMovieLens100k dataset, 23% of the
users have long user profiles to the point that they cannot have the stated number of 50 negative
items per each positive, because the number of items that do not appear in the user profile is too
low.81 Precision, Recall, and the NDCG are then used as evaluation measures at a cut-off length
of 10. The averaged results of ten randomized runs are reported in the paper. Since the NDCG
measure was implemented in an unusual way by computing the “ideal” NDCG only based on the
successfully recommended items, the values reported in the paper are much higher than the ones
obtained by us using a standard implementation of the NDCG. Looking at the evaluation code
provided by the authors, we furthermore observed that the authors reported the best results for
each metric across different epochs. Since this is inappropriate, we report the values of the metrics
after the optimal number of epochs is chosen with early stopping on the validation set.
As baselines, the authors use ItemKNN, two collaborative MF methods (one based on BPR loss,

the other based on cross entropy loss), two hybrid MF methods, two methods designed for meta-
data networks, and a number of variants of their own method. For their own method, the final
hyperparameters are reported, which are the same for both datasets. For the MF and the NeuMF
method, hyperparameters and configuration are taken from the original papers. Other baselines
are reported to be systematically optimized on a validation set.

Results and Discussion. The meta-path information is hard-coded for the MovieLens dataset in
the provided code and the preprocessed version of the data is publicly available. No code is avail-
able for the other two datasets. Furthermore, since the code for pre-processing the Yelp and Last.fm
is not available, we only did an evaluation for the MovieLens dataset.82 The results are reported
in Table 21. They show that MCRec is outperformed both by the traditional neighborhood-based
methods, the more complex learning-based methods and one of our simple hybrids. Our pure
content-based baseline led to generally weak results (worse than TopPopular) and was also out-
performed by MCRec.

77http://jmcauley.ucsd.edu/data/amazon/.
78https://www.last.fm.
79http://www.yelp.com/dataset-challenge.
80This evaluation protocol is different from more traditional protocols. Usually, both the number of positive items and

negative items associated to each user is constant (e.g., 1 positive item ranked with 100 negative items), in MCRec instead

different users are tested against a different number of both positive and negative samples (e.g., if the positive items are 10

the negative samples will be 500, if the positive items are 30 the negative samples will be 1,500).
81In particular, the longest user profile (including all available data, therefore train, validation and test interactions) that

allows to sample 50 negative items for each positive (test) item is 151. However, the longest user profile in the dataset

contains 737 items, which would require to sample 7,370 negative items while the dataset contains 1662 and the number

of unseen items to choose from is only 925.
82The pre-processing code for Movielens was made available later by the authors on their GitHub repository.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

http://jmcauley.ucsd.edu/data/amazon/
https://www.last.fm
http://www.yelp.com/dataset-challenge

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:41

Table 21. Experimental Results for MCRec for the MovieLens Dataset

PREC@10 REC@10 NDCG@10
TopPopular 0.1907 0.1180 0.1361
UserKNN CF dice 0.3442 0.2237 0.2692

ItemKNN CF asymmetric 0.3320 0.2171 0.2601

P3α 0.3305 0.2081 0.2554

RP3β 0.3435 0.2191 0.2588

EASER 0.3739 0.2430 0.2905

SLIM 0.3770 0.2441 0.2957

PureSVD 0.3545 0.2247 0.2719

iALS 0.3596 0.2283 0.2759

ItemKNN CBF cosine 0.0455 0.0185 0.0254
ItemKNN CFCBF cosine 0.3398 0.2239 0.2646

MCRec 0.3110 0.2113 0.2466

We highlight in bold those entries where a baseline outperforms MCRec.

From a methodological perspective, it is worth mentioning that the used datasets are very small,
at least compared to the usual MovieLens and Netflix datasets, where we have millions of recorded
interactions. We will discuss aspects of scalability in Section 5.

A.11 Collaborative Memory Network for Recommendation System (CMN)

Datasets. The method was evaluated on three public datasets. One containing data from Epin-

ions,83 a CiteULike dataset used in previous works (CiteULike-a),84 and a dataset from Pinterest.85

The last dataset is the largest one and has about 1.5M interactions. The smallest Epinions dataset
contains ratings on scale from one to five, which are binarized (all non-zero ratings are set to one).
The train/test splits for CiteULike and Pinterest are provided by the authors.

Evaluation. The authors use a leave-one-out methodology similar to the one used in previous
works. The test set contains one positive item per user, the train set all other user-item pairs. If the
user rated only one item, then this interaction is kept in the training set. To evaluate the algorithm,
for each user 100 unobserved (negative) items are sampled and ranked together with the positive
item. The Hit Rate and the NDCG at a cut-off length of 10 are used as evaluation metrics.
As baselines, the authors include both simple, non-neural, and neural methods in there experi-

ments: ItemKNN, BPR matrix-factorization, SVD++, two variants of NCF [30], and the Collabora-
tive Denoising Auto Encoder.
Hyperparameters are tuned on a validation set. Details for the hyperparameter optimization

process are provided for the proposed model, but not for the baselines. The number of training
epochs is not mentioned in the paper. In our evaluation, we applied early stopping as described
previously.

Results and Discussion. We could reproduce the results of the paper using the data splits provided
by the authors for two datasets, CiteULike and Pinterest. Since the split used for Epinions was not
made available, we had to re-create it based on the information provided in the paper, in that
case, however, we could not reproduce the original results. In Table 22, we show the results for

83http://www.trustlet.org/downloaded_epinions.html.
84See Section A.1.
85https://sites.google.com/site/xueatalphabeta/academic-projects.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

http://www.trustlet.org/downloaded_epinions.html
https://sites.google.com/site/xueatalphabeta/academic-projects

20:42 M. Ferrari Dacrema et al.

Table 22. Experimental Results for CMN for the Pinterest Dataset

HR@5 NDCG@5 HR@10 NDCG@10
TopPopular 0.1665 0.1064 0.2740 0.1409
UserKNN CF asymmetric 0.7005 0.5037 0.8630 0.5567

ItemKNN CF cosine 0.7132 0.5116 0.8781 0.5653

P3α 0.6990 0.5034 0.8596 0.5559

RP3β 0.7147 0.5150 0.8772 0.5680

EASER 0.7072 0.5129 0.8567 0.5617

SLIM 0.7084 0.5107 0.8683 0.5628

PureSVD 0.6619 0.4721 0.8146 0.5219
iALS 0.7219 0.5175 0.8677 0.5652

CMN 0.7013 0.5005 0.8674 0.5547

We highlight in bold those entries where a baseline outperforms CMN.

the Pinterest dataset, the largest one. For the CMN method, we report the results for the CMN-3

variant, which led to the best results.
The results show that CMN led to competitive results, but is actually slightly outperformed on

all measures by algorithms from all families, including traditional nearest-neighbor methods. On
the CiteULike dataset, the main observations are the same. On this smaller dataset, however, the
performance of CMN is often much lower than the one achieved by nearest-neighbor methods and
machine learning techniques.
A quite surprising result is found for the Epinions dataset. Here, the trivial TopPopular method

consistently led to the best values across all measurements. The difference to all other methods
is often huge. This indicates that the popularity distribution of the items in this dataset is very
skewed, which makes it difficult to make personalized recommendations that are better in terms
of information retrieval measures than the TopPopular method. The detailed results are available
in the online material (Section 3).

A.12 Spectral Collaborative Filtering (SpectralCF)

Datasets. Three public datasets are used for the evaluation,MovieLens1M,86 another movie rating
dataset (HetRec),87 and an Amazon dataset (InstantVideo).88 Explicit ratings are binarized. Further
pre-processing is applied to, e.g., remove users associated to less than 5 interactions. After pre-
processing, theMovieLens1Mdataset is shrinked to one fifth of the original size (226k interactions).
The other datasets are even smaller (71k and 22k interactions, respectively). The data split for the
MovieLens1M dataset is provided online by the authors. Due to an apparent problem on how
the splits were generated—see our discussions below—we created our own splits based on the
information provided in the paper.

Evaluation. Two evaluation scenarios are tested, a regular one and a cold-start setup. We evalu-
ated both scenarios. For the main scenario, 80% of the interactions of each user are randomly put
into the training set and the rest is used for evaluation. The random process is repeated five times
and averaged results are reported. Recall and MAP at different list lengths are used as metrics for
this scenario.

86https://grouplens.org/datasets/movielens/.
87https://grouplens.org/datasets/hetrec-2011/.
88http://jmcauley.ucsd.edu/data/amazon/.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/hetrec-2011/
http://jmcauley.ucsd.edu/data/amazon/

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:43

Table 23. Experimental Results for SpectralCF for the MovieLens Dataset

REC@20 MAP@20 REC@40 MAP@40 REC@60 MAP@60 REC@80 MAP@80 REC@100 MAP@100

TopPopular 0.1892 0.0584 0.2788 0.0636 0.3356 0.0666 0.3834 0.0687 0.4226 0.0702

UserKNN CF
jaccard

0.3001 0.1201 0.4134 0.1285 0.4901 0.1335 0.5457 0.1367 0.5884 0.1388

ItemKNN CF
asymmetric

0.2876 0.1134 0.4000 0.1213 0.4768 0.1263 0.5367 0.1295 0.5820 0.1317

P3alpha 0.2939 0.1141 0.4150 0.1233 0.4900 0.1285 0.5463 0.1318 0.5903 0.1342

RP3beta 0.2737 0.1044 0.3879 0.1124 0.4664 0.1173 0.5234 0.1206 0.5726 0.1230

EASER 0.3085 0.1249 0.4255 0.1340 0.4986 0.1391 0.5559 0.1425 0.6010 0.1448

SLIM 0.3069 0.1265 0.4246 0.1356 0.5010 0.1410 0.5564 0.1443 0.6001 0.1466

PureSVD 0.2595 0.1008 0.3638 0.1083 0.4378 0.1131 0.4913 0.1161 0.5347 0.1182

iALS 0.3033 0.1183 0.4201 0.1273 0.4933 0.1326 0.5493 0.1360 0.5925 0.1383

SpectralCF 0.1813 0.0533 0.2643 0.0581 0.3274 0.0613 0.3823 0.0635 0.4261 0.0651

We highlight in bold those entries where a baseline outperforms SpectralCF.

In the cold-start scenario, the training set is built with different degrees of sparsity by varying
the number P of interactions associated with each user, where P is varied from one to five. The
remaining items associated with each users are used as test set. Recall@20 and MAP@20 are used
in this scenario for evaluation.
As baselines, the authors consider ItemKNN, BPR matrix factorization, iALS, NCF [30] and two

graph-based methods, GNMF and GCMC, originally designed for explicit feedback datasets. The
hyperparameters are tuned on a validation set and the parameter ranges are reported in the paper.
For NCF the authors stated that they used the configuration reported in the original paper.

Results and Discussion. We reproduced the results obtained by the authors based on the provided
code and following the information in the paper. Our first set of experiments showed that on
HetRec and Amazon Video datasets the performance of SpectralCF was relatively weak, whereas
it performed very well and better than all baselines when using the provided data splits for the
MovieLens dataset. We therefore investigated the provided data splits and found that these splits
were unlikely the result of the splitting procedure described in the paper, see the discussions below.
For this reason, we created new data splits ourselves following the described procedure.
The results obtained for the MovieLens1M dataset are shown in Table 23. The results show that

SpectralCF is outperformed by all baselines in our comparison often exhibiting a recommendation
quality equal to the TopPopular method. The observations for the other datasets are similar, the
full results are available in the online material (Section 3).
To illustrate the data splitting problem, we compared the popularity distribution of the items in

the training and the test split in the provided data, see Figure 3(a). The figure plots the normalized
popularity (i.e., the popularity of an item over the popularity of the most popular item) for both
training and test items. Items are ranked based on their popularity in the training set, with the
most popular training items being on the left. In case of a true random split, the normalized popu-
larity values of the items in the training and the test split should be relatively close. However, the
figure shows the split provided by the authors has some major deviations. Figure 3(b) shows the
popularity distributions of our random split, which are almost identical between training and test
sets.
Besides the visual analysis, we also computed numerical statistics like the Gini index and Shan-

non entropy. In a true random split, the Gini index should be close to the value obtained on the
unsplitted data (in this case 0.78) for both the training and test splits. However, the Gini index

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:44 M. Ferrari Dacrema et al.

Fig. 3. Normalized popularity distributions of the train and test splits for SpectralCF, the value 1 corresponds

to the most popular item in that split. For a random split, as can be seen in panel (b), the normalized values

of both splits are, on average, similar. In the split provided by the original authors, however, as can be seen

in panel (a), train and test data have quite different distributions.

of the provided test split is much higher (0.92). This indicates that the provided test split has a
much higher popularity bias than we would expect. A similar consideration applies for the Shan-
non entropy: the entropy of the original dataset is close to 10 and is similar to the entropy of our
random train/test split. However, the provided test split has a lower entropy (8.5), i.e., it is easier to
predict.
Regarding other methodological aspects, we found that the authors only report one set of hyper-

parameters, whereas onewould expect hyperparameter settings for each dataset. In our evaluation,
we therefore optimized the hyperparameters for all baselines and all datasets individually.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:45

B HYPERPARAMETER RANGES

Table 24. Hyperparameter List, Value Ranges, and Distributions for the Baselines Reported in This Paper

Algorithm Hyperparameter Range Type Distribution

UserKNN,

ItemKNN cosine

topK 5–1,000 Integer uniform
shrink 0–1,000 Integer uniform
normalizea True, False Categorical

feature weighting none, TF-IDF, BM25 Categorical

UserKNN,

ItemKNN dice

topK 5–1,000 Integer uniform
shrink 0–1,000 Integer uniform
normalizea True, False Categorical

UserKNN,

ItemKNN jaccard

topK 5–1,000 Integer uniform

shrink 0–1,000 Integer uniform
normalizea True, False Categorical

UserKNN,

ItemKNN asymmetric

topK 5–1,000 Integer uniform

shrink 0–1,000 Integer uniform
normalizea True Categorical
asymmetric alpha 0–2 Real uniform

feature weighting none, TF-IDF, BM25 Categorical

UserKNN,

ItemKNN tversky

topK 5–1,000 Integer uniform
shrink 0–1,000 Integer uniform
normalizea True Categorical
tversky alpha 0–2 Real uniform

tversky beta 0–2 Real uniform

P3alpha
topK 5–1,000 Integer uniform

alpha 0–2 Real uniform

normalize similarityb True, False Categorical

RP3beta

topK 5–1,000 Integer uniform

alpha 0–2 Real uniform
beta 0–2 Real uniform

normalize similarityb True, False Categorical

SLIMElasticNet
topK 5–1,000 Integer uniform
l1 ratio 10−5– 100 Real log-uniform

alpha 10−3– 100 Real uniform
PureSVD num factors 1–350 Integer uniform

iALS

num factors 1–200c Integer uniform

epochs 1–500 Integer early-stopping
confidence scaling linear, log Categorical

alpha 10−3– 5 · 10+1d Real log-uniform

epsilon 10−3– 10+1d Real log-uniform
reg 10−5– 10−2 Real log-uniform

EASER l2 norm 100– 10+7 Real log-uniform
aThe normalize hyperparameter in KNNs refers to the use of the denominator when computing the similarity.
bThe normalize similarity hyperparameter refers to applying L1 regularisation on the rows of the similarity matrix.
cThe number of factors is lower than PureSVD due to iALS being slower.
dThe maximum value of this hyperparameter had been suggested in the article proposing the algorithm.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

20:46 M. Ferrari Dacrema et al.

REFERENCES

[1] Fabio Aiolli. 2013. Efficient top-n recommendation for very large scale binary rated datasets. In Proceedings of the 7th

ACM Conference on Recommender Systems (RecSys’13). 273–280.

[2] Sebastiano Antenucci, Simone Boglio, Emanuele Chioso, Ervin Dervishaj, Shuwen Kang, Tommaso Scarlatti, and

Maurizio Ferrari Dacrema. 2018. Artist-driven layering and user’s behaviour impact on recommendations in a playlist

continuation scenario. In Proceedings of the ACM Recommender Systems Challenge 2018. ACM, 4:1–4:6. DOI:https://
doi.org/10.1145/3267471.3267475

[3] Timothy G. Armstrong, Alistair Moffat,WilliamWebber, and Justin Zobel. 2009. Improvements that don’t add up: Ad-

hoc retrieval results since 1998. In Proceedings of the 18th ACMConference on Information and Knowledge Management

(CIKM’09). 601–610.

[4] Jöran Beel and Stefan Langer. 2015. A comparison of offline evaluations, online evaluations, and user studies in the

context of research-paper recommender systems. In Proceedings of the 19th International Conference on Theory and

Practice of Digital Libraries (TPDL’15). 153–168.

[5] Robert M. Bell and Yehuda Koren. 2007. Improved neighborhood-based collaborative filtering. In Proceedings of the

KDD Cup and Workshop at the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD’07). 7–14.

[6] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13

(Feb.2012), 281–305.

[7] Shlomo Berkovsky, Ivan Cantador, and Domonkos Tikk (Eds.). 2019. Collaborative Recommendations—Algorithms,

Practical Challenges and Applications. World Scientific.

[8] Homanga Bharadhwaj, Homin Park, and Brian Y. Lim. 2018. RecGAN: Recurrent generative adversarial networks for

recommendation systems. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys’18). 372–376.

DOI:https://doi.org/10.1145/3240323.3240383
[9] Daniel Billsus and Michael J. Pazzani. 1998. Learning collaborative information filters. In Proceedings of the 15th

International Conference on Machine Learning (ICML’98). 46–54.

[10] John S. Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of predictive algorithms for collaborative

filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98). 43–52.

[11] Rocío Cañamares, Pablo Castells, and Alistair Moffat. 2020. Offline evaluation options for recommender systems. Info.

Retriev. J. 23, 4 (2020), 387–410.

[12] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive collab-

orative filtering: Multimedia recommendation with item-and component-level attention. In Proceedings of the 40th

International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’17). 335–344.

[13] Weiyu Cheng, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. 2018. DELF: A dual-embedding based deep latent

factor model for recommendation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence

(IJCAI’18). 3329–3335.

[14] Andy Cockburn, Pierre Dragicevic, Lonni Besançon, and Carl Gutwin. 2020. Threats of a replication crisis in empirical

computer science. Commun. ACM 63, 8 (2020), 70–79.

[15] Christian Collberg and Todd A. Proebsting. 2016. Repeatability in computer systems research. Commun. ACM 59, 3

(2016), 62–69.

[16] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. 2014. Random walks in recommender systems:

Exact computation and simulations. In Proceedings of the 23rd International Conference onWorldWideWeb (WWW’14).

811–816.

[17] Paolo Cremonesi, Franca Garzotto, and Roberto Turrin. 2012. Investigating the persuasion potential of recommender

systems from a quality perspective: An empirical study. Trans. Interact. Intell. Syst. 2, 2 (2012), 1–41.

[18] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n rec-

ommendation tasks. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys’10). 39–46.

[19] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2020. Methodological issues in recommender

systems research (extended abstract). In Proceedings of the 29th International Joint Conference on Artificial Intelligence,

IJCAI 2020. ijcai.org, 4706–4710. DOI:https://doi.org/10.24963/ijcai.2020/650
[20] Lee R. Dice. 1945. Measures of the amount of ecologic association between species. Ecology 26, 3 (1945), 297–302.

DOI:https://doi.org/10.2307/1932409 arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409

[21] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for recommendation systems. In Proceed-

ings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’18).

515–524.

[22] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep learning approach for cross domain

user modeling in recommendation systems. In Proceedings of the 24th International Conference on World Wide Web

(WWW’15). 278–288.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://doi.org/10.1145/3267471.3267475
https://doi.org/10.1145/3267471.3267475
https://doi.org/10.1145/3240323.3240383
https://doi.org/10.24963/ijcai.2020/650
https://doi.org/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.2307/1932409

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:47

[23] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress?

A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on

Recommender Systems (RecSys’19). 101–109. DOI:https://doi.org/10.1145/3298689.3347058 Source: https://github.com/

MaurizioFD/RecSys2019_DeepLearning_Evaluation.

[24] Maurizio Ferrari Dacrema, Federico Parroni, Paolo Cremonesi, and Dietmar Jannach. 2020. Critically examining the

claimed value of convolutions over user-item embedding maps for recommender systems. In Proceedings of the 29th

ACM International Conference on Information and Knowledge Management (CIKM’20). DOI:https://doi.org/10.1145/
3340531.3411901

[25] Juliana Freire, Norbert Fuhr, and Andreas Rauber. 2016. Reproducibility of data-oriented experiments in e-science

(dagstuhl seminar 16041). Dagstuhl Rep. 6, 1 (2016), 108–159.

[26] Antonino Freno, Martin Saveski, Rodolphe Jenatton, and Cédric Archambeau. 2015. One-pass ranking models for

low-latency product recommendations. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’15). 1789–1798. DOI:https://doi.org/10.1145/2783258.2788579
[27] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin, and Amr Huber. 2014. Offline

and online evaluation of news recommender systems at Swissinfo.Ch. In Proceedings of the 18th ACM Conference on

Recommender Systems (RecSys’14). 169–176.

[28] Asela Gunawardana and Guy Shani. 2015. Evaluating recommender systems. In Recommender Systems Handbook.

Springer, 265–308.

[29] Xiangnan He, Xiaoyu Du, XiangWang, Feng Tian, Jinhui Tang, and Tat-Seng Chua. 2018. Outer product-based neural

collaborative filtering. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18).

2227–2233.

[30] XiangnanHe, Lizi Liao, Hanwang Zhang, LiqiangNie, XiaHu, and Tat-SengChua. 2017. Neural collaborative filtering.

In Proceedings of the 26th International Conference on World Wide Web (WWW’17). 173–182.

[31] José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. 2014. Predictive entropy search

for efficient global optimization of black-box functions. In Advances in Neural Information Processing Systems 27,

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 918–

926. Retrieved from http://papers.nips.cc/paper/5324-predictive-entropy-search-for-efficient-global-optimization-

of-black-box-functions.pdf.

[32] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging meta-path based context for top-n rec-

ommendation with a neural co-attention model. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’18). 1531–1540.

[33] YifanHu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In Proceedings

of the 8th IEEE International Conference on Data Mining (ICDM’08), Vol. 8. 263–272.

[34] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. 2016. Convolutional matrix factor-

ization for document context-aware recommendation. In Proceedings of the 10th ACM Conference on Recommender

Systems (RecSys’16). 233–240. DOI:https://doi.org/10.1145/2959100.2959165
[35] Doudou LaLoudouana and Mambobo Bonouliqui Tarare.2002. Data set selection. Retrieved from http://www.jmlg.

org/papers/laloudouana03.pdf.

[36] Mark Levy and Kris Jack. 2013. Efficient top-n recommendation by linear regression. In Proceedings of the RecSys

Large Scale Recommender Systems Workshop.

[37] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for recommender systems. In Proceedings of

the 23th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17). 305–314.

[38] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational autoencoders for collab-

orative filtering. In Proceedings of the 27th International Conference on World Wide Web (WWW’18). 689–698.

[39] Jimmy Lin. 2019. The neural hype and comparisons against weak baselines. SIGIR Forum 52, 2 (Jan. 2019), 40–51.

[40] Jimmy Lin. 2019. The neural hype, justified! A recantation. SIGIR Forum 53, 2 (2019), 88–93.

[41] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com recommendations: Item-to-item collaborative filter-

ing. IEEE Internet Comput. 7, 1 (2003), 76–80.

[42] Zachary C. Lipton and Jacob Steinhardt. 2019. Troubling trends in machine learning scholarship. Queue 17, 1, Article

Pages 80 (Feb. 2019), 33 pages. DOI:https://doi.org/10.1145/3317287.3328534
[43] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011. Content-based recommender systems: State of the

art and trends. In Recommender Systems Handbook. Springer, 73–105.

[44] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of session-based recommendation algorithms. User-Model.

User-Adapt. Interact. 28, 4–5 (2018), 331–390.

[45] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019. Performance comparison of neural and non-

neural approaches to session-based recommendation. In Proceedings of the 13th ACM Conference on Recommender

Systems (RecSys’19). 462–466.

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://doi.org/10.1145/3298689.3347058
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation
https://doi.org/10.1145/3340531.3411901
https://doi.org/10.1145/3340531.3411901
https://doi.org/10.1145/2783258.2788579
http://papers.nips.cc/paper/5324-predictive-entropy-search-for-efficient-global-optimization-of-black-box-functions.pdf
http://papers.nips.cc/paper/5324-predictive-entropy-search-for-efficient-global-optimization-of-black-box-functions.pdf
https://doi.org/10.1145/2959100.2959165
http://www.jmlg.org/papers/laloudouana03.pdf
http://www.jmlg.org/papers/laloudouana03.pdf
https://doi.org/10.1145/3317287.3328534

20:48 M. Ferrari Dacrema et al.

[46] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2018. Statistical and machine learning fore-

casting methods: Concerns and ways forward. PloS One 13, 3 (2018).

[47] Andrii Maksai, Florent Garcin, and Boi Faltings. 2015. Predicting online performance of news recommender systems

through richer evaluation metrics. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys’15).

179–186.

[48] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. 2018. A contextual attention recurrent architecture for

context-aware venue recommendation. In Proceedings of the 41st International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’18). 555–564. DOI:https://doi.org/10.1145/3209978.3210042
[49] Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being accurate is not enough: How accuracy metrics have

hurt recommender systems. In Proceedings of the CHI Extended Abstracts on Human Factors in Computing Systems

(CHI EA’06). 1097–1101. DOI:https://doi.org/10.1145/1125451.1125659
[50] Bamshad Mobasher, Xin Jin, and Yanzan Zhou. 2004. Semantically enhanced collaborative filtering on the web. In

Web Mining: From Web to Semantic Web, Bettina Berendt, Andreas Hotho, Dunja Mladenič, Maarten van Someren,

Myra Spiliopoulou, and Gerd Stumme (Eds.). Springer Berlin, 57–76.

[51] ThaiBinh Nguyen and Atsuhiro Takasu. 2018. NPE: Neural personalized embedding for collaborative filtering. In

Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). 1583–1589. Retrieved from

http://dl.acm.org/citation.cfm?id=3304415.3304640.

[52] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-n recommender systems. In Proceedings of

the 11th IEEE International Conference on Data Mining (ICDM’11). 497–506.

[53] Arkadiusz Paterek. 2007. Improving regularized singular value decomposition for collaborative filtering. In Proceed-

ings of the KDD Cup and Workshop. 39–42.

[54] Bibek Paudel, Fabian Christoffel, Chris Newell, and Abraham Bernstein. 2017. Updatable, accurate, diverse, and scal-

able recommendations for interactive applications. ACM Trans. Interact. Intell. Syst. 7, 1 (2017), 1.

[55] Ali Mustafa Qamar, Éric Gaussier, Jean-Pierre Chevallet, and Joo-Hwee Lim. 2008. Similarity learning for nearest-

neighbor classification. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). 983–988.

DOI:https://doi.org/10.1109/ICDM.2008.81

[56] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural collaborative filtering vs. matrix factor-

ization revisited. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys’20).

[57] Steffen Rendle, Li Zhang, and Yehuda Koren. 2019. On the difficulty of evaluating baselines: A study on recommender

systems. Retrieved from http://arxiv.org/abs/1905.01395.

[58] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. 1994. GroupLens: An open archi-

tecture for collaborative filtering of netnews. In Proceedings of the ACMConference on Computer-Supported Cooperative

Work (CSCW’94). 175–186.

[59] Marco Rossetti, Fabio Stella, and Markus Zanker. 2016. Contrasting offline and online results when evaluating rec-

ommendation algorithms. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys’16). 31–34.

[60] Noveen Sachdeva, Kartik Gupta, and Vikram Pudi. 2018. Attentive neural architecture incorporating song features

for music recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys’18). 417–421.

DOI:https://doi.org/10.1145/3240323.3240397
[61] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommen-

dation algorithms. In Proceedings of the 10th International Conference on World Wide Web (WWW’01). 285–295.

[62] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2002. Incremental singular value decomposition

algorithms for highly scalable recommender systems. In Proceedings of the 5th International Conference on Computer

and Information Science (ICIS’02), Vol. 1. Citeseer, 27–8.

[63] Harald Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In Proceedings of the 28th International

Conference on World Wide Web (WWW’19) (TheWebConf’19). 3251–3257.

[64] Victoria Stodden. 2010. The scientific method in practice: Reproducibility in the computational sciences. MIT Sloan

Research Paper, No. 4773-10 (2010).

[65] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Long-Kai Huang, and Chi Xu. 2018. Recurrent knowledge graph

embedding for effective recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems

(RecSys’18). 297–305. DOI:https://doi.org/10.1145/3240323.3240361
[66] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric learning via memory-based attention for

collaborative ranking. In Proceedings of the 27th International Conference on World Wide Web (WWW’18). 729–739.

[67] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-pointer co-attention networks for recommendation. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’18).

2309–2318.

[68] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D convolutional networks for session-based recommendation with

content features. In Proceedings of the 11th ACM Conference on Recommender Systems (RecSys’17). 138–146. DOI:
https://doi.org/10.1145/3109859.3109900

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://doi.org/10.1145/3209978.3210042
https://doi.org/10.1145/1125451.1125659
http://dl.acm.org/citation.cfm?id$=$3304415.3304640
https://doi.org/10.1109/ICDM.2008.81
http://arxiv.org/abs/1905.01395
https://doi.org/10.1145/3240323.3240397
https://doi.org/10.1145/3240323.3240361
https://doi.org/10.1145/3109859.3109900

A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research 20:49

[69] Amos Tversky. 1977. Features of similarity. Psychol. Rev. 84, 4 (1977), 327–352.

[70] Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. 2009. Reproducible research in signal processing. IEEE

Signal Process. Mag. 26, 3 (2009), 37–47.

[71] Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec: Product embeddings using side-

information for recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys’16).

225–232. DOI:https://doi.org/10.1145/2959100.2959160
[72] Kiri Wagstaff. 2012. Machine learning that matters. In Proceedings of the 29th International Conference on Machine

Learning (ICML’12). 529–536.

[73] HaoWang, NaiyanWang, andDit-Yan Yeung. 2015. Collaborative deep learning for recommender systems. In Proceed-

ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’15). 1235–1244.

[74] Jun Wang, Stephen Robertson, Arjen P. de Vries, and Marcel J. T. Reinders. 2008. Probabilistic relevance ranking for

collaborative filtering. Info. Retriev. 11, 6 (2008), 477–497.

[75] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for

top-n recommender systems. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining

(WSDM’16). 153–162.

[76] Zhenghua Xu, Thomas Lukasiewicz, Cheng Chen, Yishu Miao, and Xiangwu Meng. 2017. Tag-aware personalized

recommendation using a hybrid deep model. In Proceedings of the 26th International Joint Conference on Artificial

Intelligence (IJCAI’17). 3196–3202. DOI:https://doi.org/10.24963/ijcai.2017/446
[77] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017. Deep matrix factorization models

for recommender systems. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’18).

3203–3209. DOI:https://doi.org/10.24963/ijcai.2017/447
[78] Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. 2019. Critically examining the neural hype: Weak baselines and

the additivity of effectiveness gains from neural ranking models. In Proceedings of the 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR’19). 1129–1132.

[79] Quangui Zhang, Longbing Cao, Chengzhang Zhu, Zhiqiang Li, and Jinguang Sun. 2018. CoupledCF: Learning explicit

and implicit user-item couplings in recommendation for deep collaborative filtering. In Proceedings of the 27th Inter-

national Joint Conference on Artificial Intelligence (IJCAI’18). 3662–3668. DOI:https://doi.org/10.24963/ijcai.2018/509
[80] Shuai Zhang, Lina Yao, Aixin Sun, SenWang, Guodong Long, and Manqing Dong. 2018. NeuRec: On nonlinear trans-

formation for personalized ranking. In Proceedings of the 27th International Joint Conference on Artificial Intelligence

(IJCAI’18). 3669–3675.

[81] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral collaborative filtering. In Proceedings

of the 12th ACM Conference on Recommender Systems (RecSys’18). 311–319.

Received November 2019; revised August 2020; accepted November 2020

ACM Transactions on Information Systems, Vol. 39, No. 2, Article 20. Publication date: January 2021.

https://doi.org/10.1145/2959100.2959160
https://doi.org/10.24963/ijcai.2017/446
https://doi.org/10.24963/ijcai.2017/447
https://doi.org/10.24963/ijcai.2018/509

