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A B S T R A C T

Electrical power production by renewable energy sources is unpredictable in nature and this may cause
imbalance between power generation and demand. Therefore, an accurate prediction of solar radiation is
crucial for the stability and efficient management of electric grid. This study focuses on very short-term
forecasts of solar radiation with a horizon in the range of 5–15 min. In this paper, a Convolutional Neural
Network is proposed that uses sequences of infrared images captured by an All-Sky Imager to forecast
the Global Horizontal Irradiance on different time horizon. A real case study, exploiting six months of
high-resolution data, is analyzed. Additionally, an innovative technique, the Enhanced Convolutional Neural
Network (ECNN), is proposed in which exogenous data, as the solar radiation measurement, is encoded in terms
of colored pixels in the upper corner of the images. Considering the naïve persistence method as a baseline, a
clear improvement across the key metrics has been noted with the proposed methodology. A deeper analysis
of the results reveals that the proposed models are more accurate than persistence when high fluctuations of
solar radiation are experienced. In that case, the ECNN achieves a forecast skill exceeding 19% for all the
tested forecast horizons.
1. Introduction

The ever-increasing energy demand and the push towards a clean
energy transition imposed by stronger environmental policies and am-
bitious climate targets lead to increased generation from renewable
sources. In particular, solar photovoltaic energy (PV) is in the spotlight,
and in 2021 it accounted for 60% of the worldwide annual renewable
capacity additions [1]. Therefore, due to the intermittent and unpre-
dictable nature of the solar source, the need for accurate solar radiation
prediction is becoming crucial for grid connections and stand-alone
networks.

This study focuses on very short-term forecasting, also known as
nowcasting, to make predictions at three selected forecast horizons:
5, 10, and 15 min. The evaluation of solar radiation at such short
timescales provides benefits for power smoothing processes, monitoring
of real-time electricity dispatch, and PV storage control.

2. State-of-the-art solar nowcasting

Nowcasting has been identified as one of the main possible solutions
to mitigate the unpredictable and variable nature of Renewable Energy
Sources (RES) [2]. This task is particularly important in the balancing
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of Micro Grid (MG) systems and allows for better response to rapid
ramp events and higher penetration of PV energy [3]. Compared to
other solar technologies (such as solar thermal systems) PV energy
generation is characterized by low inertia and swift response to sudden
changes in weather conditions, resulting in increased significance of
precise nowcasting. However, in recent years there has been ongoing
research concerning implementations of solar nowcasting in instal-
lations based on solar thermal energy such as Concentrating Solar
Thermal plants (CST) [4,5] where precise short-term forecasts are
necessary for accurate demand planning of the dependent production
units.

Nowcasting has lagged behind in research compared to longer
forecast horizons. Nowadays, state-of-the-art is moving towards new
technologies that are being developed to increase forecast reliabil-
ity. Specifically, Convolutional Neural Networks (CNN) and thermal
infrared All-Sky Imagers (ASI) are becoming useful tools to improve
accuracy [6] as conventional statistics-based ML methods have already
shown great potential [7].

Nowcasting has proven to be successful in predictions of weather
conditions through numerical methods and satellite images [8], or
RGB and IR camera imaging [9] that has been successfully related
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Fig. 1. Model classification based on temporal and spatial resolutions.
to PV production predictions through solar radiation prediction [10].
However, in highly polluted environments, it is significantly more
difficult with examples showing nonlinear behavior [11].

ASI allows for high-precision nowcasting in comparison to weather-
based predictions, with a visible correlation between ASI sky-image
features and the power output of a PV panel [12]. In particular, good
results are obtained when a network of sensors is used [13]. ASI-
based predictions are often related to short-term forecasts of weather
conditions in the location of the PV power plant. Applications studied
already include solar position identification [14], cloud cover and sky-
clearness nowcasting [15,16], estimations of cloud height [17], and
general cloud movement and velocity predictions [18]. Usually on the
technical side, the forecasting is powered by Machine Learning [19],
such as CNN with good accuracy obtained already [20,21] with IR
imaging outperforming visible range [22]. The targets for network
training are usually defined with reference to the Perez–Ineichen clear
sky model [23,24].

Nowcasting and short-term forecasts are also becoming widely used
in other weather-dependent RES, such as wind power [25]. Short-
term forecasts with a few-hour horizon have been performed with
good results [26], with the research now moving to sub-hourly pre-
dictions [27,28] even with highly variable wind fields with the use of
deep learning [29]. In the forecasting field, the most popular one is
persistence, which belongs to the larger class of naïve methods. Despite
their simplicity, which leads both to low computational and time costs,
they are surprisingly effective and considered sufficiently accurate for
very short-term forecasting. Fig. 1 shows the most adopted technique
for solar forecasting based on temporal and spatial resolution.

3. Motivations and research questions

The main goal of the research is to provide a forecasting technique
for the immediate future based on promising state-of-the-art technolo-
gies: CNNs and infrared ASI. For short-term predictions, these methods
are usually fairly accurate however they often struggle to outperform
persistence which is a naïve but generally reliable method [6]. In
particular, the persistence method is unbeatable in terms of complexity
and computational burden.

To improve the performance of the CNN-based methodology, we
propose in this paper an innovative technique in which exogenous
data about the state corresponding to the ASI picture is encoded as
information directly in the images. This should allow the model to
perform better in unclear conditions and distinguish easily between
sunny and fully overcast conditions. The newly designed methodology
2

will be referred to as an Enhanced Convolutional Neural Network
(ECNN) and will be thoroughly compared to other models such as CNN
and persistence.

4. Data acquisition

The dataset was collected from a thermal infrared all-sky imager
and a meteorological station both located in Milan, at the SolarTechLAB

of the Politecnico di Milano (latitude: 45.50◦N; longitude: 9.16◦E).
Infrared all-sky images and numerical meteorological measurements
were collected in the period between 18th September 2019 and 9th
April 2020, with an interruption period of recording between 23th
December 2019 and 12th February 2020.

Images were taken with a time resolution of 1 min resulting in a
total number equal to 116,891.

4.1. Thermal infrared all sky imager

The Thermal Infrared All Sky Imager used is the Sky InSightTM

developed by Reuniwatt. It includes a long-wavelength infrared camera
that takes a picture with a 640 × 480 spatial resolution every 60 s. The
imager is mounted on a mast to film a hemispherical mirror pointing
at the sky, which provides a 180◦ field of view.

Infrared radiation has broad prospects for providing valuable atmo-
spheric properties. In fact, the spectral emission of sky which ranges
from 8 to 13 μm is very sensitive to water vapor presence, facilitating
the identification of clouds. The main advantages of infrared pictures
compared to visible images are better overall cloud features as well as
the absence of Sun glare effect in Sun-region [30]. Fig. 2(a) and (b)
show the significant difference between the two images taken at the
same time.

There is however an innegligible drawback related to overcast
weather. Under those conditions, the clouds cover the entire sky and
the infrared camera interprets the sky dome as having an approximately
equal temperature everywhere. This means that there is no possibility
to distinguish sky and clouds as in the case of partly cloudy weather
from the IR picture itself. Fig. 3(a) and (b) show the similarity between
clear and overcast skies.

4.2. Meteorological station

The environmental data were collected at a weather station lo-
cated at the Department of Energy of Politecnico di Milano (latitude:
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Fig. 2. Camera images: (a) visible spectrum, (b) IR spectrum.
Fig. 3. IR camera images: (a) sunny day, (b) overcast day.
45.50◦N; longitude: 9.16◦E). It is equipped with solar irradiance sen-
sors, temperature and humidity sensors, a wind speed and direction
sensor, and a rain collector. Irradiance was measured with two sec-
ondary standard pyranometers, which evaluate the global irradiance
on the horizontal and 30◦ tilted planes. Measurements were performed
every ten seconds. The average, maximum, minimum, and standard
deviation of the values measured were calculated every minute.

5. Proposed methodology

The proposed nowcasting technique is based on a CNN where a
sequence of three consecutive images is used as an input feature space.
As a result, the CNN has the ability to detect the movement of the
clouds and predict its impact on the irradiance in the following minutes.

However, before the training and testing of the network may begin
the available image dataset has to be pre-processed to obtain better
results both in terms of performance and execution time.

5.1. Pre-processing

In the initial step, the images are filtered to remove instances when
unclear weather conditions could highly impact the forecast accuracy.
Firstly, all the images where precipitation was recorded have been
removed (as rain has a significant negative impact on the quality of
images). Moreover, clear sky thermal radiance increases with air mass
(see Fig. 4), and at sunrise and sunset, the region of the sky around the
Sun is limited due to the presence of land. For this reason, the detection
of clouds is particularly hard in that area. Hence, images characterized
by a Sun elevation angle lower than 20◦ were also not considered by
the forecasting model. The filtering results in a reduction of the total
number of images available to the neural network to 33,686 (from the
3

Fig. 4. Infrared image and its characteristics. The color changes near the horizon due
to the increase in atmospheric thickness. A limited portion of the sky in the Region of
Interest (ROI) around the Sun is visible at a low Sun elevation angle.

starting 116,891) as no additional data augmentation techniques are
used.

In the second step, the images are flattened from three channels
(Red–Green–Blue format) to one channel (grayscale) with the goal of
accelerating the training process since the amount of image data is
reduced. To replicate the color scale of the original image the ‘Jet’
function implemented in Matlab was used. Each RGB pixel value was
compared with the jet function to find the nearest correspondence. Its
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Fig. 5. Illustration of the image transformation process from RGB to grayscale.
Fig. 6. Cropping and scaling.
index represents the gray intensity value of the monochrome image.
The entire process is depicted in Fig. 5.

The second step is concluded by the application of a mask to remove
all parts that are not the sky. Finally, the images are cropped. A square
area of 384 × 384 pixels size is cut out from the original picture and
scaling is performed to reduce the image size to a third in each direction
(as in Fig. 6). In this way, unnecessary data is removed and we end up
with a final image of 128 × 128 pixels.

5.2. CNN architecture

Fig. 7 depicts the architecture of the used CNN that is inspired by the
one developed by the Visual Geometry Group (VGG) [31]. This struc-
ture is well-researched and widely used due to its good performance
at image classification and low complexity. It consists of five Feature
Learning Blocks (FLBs). Each FLB consists of two or three convolutional
layers with the same parameters and a max-pooling layer. The first
FLB has layers with 64 filters, whereas the second has 128 filters, the
third 256 filters, and the fourth and the fifth 512 filters accordingly.
All layers use the same kernel size (3 × 3) and Same padding. This
4

configuration has resulted in optimal results in extensive tests. After the
convolution part, there are two linear fully-connected layers. The first
one has 256 neurons and the second has 1 neuron. This last neuron
is responsible for providing the predicted value. The ReLU activation
function was used in convolutional layers, whereas the linear activation
function was used in fully-connected layers. Lastly, a 0.2 dropout was
put before each linear layer to avoid overfitting. The model was trained
with an initial learning rate of 0.0001 with the Adam optimizer and the
loss function adopted was the Mean Absolute Error.

5.3. Enhanced convolutional neural network

The ECNN is created by adding exogenous data information to the
images used by CNN with the goal of improving forecasting perfor-
mance without changing the structure of the deep learning model.
Hence, there is no added complexity to the network itself, but rather
an additional data transformation step in the image pre-processing
pipeline.

Exogenous data is codified into pixels and placed horizontally in the
upper left corner of the image that does not obstruct the sky region.
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Fig. 7. CNN architecture.
Fig. 8. Codified exogenous data.

More specifically, the inserted data is Global Horizontal Irradiation
(GHI) measured at the exact time of the image acquisition. In particular,
the overall sum of the modified pixels is equal to the measured GHI, as
shown in Fig. 8, where the maximum value of a grayscale 8-bit pixel is
255 (28-1). The encoded GHI is in fact closely related to the prediction
target which is based on the value of the solar radiation measured
within the selected forecast horizon.

5.4. Sequence generation

To ensure proper data structure and incentivize learning of the
intrinsic temporal patterns within the data, the images are processed
together in sequences of three. A unique sequence is generated for
each of the 33,686 images by concatenating them along the channel
dimension as depicted in Fig. 9. Hence, assuming that three images are
concatenated as the input of the forecasting model, the input has the
size of H ×W × (3 ⋅ C). Where H andW is the image’s height and width
and C is the number of channels (in this case equal to 1). Depending on
the selected forecast horizon (𝛥𝑡𝑝𝑟𝑒𝑑) an adequate time interval (𝛥𝑡𝑏𝑎𝑐𝑘)
has to be chosen between the sequenced images and is by default close
to half of the forecast horizon. It is equal to 2’, 4’ and 8’ for 𝛥𝑡𝑝𝑟𝑒𝑑 equal
to 5’, 10’, and 15’ respectively. This input concatenation operation is
described in Eq. (1).

𝐼𝑖𝑛𝑝𝑢𝑡 = (𝐼𝑡−2𝛥𝑡𝑏𝑎𝑐𝑘 ⊕ 𝐼𝑡−𝛥𝑡𝑏𝑎𝑐𝑘 ⊕ 𝐼𝑡) (1)

In the equation, the symbol ⊕ indicates the concatenation between
images (I), t is the actual time, and 𝛥tback is the selected time interval
between images in the sequence.

The created sequences are later shuffled in order to improve the
model generalization performance. The resulting sequence dataset is
later split into: training, validation and test subsets with sizes of 64%,
16%, and 20% respectively.
5

5.5. Training labels

The movement of the clouds that can be extrapolated from the
sequences is subsequently correlated with the GHI through the given
training labels. In reality, the model does not directly predict the GHI,
but the GHI is normalized by the Clear Sky Global Horizontal Irradiance
(GHIcs). This last term is computed through the Ineichen and Perez
clear sky model which can be simulated in the PVlib Python package
[32]. The resulting parameter is called the Clear Sky Index (CSI) and
it is a dimensionless parameter that directly informs on the weather
conditions. For most cases, the value of this parameter ranges between
0 and 1. Each sequence of images is associated with a label defined at
the selected forecast horizon. In other words, the target corresponds to
the CSI value measured by waiting for a period corresponding to the
forecast horizon from the last image in the chronological order of the
sequence. Considering a sequence of three images taken at t, t-𝛥tback
and t -2𝛥tback, the CSI for that sequence is measured at t+𝛥𝑡𝑝𝑟𝑒𝑑 .

An early stopping procedure is implemented during training to
avoid model overfitting.

6. Banchmarks and evaluation metrics

Two models were used as a baseline for the ML model test. First,
the dataset of forecasts computed in 2020 by a weather broadcaster
provider, that similarly exploited the infrared images and the GHI mea-
surements collected by the meteorological station at the SolarTechLAB.
Second, a naïve persistence method which assumes a constant CSI
within the forecast horizon, resulting in a time-shift of the GHI curve.

For the evaluation of the model, three indexes are selected: the Root
Mean Squared Error (RMSE) [33], the Mean Bias Error (MBE) [34], and
the Forecast Skill (FS) [35] that are defined as:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦pred − 𝑦meas)

2 (𝑊 ∕𝑚2) (2)

𝑀𝐵𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦pred − 𝑦meas) (𝑊 ∕𝑚2) (3)

𝐹𝑆 = 1 − 𝑅𝑀𝑆𝐸
𝑅𝑀𝑆𝐸𝑝

(−) (4)

The results were obtained using an NVIDIA®T4 GPU on Google
Colaboratory. with an average run time of the simulations of less than
two hours.



Renewable Energy 221 (2024) 119735E. Ogliari et al.
Fig. 9. Sequence of images.
Table 1
Detailed results (RMSE, MBE, FS) for the tested models and forecast horizons.

Horizon Persistence Weather broad. CNN ECNN

RMSE
5 min 63.47 90.57 74.88 60.26
10 min 76.66 86.99 77.46 69.32
15 min 88.18 91.46 87.82 80.18

MBE
5 min −0.4 −8.3 20.70 3.90
10 min −1.12 −6.59 13.48 9.42
15 min −2.59 −8.59 1.05 16.47

FS
5 min 0 −40.74 −17.97 5.05
10 min 0 −17.82 −32.44 9.57
15 min 0 −3.72 0.41 9.07

Fig. 10. Forecast Skill (referred to persistence) of the tested methods.

7. Results and discussion

The RMSE, MBE, and FS were computed as functions of the forecast
horizons and the historical timestep. These metrics were then compared
among the predictions provided by the weather broadcaster and CNN
method. The detailed results can be seen in Table 1.

The results show how the CNN model is able to outperform the
predictions of the meteorological provider for all forecast horizons.
Moreover, the proposed method matches the persistence method, ex-
cept for predictions 5 min ahead due to the high accuracy of persistence
at those timescales. The ECNN instead always outperforms persistence
with FS of 5.05%, 9.57%, and 9.07% for 5’, 10’, and 15’ respectively.
These results are depicted in Fig. 10.

Looking at the CNN models that got the best FS, they follow the real
curve with good accuracy, but they hardly ever outperform persistence.
In particular, the CNN tends to behave like a smart persistence model,
avoiding large errors at the expense of missing peaks and having
regular time delays. This behavior is evident in Fig. 11, in which all the
ramps are missed, but both CNN and ECNN got FS higher than 14%.

Fig. 12 on the other hand shows that the main problem of the
proposed method is the overcast days. Here, the CNN models have
6

errors at least three times larger than those observed with persistence.
In overcast, the weather conditions are hard to evaluate by the CNN
for two main reasons: first, the impossibility of the CNN to know the
Sun position; second, the similarity, in infrared images, between cloudy
days and clear sky (as shown before on Fig. 3). The result is a high
positive bias present in all the analyses.

Fig. 13 presents the performance of the model in clear sky condi-
tions. As can be seen, despite close matching between the prediction
line and the true GHI values (especially in the afternoon) the model is
not able to outperform the persistence. However, the model becomes
more reliable with an increased forecast horizon as the persistence
results begin to deviate further from the recorded sensor values.

7.1. Analysis on high fluctuations of irradiance

Usually, results provided by the forecasting models are strictly
dependent on the experienced meteorological conditions. Specifically,
they incur larger errors on partially cloudy days due to the greater
variation of GHI compared to clear-sky days. However, here the models
are analyzed from a different perspective by looking at the instances
characterized by high fluctuations in solar irradiance. Probability Den-
sity Functions (PDF) of the change between the current GHI and
the future value were generated for a chosen partially cloudy day.
Considering that the choice of the forecast horizon impacts the GHI
variation, we end up with three PDFs for 5, 10, and 15 min ahead. The
curves reported in Fig. 14 show that most of the irradiance variations
are relatively small (lower than 60 W/m2). However, the high fluctua-
tions (marked in red on the graphs) are fundamental for both electric
grid balancing and microgrid management. Focusing on these aspects,
models can be evaluated in terms of FS under conditions that rarely
occur but are still statistically significant. In particular, at least 80%
of the most probable data (marked in light blue on the graphs) were
removed and not considered by the new error metrics.

The results for CNN and ECNN are presented in Fig. 15. Here, a
clear and significant benefit of implementing the CNN models can be
observed with FS values always higher than 19% for all the forecast
horizons.

This analysis demonstrates the factual added value that neural
networks can bring to the nowcasting field. The CNN (and the ECNN)
could significantly boost the performance of prediction when high vari-
ability of data is considered. Well-trained neural networks, can adapt
to changes in the environment quicker then persistence and numerical
methods. It means that a new criterion can be applied to the forecasting
analysis. A proper prediction model can be chosen depending on how
far the recorded instances stray from the expected value.

Most of the previous results highlight that persistence is still mostly
unbeatable method in very short-term (5’) predictions, especially con-
sidering its negligible computational load. As for the neural network,
the obvious solution to improve the FS of CNN-based methods is to
provide more information (either in the form of raw data or other ex-
ogenous parameters) to the model at the expense of an even-increased
computational burden. As an example, the exogenous data could be at
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Fig. 11. 29th March 2020 – partly cloudy – 10 min forecast horizon.
Fig. 12. 25th February 2020 – overcast – 10 min forecast horizon.
Fig. 13. 4th April 2020 – clear sky – 10 min forecast horizon.
a later stage decoded by the model and used as an auxiliary input to
the final linear layers that perform the regression operation.

Moreover, despite the RMSE and the FS indicating a better perfor-
mance of CNN compared to persistence (which is further amplified in
7

case of high fluctuations of irradiance), the GHI curves reveal the ten-
dency of both the CNN methods to operate conservatively, favoring a
smoothing trend in the predictions concerning forecast ramps. This last
aspect suggests the need for additional metrics of forecast evaluation,
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Fig. 14. Probability density functions for (a) 5 min, (b) 10 min (c) 15 min forecast.
which could measure the forecast delay or the ability to predict peaks
and drops [36].

In general, these results are in line with other research ongoing in
this area, with ML-based methodologies outperforming persistence. For
example, in [36] the authors achieved a maximum FS of 20.4% by uti-
lizing a ConvLSTM prediction model. However, their implementation
was based on visible spectrum images and employed a longer sequence
8

as the model input. In [37] the same authors boost the overall model
performance to over 23% by combining the ASI with satellite image
data. In addition to better results, this allowed to improve the model’s
performance in overcast conditions, as satellite images give a clear idea
on whether the sky is actually covered or clear. Nonetheless, in clear-
sky conditions, the model is similarly consistently outperformed by the
naïve persistence methods.
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Fig. 15. Forecast Skill in fluctuating conditions.

8. Conclusion

In this work, we developed a CNN for the very short-term forecast-
ing of solar radiation on the horizontal plane. The inputs are composed
of a dataset of infrared sky images, measurements of the global hori-
zontal irradiance, and the Ineichen and Perez clear sky model. The CNN
method stacked three grayscale images with a 128 × 128 resolution to
detect the dynamics of the clouds’ motion. Furthermore, an innovative
forecasting technique has been proposed: the Enhanced Convolutional
Neural Network (ECNN).

The ECNN method outperforms all the considered benchmark mod-
els in the examined time horizons and it is more accurate than persis-
tence: positive forecast skill scores of 5.04%, 9.57%, and 9.07% were
obtained for 5, 10, and 15 min ahead respectively.

The work made use of RGB pictures (instead of raw grayscale), with
colormap designed to maximize the contrast under any conditions for
better recognition by human eyes. However, this results in a similarity
between overcast and clear sky conditions, which negatively affects
the performance of the model on overcast days. A significant forecast
improvement can be found with the computation of more elaborated
cloud products. Sky InSight can be used to compute the Cloud Optical
Depth, which is a valuable parameter for knowing the clouds’ proper-
ties and characteristics [30]. Lastly, an analysis of periods characterized
by high fluctuations of irradiance was carried out since they are the
most crucial from the perspective of microgrid management. The results
show a significant improvement in the proposed method with respect
to persistence, which reaches an FS score higher than 19.9%.
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