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Abstract Dimensionality reduction in mechanical
vibratory systems poses challenges for distributed
structures including geometric nonlinearities, mainly
because of the lack of invariance of the linear sub-
spaces. A reduction method based on direct normal
form computation for large finite element (FE) models
is here detailed. The main advantage resides in operat-
ing directly from the physical space, hence avoiding the
computation of the complete eigenfunctions spectrum.
Explicit solutions are given, thus enabling a fully non-
intrusive version of the reduction method. The reduced
dynamics is obtained from the normal form of the
geometrically nonlinear mechanical problem, free of
non-resonant monomials, and truncated to the selected
master coordinates, thus making a direct link with the
parametrisation of invariant manifolds. The method is
fully expressed with a complex-valued formalism by
detailing the homological equations in a systematic
manner, and the link with real-valued expressions is
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established. A special emphasis is put on the treat-
ment of second-order internal resonances and the spe-
cific case of a 1:2 resonance is made explicit. Finally,
applications to large-scale models of micro-electro-
mechanical structures featuring 1:2 and 1:3 resonances
are reported, along with considerations on computa-
tional efficiency.
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1 Introduction

The rate of development of computational power has
enabled the simulation of complex systems. However,
computational costs for the analysis of mechanical
components are still not competitive enough on an
industrial scale, where first guesses on the performance
of mechanical components must be obtained rapidly.
This limitation led to the development of techniques
aimed at reducing the computational cost of numerical
models while retaining sufficient reliability, i.e. model
order reduction (MOR) techniques [1-3]. Restricting
ourselves to the case of vibratory systems including
large-amplitude displacements and thus exciting geo-
metric nonlinearities, the first idea used since decades
has been to project the nonlinear equations of motion
onto a selected subset of the linear modes basis, see
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e.g. [4,5] to cite only two examples. Unfortunately,
the loss of invariance of linear eigenspaces, expressed
through important nonlinear coupling terms that may
happen with high-frequency modes [6], makes this
approach not efficient in terms of accuracy [2,7-10].
The proper orthogonal decomposition (POD) method
offers a gain since being able to modify slightly the
orientation of the subspaces to better fit the curvatures
of the nonlinear data, but it is still restricted to the use
of linear orthogonal subspaces [11-14].

On the other hand, nonlinear reduction methods
start by defining a nonlinear relationship between the
original coordinates and those of the reduced dynam-
ics, hence providing a more accurate treatment of the
nonlinear trajectories and thus faster convergence with
fewer master modes. First attempts can be traced back
to the work by Rosenberg [15] who introduced the
term Nonlinear Normal Mode (NNM) [16,17], which
has been further developed in the works by Shaw and
Pierre who first recognised that the concept of invariant
manifold is key to compute accurate ROMs for nonlin-
ear vibratory systems [7,8,18,19]. The normal form
theory together with a truncation to a small subset of
master modes have been proposed in [9,10,20,21]. On
the mathematical point of view, invariant manifolds are
investigated for a long time, see e.g. [22,23], and the
methods have been written in a unified and abstract
general formalism thanks to the parametrisation meth-
ods [24-26]. The book by Haro et al. [27] gives a clear
presentation of these developments with a presenta-
tion oriented toward applications. In particular, it shows
that the computations led by previous authors in vibra-
tion theory followed the guidelines of the two main
parametrisation styles of invariant manifolds. While
Shaw and Pierre used the graph style, the normal form
style was used in [9,20,21], with a real formulation in
order to better fit the classical oscillatory framework.

A remarkable advancement within the correct and
formal definition and properties of nonlinear normal
modes has been given by Haller et al. in a series
of papers [28-31]. In the conservative framework,
existence and uniqueness of the searched invariant
structures are given by the Lyapunov centre theo-
rem [32], stating that under non-resonance conditions,
a two-dimensional manifold densely filled with peri-
odic orbits exists for each couple of imaginary eigen-
values. As remarked in [28], the picture is completely
different for dissipative systems since the whole phase
space is foliated by invariant manifolds tangent at the
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origin to linear subspace (see also [33,34]). In order
to give a correct, accurate and unequivocal defini-
tion of the searched reduction subspaces, Haller et al.
introduced the notion of spectral submanifolds (SSM)
as the smoothest nonlinear continuation of a spectral
subspace of the linearised system. They proved that
existence and uniqueness of SSM are related to non-
resonance conditions and a spectral quotient computed
from the real part of the spectrum of the linearised sys-
tem. In the conservative case, the manifolds are named
as Lyapunov subcentre manifold (LSM) [30,35]. Ret-
rospectively, the earlier computations of NNMs turned
out to be computations of LSM when damping was
not taken into account. On the computational point
of view, Haller et al. used normal form style [27,29],
and proposed an automated computational framework
allowing to go to any order of asymptotic development
while taking into account damping and various nonlin-
ear terms.

Applications of methods inherited from dynamical
systems theory to finite element (FE) problems has
remained scarce until recently. A major motivation was
that all the methods described in the last paragraph have
as common starting point the mechanical system writ-
ten in modal space. Unfortunately, FE methods, where
meshes with millions of degrees-of-freedom (dofs) are
routinely used, make this step out of reach. The direct
computation of NNMs from large finite element models
[16,17,36] has been addressed with harmonic balance
approaches or shooting procedures. Thanks to their
purely computational nature, these techniques are very
general and can be applied to a wide range of problems,
but they require a certain amount of computational
effort to be applied to realistic structures and fail at serv-
ing the aim of generating agile reduced order models
(ROMs). On the other hand, for FE structures includ-
ing geometric nonlinearities, a number of methods have
been proposed in the last 20 years in order to formulate
ROMs that can be easily computed, in the best case in
a non-intrusive manner, i.e. without the need to enter
new calculations at the elementary level in the code,
such that any research-oriented or commercial FE code
could be used as starting point. The stiffness evaluation
procedure (STEP) uses the linear modes as projection
basis [37,38], but can be simply used as a technique
to compute non-intrusively linear and nonlinear char-
acteristics. The implicit condensation and expansion
(ICE) method relies on a set of applied forces to keep
trace of non-resonant couplings among modes [39-42].
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Finally, modal derivatives (MD) have been introduced
with the aim of taking the amplitude dependence of
modes into account, thus pursuing the same goal as the
NNMs [43-46]. ICE and MD assume the manifold to
be velocity independent, assumption which is the more
fulfilled, the larger the slow/fast separation between the
slave and master coordinates [47-49]. In [48], it is esti-
mated that aratio between eigenfrequencies of the slave
modes and those of the master modes of at least three
ensures the correctness of MDs in the prediction of the
hardening/softening behaviour [49-51]. The inclusion
of velocity dependence in the MD approach have been
proposed in [52] to overcome this limitation, and leads
to similar formulations than those reported in [53].
Consequently, there is still areal need of direct appli-
cations of invariant-based reduction methods, using the
general theorems from dynamical systems theory, and
that could be applied non-intrusively on the dofs of
FEM problems in physical space. Pursuing previous
developments using normal form theory [9,21], explicit
and non-intrusive real formulas have been proposed
in [53]. All the coefficients of second- and third-order
nonlinear mappings have been derived by rewriting the
normal form approach proposedin [9,21] directly in the
physical space. A real formalism was used so that all
along the calculation, the results are expressed in the
form of oscillator-like equations. Damping and forc-
ing were taken into account and illustrative examples
on blades and beams were reported in [50,53]. At the
same time, the computation based on SSM led by the
group of Haller also proposed a direct computation that
has been written in the open code SSM tool 2.0 [54].
The present article aims at completely rewriting
the direct normal form approach proposed in [53] in
order to explain more clearly its settings and possi-
ble further developments. Secondly, the special case
of second-order internal resonance that had not been
treated in [9,21,53] is here detailed. Finally, applica-
tions to large-scale micro-electro-mechanical systems
(MEMS) are derived in order to show the potentiality of
the method to deal with millions of dofs yet providing
fast and accurate ROMs. MEMS structures are gener-
ally actuated at resonance, and they are subjected to
geometric nonlinearities due to large transformations
and have very small damping values as they operate in
near-vacuum packages, hence showing highly nonlin-
ear dynamical features that are rarely observed at the
macroscale [55-60]. Furthermore, nonlinear dynamic
properties of MEMS can be tailored to yield perfor-

mance that would not be accessible through operation
in the linear regime [61-64]. A remarkable example
of successful application of nonlinear mode interac-
tion for the development of highly efficient mechani-
cal filters is for instance reported in [65]. This implies
that the proposed method would play a major role in
this field since it would ensure a fast and efficient esti-
mation of the frequency response functions of struc-
tures within times that are compatible with indus-
trial design requirements. Furthermore, the computa-
tional time reduction offered by the proposed technique
allows an easier introduction of tools as optimisation
methods [66,67] within the design stage of mechanical
components since the computationally expensive full-
order nonlinear analyses would be replaced by simula-
tions involving few degrees of freedom.

The paper is organised as follows. Section 2 details
the reduction method based on direct normal form
(DNF). A first-order (state-space) formulation along
with a complex-valued formalism is introduced in
Sects. 2.1 and 2.2, with the general idea of rewriting
the DNF in a more complete and symmetric formalism,
a necessary step for further developments to include
more easily new forces and/or going to higher orders.
Section 2.3 details the second- and third-order homo-
logical equations, written from the physical space, such
that the method can be easily understood and adopted
by a wider group of researchers. These steps are impor-
tant novelties as compared to the calculations pre-
sented in [53] where only the translations of the generic
method presented in [9,21] for direct application in
physical space was given, in a real formalism. Once
the complete normal form is computed, the reduction
method is explained in Sect. 3. More insights in the
computations are given for the simple case of single
master coordinate in Sect. 3.2. The case of second-order
internal resonance is then tackled in Sect. 3.3. Finally,
Sect. 4 explains how one can pass from the complex
formalism detailed here to the real nonlinear mappings
provided in [53], hence bridging earlier works.

Section 5 shows the numerical results obtained
for three different MEMS structures. First, a MEMS
micromirror undergoing large rotations is considered.
In this case, a single master mode is needed to cor-
rectly retrieve the hardening behaviour up to very large
angles of rotations. This example is important since
other reduction methods had been tested before, all of
them giving incorrect results, as illustrated with appli-
cation of the ICE method. Then, a MEMS beam res-
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onator that features a 1:3 internal resonance [68], and a
MEMS arch resonator showing 1:2 internal resonance
are selected in order to show the ability of the method
to deal with systems that feature internally resonant
modes. All numerical simulations in the present work
are compared with full-order harmonic balance finite
element simulations of the systems [69-71].

2 Equations of motion and direct normal form
approach

The aim of this section is to derive a general formal-
ism to write direct expressions for the computation of
the normal transform on the physical dofs. In particu-
lar, homological equations adapted to the framework of
mechanical systems including geometric nonlinearities
are given.

2.1 Equations of motion and linear decomposition

Let us consider the equation of motion associated with
an undamped mechanical system subjected to geomet-
ric nonlinearities:

MU + KU + G(U, U) + H(U, U, U) = 0, (1)

where M denotes the mass matrix, U the vector of
nodal displacements of dimension N, (:) the time
derivative operator, K the stiffness matrix, G(U, U)
and H(U, U, U) the quadratic and cubic force terms,
respectively. This starting point is common to any
finite element discretisation of the linear momentum
equation for mechanical systems. In particular in the
framework of three-dimensional linear elasticity with
large transformations, Eq. (1) is exact. For the sake
of completeness, Appendix A gives some details on
the adopted notations, and Appendix B recalls how the
quadratic and cubic terms are obtained from the decom-
position of the internal force vector.

The solution of a generalised eigenvalue problem
formulated on the linear part of Eq. (1) yields a finite set
of real-valued mass-normalised eigenmodes ¢, which
are collected column-wise in the eigenvector matrix @.
The following equalities hold:

™Mo =1, (2a)
o"Ko = 22, (2b)
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where £2 is a diagonal matrix that stores the eigen-
frequencies wy. Equation (1) can be mapped to modal
coordinates u through the linear transformation U =
@u, leading to:

i + 2%0+ g(u, u) + h(u,u,u) =0, 3)
with:

g(u,u) =dTG(Pu, Pu), (4a)
h(u, u,u) = ®TH(du, du, du). (4b)

Modal decomposition of Eq. (3) is computationally
infeasible for large systems and must be avoided. In
order to derive a general formalism for computing the
normal transform of Eq. (1), let us first express Eq. (1)
in state-space formalism, i.e. as a first-order dynami-
cal system by introducing the velocity V as the time
derivative of U:

oAl e

n { G@U,U)+H(U,U,U) } —o. )
0
Note that the previous developments on the DNF
approach proposed in [53] aimed at avoiding this first-
order formulation in order to keep real expressions
and oscillator-like equations, with second-order deriva-
tives in time, throughout the calculations. This could
be realised at the cost of an important loss in the sym-
metries of the problem. Moreover, generalisations of
the second-order formalism to other linear and non-
linear forces, e.g. linear viscous damping, electrostatic
and piezoelectric forces, become more difficult to han-
dle compared to a first-order approach. Consequently,
we propose in this article a complete rewriting of the
DNF approach, using state-space formulation as start-
ing point, but keeping in all calculations the link to the
usual mechanical representation as given in Eq. (1), so
that further generalisations will be easier to derive.
For the sake of conciseness, the diagonalisation of
the linear part of Eq. (5) is reported in Appendix C and
leads to:

p=Ap+T(p,p) + AP PP (6)

with p the generalised coordinates, A a diagonal matrix,
and I' (p, p), A(p, p, p) nonlinear operators in gener-
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alised coordinates. In index notation, it reads:

2N
ps = APs + Y, Tsupapi
k=1
2N
+ Z AskimPkPiPm, Ys=1,...,2N, (7)
k,l,m=1

with A the diagonal entries of A, and Iz, Agkrm the
scalar coupling coefficients. Note that due to the state-
space formulation, &, /, m are summed from 1 to 2N in
Eq. (7), and the system is now of size 2N. Further details
on the derivation of Eq. (6) are reported in Appendix C.
In particular, the structure of the diagonal A is such that:

i2 0
Az[o-m] ®

and the A coefficients read:

Vs=1,...,N,
As = +Hiws, (9a)
AstN = —iwy, (9b)

with i the imaginary unit. Moreover displacements U,
velocities V, modal displacements u = [uy, ..., uN]T,
and modal velocities v = [vq, ..., VN]T are related to
the generalised coordinates via the following relation-
ships:

N
U= ¢,u (10a)
s=1
N
V="> ¢ (10b)
s=1
Us =Ps + Ps4N, (IOC)
Vs = AsPs + As+NPs+N- (10d)

As highlighted by Eq. (6), the diagonalisation of the
linear part of Eq. (5) through a linear change of coordi-
nates does not guarantee a decoupling of the nonlinear
terms. This implies that a given couple p; and ps4N
does not define an invariant subspace of the system. The
next steps of the developments aim at deriving a non-
linear mapping that could express the dynamics in an
invariant-based span of the phase space, such that once

the nonlinear mapping is computed with correct trun-
cation, reduced-order models could be easily obtained
by keeping only a few master coordinates. This will
be realised thanks to the normal form computation,
directly applied to Eq. (5).

2.2 Direct normal form setting

The normal form approach has been first introduced by
Poincaré, leading to well-known theorems [72,73]. In
the context of vibratory systems, it has been introduced
for model order reduction purpose in [9,10,21], with
the additional idea of truncating to a few subset of mas-
ter coordinates once the full nonlinear mapping is com-
puted, hence retrieving the parametrisation method of
invariant manifold with normal form style [27,28], as
will be further discussed in Sect. 3. In this contribution,
we follow the guidelines of the normal transform by
first deriving the complete mapping for all coordinates,
and then truncating to obtain a ROM. Consequently, a
nonlinear relationship between the original (U, V) vari-
ables (displacement and velocity N-dimensional vec-
tors) and the normal z coordinate, a 2N-dimensional
vector describing the dynamics in an invariant-based
span, is introduced as:

U=¥(z), (11a)
V=", (11b)

with ¥ (z), T (z) nonlinear polynomial mappings. Map-
pings are expanded in terms of their components and
written in either tensorial form:

U(z) =¥ Vz4+ 0Pz 2)+ ¥z 2,2+ 0(|z||*).
(12a)

Y2 =YV2+1P2,2)+ 7Y%, 2,12 + 0z,
(12b)

where the in-parenthesis upperscript refers to the order
of the polynomial, or in indicial form:

2N 2N
2
v =Y ¥z + Y vz
s=1

k=1
2N
3
+ Y W mzzy + Oz, (13a)
k,l,m=1
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2N

Y=Y Tz + Z T uy

s=1 k=1

+-X37mumm+mmﬁ, (13b)
k,l,m=1

where a bold capital letter with one or more indices
denotes a vector. Since modal coordinates define invari-
ant subspaces in the absence of nonlinearities, the
first-order maps should correspond to the usual linear
decomposition. This is also in line with the general
idea of finding a continuation of the linear mode sub-
space where the higher-order terms will account for
the amplitude-dependence of modal quantities, given
by the curvatures of the invariant manifolds [10,74,75].
Note that this is a common idea with the quadratic man-
ifold approach including MD as proposed in [45,46],
the only difference being that in the present derivation,
velocities are fully taken into account. The linear terms
of the mappings are thus simply expressed as:

Vs=1,...,N,

v =g (14a)
vl =g, (14b)
=0, (14¢)
'\ = Aings. (14d)

This choice makes first-order terms identical to the
linear transformation that maps U and V to the gen-
eralised coordinates p (see Appendix C). In order to
derive complete expressions for the homological equa-
tions [76-78], one needs to first express the dynamics
of the normal variable z, i.e. the normal form of the
initial problem, as:

z= f(2), 15)

where f(z) is expressed as a polynomial function of z
with unknown coefficients:

f@=fV24 fP@ 2+ fP@z,2,2) + 0z,
(16)
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or in index form:

2N
fi@ =Dz + 3 £

ZxZ] + Z vklmZkZlZm
k=1 k,l,m=1
+o(zlY), Vs=1,...,2N, 17

This first-order form for the dynamics of the normal
coordinates is in full accordance with [27-29]. Since
'II§1) =¢, f M is taken equal to A, or equivalently
fs(l) = As. This is the logical consequence of using an
identity-tangent change of coordinates that leaves the
linear diagonalised part of the dynamics unchanged.
The homological equations are obtained by discarding
the dependence on time and equating to zero the col-
lections of terms with same powers in the asymptotic
developments, order by order. To that purpose, the time
derivatives of the mappings are obtained from Egs. (11)
and (15) as:

U=w )y,

+ lII(l)f(z)(z, 7) + .1,(2)(f(1)27 z)

+ lII(Z)(z, f(l)z)

+ v 2,2 + WP (fPz,2),2)

+ ¥z, fP(z,2))

+ lII(3)(f(l)z, 7,7) + V/7AS) (z, f(l)z, 7)

+ V@, z, fD2) + 0(|jz|, (18a)
V=100,

+ T(l)f@(z, 7) + T(Z)(f(l)z, 7)

+ T(Z)(z, f(l)z)

+ T(l)f(3)(z, z,7) + T(z)(f(z) (z,2),2)

+ 1P, Pz 2)

+ T(3)(f(l)z, z,7) + T(3)(z, f(l)z, 7)

+ 1@z, fV2)+ 0(z]*). (18b)

where some properties defined in Appendix A have
been used. Alternatively, using indicial notation:

2N
U= Z Xk'lfl(cl)zk

2N
2 1 2
+ 3 [Z fk}w“+(xk+xl)w§d)} 2z

k=1 [s=1

G gDy Dy @ 5@
+ Z [Z( Sskim¥s ™+ S ¥sm + Fsim ¥ s )
k,l,m=1
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+ O + A + Am) 'I’I(C?Zn]zklllm +0(lzl*),  (19a)

2N
V= Z )»kT](Cl)Zk
k=1

2N 2N
2 1 2
+ ) [§ AP 4 0y +)»1)T]((l)i|zkzl
k,l=1"s=1

2N 2N

(3) A~(D) (2)A~(2) (2) A~ (2)

+ ) [Z(fsklmTS +]Csklrsm+fslmrks)
klom=1 5=

+ O+ A+ Am) ‘Y'Szn}zkzlzm +0 (||z||4) . (19b)

The same operation can be applied for system non-
linearities in order to correctly distinguish each order
appearing in the expansions:
G(U,U) =Gz, wVz)

+ G (¥ @2, w02)

+G ('Il(l)z, v (g, z))

+ G (lll(3) (z,2,7), lIl(l)z)

+ G ('Il(l)z, v (z,z, z))

+G (-1/<2> (z,2), WPz, z))

+ O(llzlP), (20a)
H(U,U,U) =H ('I’(I)Z, vz -1/<1>z)

+H (!1/<2)(z, 2), vz, 'Il(l)z>

vz w® (g, 7). ~11<1>z)

T H(
+H ('Il(l)z, vy w@ (g, z))
10 (||z||5).

As before, the same equation in full indicial notation is
also provided for clarity:

(20b)

2N
GU.U) = > 6w v)zzy
k,l=1

2N
< 2 folvon)
k,l,m=1

+G (W,El), llll(rzn))] ZkZiZm

2N
) gl
+ X (e (v )

k,l,m,n=1

+ G (v v

Imn
+G (‘I/,g), 'Ilf,%,)l)] ZkZ]ZmZn
+ 0(lzlP), (21a)

2N
HU,UU) = Y H(q/,§1>,w§1),w§,}>)zkz,zm
k,l,m=1

2N
£ S ()
k,l,m,n=1

D 5@ 1
+H (v v w?)

’ lmv

+H (IIII(:), lII;]), lllf,f,)l)] ZkZ]ZmZn

+0 (121°). (21b)

where expansions of nonlinear terms up to fourth order
are done to better highlight the nested structure of
the derived equations. It is worth stressing that the
coefficients of the nonlinear mapping ¥ (z), Y (z) are
unknown at this stage, together with the expression of
the normal form f(z). The aim is to find the simplest
possible vector field f upon nonlinear transforms and
this is achieved step-by-step by writing for each order
the homological equations that collect the same powers
of the normal variable z.

2.3 Homological equations

Computation of ¥ (z), Y (z), and f(z) is performed
by substituting Eqgs. (11) and (18) in Eq. (5) and by
collecting terms of equal power in z in hierarchical
order, hence providing for each order the corresponding
homological equation [27,76]. The first-order homo-
logical equation reads:

MO [rDfhg 0K [rDe
+ =0
[0 —I} {'I’“)f“)Z} [I 0] {‘1’“)1}
(22)

The 2N equations have 4N unknowns that are the 2N
coefficients of f (M and N vector pairs (r®, gy,
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Therefore, the solution is not unique and any triplet
D w® £y that satisfies Eq. (22) is a valid
choice. The second part of Egs. (22) allows writing

O =whrh  vs=1 . 2N, (23)

showing that a direct relationship exists between the
two parts of the mapping (displacement/velocity).
Using the identity-tangent solution as justified before
leads to the choice f (M = A such that in indicial
notation one can simply write Y§1) = )LS'II§1), Vs =
1,...,2N. The first line of Eq. (22) then becomes:

[AfM + K] W) =0, Vs=1,.2N, (24)

which makes appear the usual linear eigenproblem
in vibration theory, thus justifying again the adopted
choices W) = @ and f( = A.

Collecting second-order terms yields the second-
order homological equation written in a manner that
explicitly encompasses the usual mechanical context
as:

MO]([YDfrPa, 2
0 —I||vDfP (g z)

LMo r® <f<1>z’z +T® (Z’ fu)z)
0 -1|]yg® (f<1>z’z e (Z, f(l)z)

N 0K [YP@2)| [-GWwDVz,wz)
10 ||vP@zz) |~ 0 '
(25)

Three remarks on this second-order homological equa-
tion can be made. First, one can observe that v and
T are expressed in terms of the lower-order terms,
a feature that is typical of asymptotic developments.
Second, the quadratic part of the nonlinear internal
force vector G now directly appears at the right-hand
side of Eq. (25), underlining that the formalism can be
extended in order to include different nonlinear forces,
with more complex features like velocity-dependence
or even more involved physics with new variables, e.g.
electrostatic or piezo-electric couplings. Even though
this is not addressed in the present contribution, we
believe that the framework developed in this work is
sufficiently general so that inclusions of new forces can
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be now simply incorporated by modifying the right-
hand side. The last comment regards the dependence
of the velocity mapping 7" on the displacement map-
ping ¥. As in Eq. (22), the second part of (25) can be
extracted to show that a linear relation between 1 »)
and ¥ £ with n < 2, exists. This implies that in
the present context of conservative vibratory systems,
the velocity mapping Y is not independent of the dis-
placement mapping ¥, thus allowing us to keep only
¥ at all orders, and then derive Y thanks to the known
relationships, only in case this mapping is needed. At
second order, the relationship between velocity and dis-
placement mappings read:

Yy = Gu+r) vy
2N
+Y e Vki=1,...2N. (6)
s=1

On the other hand, the first lines of Eq. (25) can be
written in terms of the displacement mapping ¥ only,
as:

2N
3 s + M+ A M £ e D
s=1

+ [()»k + )M+ K] w®

-G (nlf,ﬁ”, lIIl(l)> . VkiI=1,....2N. (27

As for Eq. (22), the system is underdetermined, i.e.
the number of unknowns (¥®, ¥® | £@) is larger
than the number of equations. The aim of the normal
form is to simplify as much as possible the result-
ing dynamical system, i.e. to choose the solution such
that f has the smallest number of terms, and is, in
the ideal case, simply linear. Retaining this choice to
solve Eq. (27) leads to selecting fv(kzl) =0,Vs, k[ =
1,..., 2N whenever it is possible, and thus to express
1111(5) as:

) =[O +2*M
+KI7' 6 (v ") vei=1,. 0N,
(28)

When Eq. (28) is solvable, the normal form of the
system will be free of quadratic coupling terms. The
condition for which [(Ak +2)*M + K] is singular
is related to the usual second-order resonances. As
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already remarked in previous developments with nor-
mal transforms [9], since the spectrum is composed
of purely imaginary conjugate pairs, these resonances
occur if a)? = (+wr + )2 For the rest of the
development presented herein, we now assume that no
second-order resonance between the eigenfrequencies
are present. The treatment of second-order resonances
is further investigated in Sect. 3.3 to enlarge the scope
of the present developments and explicitly show how
to take them into account.

Since the quadratic terms can be cancelled under
this assumption, and since mechanical systems are
known to show nonlinear response at finite amplitudes
(e.g. hardening/softening behaviour), it is important to
derive at least the third-order dynamics. The third-order
homological equation reads:

MOT]([YDfrOz 2
0 —1||vVfO(z,z12)

1245
Yk, I,m=1,...,2N,
2N
3) g
Z [(hs + Ak + A + X)) M f177, W
s=1
[ 20+ 2 M+ K| W)
@ (COSG))
=-G ('I’kl 'I’;(n)) -G (‘I’k "I’lm>
~H (v v e, (30a)
2N
3 3 3
Tl(d;)n = Ak + A1+ Am) ‘I’I(dZn + Z 'I’§1)fv(kl)m'
s=1
(30b)

One can notice in particular that Eq. (30b) gives the
explicit relationship between velocity and displace-

M0 Y® (f(2)(z, 2), z) Ly® (z, O, z))
+ 0 —I] w® <f(2>(z, 7). Z) +® (17 fO(, Z))

™M 0 r® (f(l)z, z, z) +71® (z, fWz, z) +71® (z, z, f(l)z)
+ 0 —I] w® (fu)z’ z, Z) ) (Z, Fg, z) E) (z, z, f<1>z)
ak

K T(3)(z, Z,7)
0 w0 (z, 2, 2)
(

{ ~G (P (z,2), ¥ Vz) — G (¥ V2, ¥ (z,2)) — H (¥ Dz, Dz, wyg) }
0 9

(29)

which is reported in an extended form to highlight
its hierarchical structure. Again, the second part of
Eq. (29) provides a direct relationship between the
velocity mapping Y and its counterpart for displace-
ments ¥. This result is in fact true for any homological
equation in direct form of a given order: every veloc-
ity mapping Y™ is a linear function of displacement
mappings ¥ ") with m < n. This is in accordance with
the results provided by the real-valued mapping intro-
duced in [53], where equivalent findings were reported
yet not systematically proven.

Equation (29) can be simplified under the assump-
tion of no second-order resonances. In that case, one
has f 2 =0, such that a compact and simplified third-
order homological equation can be expressed as:

ment mappings, while Eq. (30a) has been rewritten as
a function of displacement mapping only, i.e. by using
Eq. (30b) to eliminate 7" terms.

Let us define = ,an as minus the right-hand side of
Eq. (30a) to improve readability of following equations:

=) _ @ g0 ORe)
Epim =G ('I’kz ’ 'I’;(n)) +G ('I’k ’ 'I’zm)
+H (-11,({”, v q/ﬁ,P). G1)

From Eq. (30), third-order nonlinearities can be set to
zero ( fs(ISI)m = 0) whenever the map ¥ can be com-
puted as:

—1
Wi = =[G+ + 0 M+K] E,
Yk, Lm=1,.. 2N (32)
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Contrary to Eq. (28), there are always (k, [, m) combi-
nations such that the resulting system is singular regard-
less of the associated eigenfrequency, because of the
purely imaginary complex conjugate spectrum. This
is for instance observed for (k, [, m) combinations of
the type (s, s, mod(s + N, 2N)) with mod (-, -) modulo
operation. Resonance conditions that do not depend on
the eigenfrequency value are called trivial resonances.
Their presence and consequences for the development
of reduced models is detailed in Sect. 3, see also [10]
for general considerations.

In the present work, application to large-scale mod-
els are reported by truncating the mappings at second
order, i.e. (¥, Y™y = 0,V n > 3. Dynamical
coefficients are truncated at third order, i.e. f =
0,V n > 4. These assumptions lead to the second-
order DNF method as introduced in [53], which has
already proven to give accurate results. Extensions to
higher orders are possible, see e.g. [29]; however for
the present study, we restrict ourselves to this second-
order DNF in Sect. 5 where numerical examples are
presented.

The complete normal form of the problem can be
written by expressing the third-order coefficients f @,
Due to the complexity of the calculations, it is easier
to present them by using the modal basis. Under the
hypothesis of no second-order resonances, i.e. f@ =
0, the general third-order dynamics can be written by
projecting Eq. (30) onto the modal basis, hence yield-
ing:

Vk,I,m=1,...,2N,

2N
3 ~(3
o’ ZASM.IIg)fJ(kl)m = _¢T'=l(clzn’ (33a)
s=1
2N
3
o> Mw Q) =0 (33b)
s=1

from which the following relationships are retrieved,

thus providing explicit expressions of f;,?l)m:

Vk,I,m=1,...,2N, Vs =1,...,N,

(b = hsaen) fom, = 0L EG) (34a)
@) L 0 -0 34h

fsklm f(s+N)klm - ( )

One can note in particular that the previous equations
can be used to write the complete normal form of the
problem in the 2N-dimensional setting, and thus they
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involve the full matrix of eigenvectors @. However,
these operations are never computed in a reduction
perspective, as it will be explained in Sect. 3. Indeed,
reduction will be performed by selecting a few master
coordinates so that @ will be restricted to the selected
master eigenvectors only. Examples will be provided
with direct reduction to single-mode and multi-mode
dynamics.

Following the procedure developed within the present
section, the method of normal transform can be
expanded up to arbitrary order, thus allowing algorith-
mic implementations, such as those reported in [29].
A brief summary of higher-order expansions, high-
lighting the hierarchical structure of the procedure, is
reported in Appendix D even if, as recalled, in the
present work, only the second-order DNF is used as
it proves highly efficient for the applications addressed
in Sect. 5.

Finally, it is worth stressing that the generic struc-
ture of the method can be summarised in three steps: for
each order n of the expansion, the homological equa-
tion of order n is written, thus providing mappings ¥,
Y™ and dynamics coefficients £ that cannot be set
to zero. Then, f”"T1 needs to be computed through
projection of the homological equation of order n + 1,
since the order n terms will create new monomials
at order n + 1 that need to be tracked properly. The
procedure then starts again by identifying mappings
and nonzero terms at the next order. Implementation
details of the method up to second order are reported in
Appendix E, and the case of second-order internal res-
onance will be specifically detailed in Sect. 3.3, under-
lining how the different steps of the method may create
higher-order terms in the asymptotics.

3 Model order reduction

In this section, the reduction method is explained in
its general settings, and then two particular cases are
investigated for the sake of clarity. First, reduction to
a single master mode is detailed in Sect. 3.2, while
the case of second-order internal resonance, needing
extra calculations and at least two master coordinates,
is developed in Sect. 3.3.
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(a)

(uyv,

4

S) (stZs+N)

,,,,,,,,,,,,

Fig. 1 Schematic representation of the nonlinear mappings in
phase space. a Effect of the normal transform, expressing the
dynamics in an invariant-based span: (ug, vs) and (U, Vi)
are the modal coordinates (orthogonal basis), (zs, zg+N) and
(zm » Zm+N) the associated normal coordinates. Orange and green

3.1 Reduction and normal form style parametrisation

The normal form procedure as exposed in Sect. 2 is
a complete nonlinear change of coordinates where the
number of input and output variables is the same. As
underlined in [9], reduction can then be applied by
selecting only a subset of few master normal variables,
and cancelling all the others, such that the size of the
z vector falls from 2N to 2m with m < N the number
of master coordinates. By doing so, one modifies the
nonlinear one-to-one diffeomorphism to a parametri-
sation procedure of the underlying invariant manifold
(or Lyapunov subcentre manifold (LSM) in a conser-
vative context), the existence of which is guaranteed
by the Lyapunov centre theorem [32,35]. The derived
expressions are then identical to the one found by first

assuming a parametrisation, then solving the resulting

tangent and normal homological problems using the

normal form style, as stated in [27].

In the framework of mechanical systems, the parametri-

sation of invariant manifolds has been extensively
treated in [28,29]; the application of the normal form

(Zm'ZerN)

- (umlvm)

(b)

lines represent the invariant manifolds (LSM). b Schematic rep-
resentation of the two-dimensional invariant manifold associated
with ¢,,, and effect of the nonlinear mapping and the parametri-
sation. Picture a is a rework of the image reported in [9]

approach to model-order reduction is instead adopted
in the developments led in [9,21,79].

A geometrical interpretation is reported in Fig. la
where a two-dimensional representation of the four-
dimensional subspace associated with two modes ¢,
and ¢,, is reported. With modal coordinates, the
dynamics is expressed within an orthogonal basis
formed by the eigenmodes. Due to the presence of
invariant-breaking terms [10], linear eigensubspaces
lose the invariance property. Invariant manifolds (LSM)
emerging from modal spectral subspaces are high-
lighted in red and green, respectively, their curvature
expressing the non-resonant coupling between modes
and thus the amplitude-dependence of modal quanti-
ties in a nonlinear framework. The normal form allows
expressing the nonlinear dynamics in an invariant-
based span of the phase space. Once that obtained,
reduction to an invariant subspace is simply given by
cancelling slave normal variables. Figure 1b illustrates
the application of the nonlinear mappings. Thanks to
normal form transformation, non-resonant coupling

terms are removed, hence the invariant manifold (LSM)
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tangent at the origin to a given mode lies on the
plane identified by the (z,,, z,,+N) pair with associated
lII,(n1 ) — lII,(;lN = ¢,,. Therefore, the normal transform
allows expressing the dynamics with normal coordi-
nates that are nonlinearly related to the original ones
through the nonlinear mappings ¥ (z), Y (z).

In a more general framework, reduction is achieved
by selecting a set @, of master modes and identifying
the set Z of indices such that l11§1) € @,,. All other
coordinates are set to zero:
Vs¢ Z,s=1,...,2N: z, =0, (35)
which yields the following mapping expansions in indi-
cial notation:

U=y wy,
SEZ
2
+ Z llll(d)zkzl
kleZ

+ Y Wonzn + 0 (Ilzll“) , (36a)
k,l,meZ
v=> "1z
seZ

2
+ Z T](d)zkzl
k,leZ

+ Y Yo uute+ O (Ilzll“) : (36b)
k,l.meZ

and reduced dynamics:

; 2
Zs =hsist Z fs(kz)ZkZl
k,ileZ
3
+ > famzkaz + 0(lzl*). Vs € Z.(37)
k,l,meZ

Note in particular that under the assumption of no inter-
nal resonance, the quadratic term vanishes, fs(kzl) =0,

and explicit expressions for fs(k3 ])m are given in Eq. (34).
Also, the reduction procedure implies that only quanti-
ties associated with the master modes are required dur-
ing computation, so that the complete eigenfunctions
matrix @ is not required.

In the remainder of the paper, the case of the second-
order DNF is selected. With this choice, only second-
order internal resonances have to be tracked. On the
other hand, the dynamics up to order three contains

all the monomials, be they resonant or non-resonant.
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Applications of the third-order mapping would lead to
cancellation of the non-resonant third-order monomi-
als, but it would create higher-order terms. Keeping
the development at second order has the advantage that
all higher-order internal resonance, starting from third
order, do not need a special attention since they are
all preserved in the reduced dynamics. The next sec-
tion details the case of a single master mode, while
Sect. 3.3 is focused on the treatment of second-order
internal resonance.

3.2 Single-mode reduction

In this section, the simplest case of a reduction to a
single master coordinate is detailed, which is performed
under the assumption of no internal resonance. Let us
denote as ¢, the master mode of interest, the master
normal coordinates are thus selected as (z,, Z;+N)-
The reduction procedure consists in setting to zero all
other coordinates:

Vp#Em,p=1,...,N: z,=0, z,;,n=0. (38)
Letus set « = m and B = m + N. The associated dis-

placement expansion adopting a second-order mapping
reads:

U= lll,(?p(za +zg) + III(%BZQZO,
2 2 2
+ ‘I/(ﬁﬁ)lﬁllg + (llléﬁ) + 'Il/(gg) ZyZ8, 39)
with lII,(,}) = ¢,,. Equation (39) represents the parametri-
sation of the invariant manifold (LSM), as shown

in [28,29]. The tensors are computed from Eq. (28),
yielding the following relationships:

2 @
'1’&(3 = 'I’ﬁ,s

-1
= [0+ 2’ M+K] G (¥ w)),

(40a)
2) 2)
lIlaﬂ = lIlﬂa
-1
=- [(xa +p)’M + K] G (uI/},P, 1115,1“) .
(40b)
with Ay = iwp, Ag = —iwy. Third-order reduced

dynamics coefficients £ are obtained as in Eq. (33).
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Since only z,, zg are different from zero, only the pro-
jection on ¢,, is required:

Vil p={a B,
3 -~
b Y MIPD D = ¢l 2D (41a)
SEZ
T D 3
¢y > M0 =0, (41b)
seZ

which yields the following relation to compute the
reduced dynamics coefficients:

Vk,l, p ={a, B},
3 _ T =03
( ) faklp ¢m"’klp’
3 (3)
focklp f Bkip =

(42a)
(42b)

The associated third-order reduced dynamics reads:

Zo | _|iom O Zg
28| | 0 —iwn ||z
3 ©) 3) 3)
650!1101 3 faaaﬂ + faotﬂa + f afoa
1.0 (1) .0 3) G5 1 zazp
f oo ff}aaﬁ + fﬁaﬂa + fﬁﬁa(x
) ) 3 3)
4 | aops T Sapap + Juppa |, 2 | Tupes
FO LB () f el R e
papp  Jppap T Jpppa BBBB
(43)

Since G is symmetric with respect to permutations of
its arguments the reduced dynamics can also be written

Ia)m Zo
Z/g —la)m zp

2 2
Tom ¢T (Gl + ).

1 4T G(lII<2)~|—III(2) ‘I/,(,}))

2iw, ¥m aB’
1 1 1
Lot [1 (vl wi), wi)

{ wiD)

M 1) (1) (2o + Zﬂ)3
+21wm ¢T H (‘p ’ 'I’m ) lIIm )
{ ‘I/(Z) ‘I’(l)>

(za +2p)°

Lon G (v - v,
T (2) @ gD
21wm ¢ _G ('I’aa ‘Ilotﬁ W )

za + Zlg) (za — zﬂ) . (44)

This last equation represents the nonlinear dynamics,
up to the third order, of the system along the cor-
responding m™M invariant manifold, with the key fea-

ture that all coefficients can be computed directly with
operations from the FE dofs in physical space. It also
underlines that the derived formulas are explicit enough
so that a non-intrusive implementation of all calcula-
tions can be targeted. Indeed, evaluation of G and H
terms does not require an explicit decomposition of
the internal force in their linear, quadratic and cubic
parts, but they can be evaluated for instance through
non-intrusive methods, retrieving the direct algorithm
proposed in [53] with a real formalism. This approach
is particularly appealing for application of the present
method with commerecial finite element software since
there is no special need to implement finite element rou-
tines to obtain the ROMs given by the DNF approach.
More details about the potential non-intrusive imple-
mentation of the method are provided in Sect. 4.

3.3 Second-order internal resonance and multiple
master modes

In this section, more detailed explanations on handling
the case of a second-order internal resonance are given.
This case has not been treated in earlier developments
of the normal form approach for reduced-order mod-
elling in [9,21,53]. A difficulty relies in the fact that
resonant monomials will stay in the second-order nor-
mal form, since one cannot simply cancel all quadratic
terms by stating fkl =0,Vs,k,l=1,...,2Nas in
Sect. 2.3. In turn, second-order components of the map-
pings are not solvable anymore, see Eq. (28), since a
second-order internal resonance makes the matrix to
invert singular. The consequence of these two facts
is that new cubic terms will arise in the third-order
reduced dynamics, and they must be properly com-
puted.

As anticipated in Sect. 2.3, since the spectrum
is composed by purely imaginary conjugate pairs, a
second-order internal resonance stems from any com-
bination of three frequencies of the type:

(xox £ 0)? = (£op)?, Yk I,r=1,...,N. 45)
Or by using the entries of A:

(e +2)? =—w?, VkI=1,...,2N,
andVr=1,...,N. (46)

If this condition is met, then Eq. (28) cannot be solved
since the operation [(A; + )\1)2M + K] filters w% from
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the eigenspectrum, and the resulting matrix is singu-
lar. Furthermore, the number of linearly dependent
columns of the system is equal to the number of modes
with eigenfrequency w,. This is better highlighted by
projecting to the modal basis via:

o7 [—wEM + K] & = -0’1+ 27, 47)

showing clearly that any diagonal entry of 27 equal to
wf is cancelled. Hence, all (k, /) such that Eq. (45) is
fulfilled must be treated with care.

The treatment of internal resonance with a direct
approach operating in physical space is more difficult as
compared to normal form computation operating in the
modal basis. Indeed, the tracking of monomials asso-
ciated with the resonance is immediate in the modal
basis, and the known remedy consisting in cancelling
the term in the mapping, and thus keeping the resonant
monomial in the reduced dynamics, can be transpar-
ently applied [9,27,29]. With a direct approach in phys-
ical space, this is no longer possible since a single ¥ lj)
vector embeds terms required to cancel all k/ monomi-
als. This implies that if one sets crudely lI/,g) = 0, then
all z coordinates would remain coupled by the resulting
fs « monomials, whereas the correct strategy consists
in tracking only the terms that are involved in the reso-
nance. A proper approach is to force the solution of the
system to be orthogonal to the kernel of the matrix to
invert in Eq. (28). This requires identifying all triplets
(r, k, 1) involved in the resonance relationship (45), and
enforcing lII,(j) and T,(j) to be mass-orthogonal to the
set of involved modes. Let us define as @ the set of
eigenmodes such that a given pair of indices (k, /) satis-
fies a resonance condition, so that the enforced orthog-
onality condition reads:

pIMw Y =w@) =0, V¢, c oy, (48a)
HMY =10 =0, V¢, or (48b)

Since the mapping is imposed to be orthogonal to @,
resonant monomials that remain in the reduced dynam-
ics are obtained by projecting Eqs. (27) and (26) on each
¢, € Pr. Inthe context of model order reduction, only
the subset of modes defined by Z 172 with 2(1/2) gub-
set of indices of Z lower or equal to N, is considered,
hence coefficients are estimated as:

VikleZ VreZWU2: +r)?=—0?

ro
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and ¢, € Pg,

(hr = Aen) £ = —67G ('Ill(cl)’ ‘I’z(l)> . (499
2) 2)

Jert + foinom = 0- (49b)

Implementation details of the orthogonality condition
are reported in Appendix E.

The presence of f @ in Eq. (15) modifies the third-
order homological equation given by Eq. (30); hence,
one needs to rely on its full form. In the present work,
second-order DNF is used; hence, v = 0 and the
third-order homological equation is used only to com-
pute monomials at order n + 1, i.e. at third order. Equa-
tion (30) in the presence of second-order resonances
modifies to:

Vk,l,me Z,
3 2 2 2
3 (A My (D MY @ @ 4 @ pC >>
seZ
-3
=—z0 (50a)
2 2 3

Z (‘I’(Z)fv(kl) + 'Ilkv f( : ‘l’(l)f(kl)m) = O’ (SOb)
seZ

MY 2 in Eq.

where new terms M’Tgn) Seul (2) m

(50a) and W) £ + wi f(2> in Eq. (50b) appear.
These terms highlight that low order monomials affect
the estimation of higher-order mapping and reduced
dynamics coefficients. The latter are estimated by pro-
jecting Eq. (50) onto the modal basis:

Vk,I,me Z,Vs e ZU/?,

3) 3)
As fskim T Ms+N) S5 Ny kim

_ 2 (2) 2 £ T3
Z ( Ts(pr)n Tvkpf ) — & = kim®

peZ
(51a)
(3) (3) 2) £(2) 2) £
Fiitm + Ftwowm = D ( Wom [ ol ‘I’Sk,,fplm) -
peZ
(51b)

Equation (51) shows that in the presence of second-
order resonances, f klm # f(?J)rN)kl - Lhis has con-
sequences when mapping the reduced dynamics to
real-valued quantities. Further details are reported in

Appendix F.



Model order reduction based on direct normal form

1251

Overall, the concepts introduced up to this point
allow deriving the second-order DNF in the most gen-
eral case. Second-order mappings ¥ ® are obtained
from Eq. (28) with potential application of the con-
straint given by Eq. (48) if resonance conditions are
met. Non-trivial resonance conditions in a FE frame-
work are identified as detailed in Appendix G. Third-
order reduced dynamics coefficients are then computed
from Eq. (51), which reduces to Eq. (34) if f@® = 0.

In order to be more specific, let us give more
detail on the case of a 1:2 internal resonance. Let us
assume that ¢; and ¢y; satisfy the relation wy = 20y,
such that a special treatment is needed for these two
modes as compared to all others. As a result, combi-
nations (A1 + A1), (Aj+N + A14N) filter oy from the
matrix required to compute '11(2), and combinations
(AMAA1£N), (A +A14N) filter oy, hence f(z) # 0.Due
to the 1:2 resonance, pairs (71, Zi+N) and (Zi1, Zj+N)
do not individually define invariant subspaces: a strong
coupling exists between the two and a reduced-order
model cannot involve only one of these two modes, they
are intimately related and create a four-dimensional
invariant manifold. A ROM with these two master coor-
dinates is simply built by selecting

Vp#{LII},p=1,...,N: z,=0, z,;n=0.

(52)

The development of the reduced model is then the
application of the same procedure detailed for single
master-mode reduction in Sect. 3.2 but with two modes
and with proper treatment of resonance conditions as
detailed in the present section. By defininga =1, 8 =
I,y =1+ N, and § = Il + N, the reduced dynamics
is then expressed as:

o iwp 0 0 0 Za &
i/g 0 iwg O 0 zg n S aa |2
2y 0 0 —iwp O zy 0o [™
Zs 0 0 0 —iwg Zs fé(i)x
0 (2) (@3]
f(z) faﬁy —(’)_f‘)tl/ﬁ
Byy \ ;2
+ 0 Z}/ + f(z) n f(2) ZﬂZy
2) vBy vvB
fgyy 0

2 2)
fotouS —5 faaa

+ zazs + 0 (I217).  (53)

2 (@)
fya& + fyﬁot
0

which highlights the presence of second-order resonant
monomials. This last equation can be mapped to real
quantities to provide an oscillator-like equation. This
is developed in Appendix F.

4 Real-valued mappings and reduced dynamics

In Sects. 2-3, the system is parametrised using a
complex-valued mapping in z and the resulting reduced
dynamics is complex-valued as well, as a result of
the initial choices with a starting point at first order
(state-space formulation). A different point of view
has been developed in [9,21,53], where the choice of
real-valued mappings and real-valued reduced dynam-
ics was enforced all along the calculations in order
to fit the more standard oscillator equations for vibra-
tory systems. This section is devoted to clarify the link
between the two approaches by giving formulas allow-
ing to pass from one representation to another. Mapping
the reduced dynamics to real-valued quantities is effi-
cient since it presents results that are easier to interpret
from a physical point of view. Furthermore, solution of
a real-valued system is often preferred.

Real-valued parametrisation is based on the intro-
duction of two real normal coordinates, namely the
displacement r and velocity s, which are tangent at
the origin to modal displacements and velocities. This
choice is not unique but provides an immediate link
with quantities that are more familiar to engineers, i.e.
modal quantities. Following the direct mapping pro-
posed in [53], one can write:

U=V¥(,s), (54a)
V="7(@,s), (54b)

with ¥(r,s), Y(r,s) polynomial mappings in r, s.
Truncation at second order yields:
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N N
U= Z¢krk + Z (ﬁkzrkrz + bsest + éklrksz) ,
k=1 k=1
(55a)

N N
V= Z¢ksk + Z (&klrkrz + Brskst + f'kzrksl) ,
k=1 k=1
(55b)

with g/, brs, €, @il .@kl’ ¥ unknown maps. Equa-
tion (55) is equivalent to Eq. (11) even if the derivation
of direct expressions for mappings is somehow more
involved due to the anti-diagonal structure of the linear
part of the associated dynamics:

{i}—[g (5)22” }+0<nr sI1). (56)

Alink between z and the couple (r, s) can be established
in analogy with the linear transform that relates p to
modal displacements u and velocities v, as reported in
Appendix C. By letting y = {s, r}, one has:

y=Rz, with R= [‘f _;‘Q} : (57)
which yields:
1 . Ss
zg==ry—i— ), Vs=1,...,N, (58a)
2 ws

1
ZoiN = §<rs+is—s>, Vs=1,...,N.  (58b)

Wy

Focusing on displacement mappings, the link between
the complex and real-valued expressions at second-
order is retrieved by introducing the following split:

N

v (z,2) =) (W£T+)Zk21 + W g NN
k,[=1

+ ‘I’kz 'z N+ 'I/k, Zk+NZl) . (59)
Let us define vectors lI/,(d and lII,(cll\I) such that
w® g0 g
-1
= [(—l-a)k + )M — K]
'I/(N) ‘I/(+ )

G (¢r.¢;). (60a)
'I’( +)
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—1
_ [(+wk — )M — K] G (¢.9,). (60b)
From Eq. (58), it is then possible to establish the
relationship between complex-valued and real-valued
mappings as:

1
au =3 (il +vi). (61a)
by = (qﬂN’ - -1/“’)) , (61b)
Zwsz kl ki

¢ =0, (61c)
=0, (61d)
Bkl =0, (61e)
A W+ ok (p N

V= Tw,ﬁﬂ 4 YT By M) (61f)

[ wj

which corresponds to the results provided in [53]. This
procedure can be further extended for any expansion
order.

4.1 Real-valued single-mode reduction

Further insights into the relationship between complex
and real-valued formulations can be derived by focus-
ing on the case of a single-mode reduction. In this case,
the polynomial mapping truncated at second order sim-
ply reads:

U =¢,utm + Ammts + D, (62a)
V :¢msm + j)mmrmsmv (62b)

where from Eqs. (61), the relationships between real
and complex mappings simplify to:

1
By = 5 (U + W), (63a)
. 1

bun = 5> (-1:<N> -11,55,21), (63b)
),;;nm =2 ‘115531 (63C)

Recalling Egs. (60a), the evaluation of lIlmm and
v ,(7},),21 is performed through:

G (B D) (64a)
G (¢ bm) - (64b)

mm

—1
w® — [(2 wm)zM — K]
v — K]~
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The explicit expressions for 'II,(,I,\I,% and q/ﬁ,‘f; allows
for a non-intrusive implementation of the method in
any FE software. Focusing on Eq. (64), they both con-
sists in the solution of a linear system with unknown
displacement-like vector ¥ ,,,, and imposed force vec-
tor =G (¢,,. ¢,,)- In particular, to solve Eq. (64b), a
linear static analysis has to be performed, whereas to
solve Eq. (64a), a linear combination of stiffness and
mass matrix has to be created in the software before
solving the linear system. Regarding the computation
of the force vector G (¢m, ¢m), it can also be non-
intrusively calculated by means of the STEP method
[37,38]. For example, by imposing a displacement
along the mode ¢,,, firstly with a positive, then with
a negative modal amplitude, it is possible to extract the
vectors G (¢, ¢,,) and H(@,,,, §,,,, ¢,,). respectively.

The reduced dynamics reported in Eq. (44) in the
case of single master mode m is obtained by selecting
the master coordinates as r,, = zy + zg and s,, =
iwy (zo — zg). Application of Eq. (57) to the reduced
dynamics in Eq. (44) then yields:

I:m =Sm, (65a)
= —hrn — b1, [GOD, + W) 9,

+H@,, bs $)] 15+

1
o GO, — W 8,)] sy, (65b)

m

where lIl,(,%) = ¢,,. Finally, using Eqgs. (63a)-(63b) to
make a,,,, and b,,,,, appear, the third-order single-mode
reduced dynamics finally reads:

By + 02t + (hy + Ay 4 Byurpis =0, (66)

where the introduced coefficients are given by:

hm = ¢;H (¢m’ ¢m’ ¢m) s (673)
A =2 ¢0G (Byum. dy) . (67b)
B, =2¢.G (Bmm, ¢m) . (67¢)

The explicit form of these equations makes the
computation of the reduced dynamics possible with-
out the need of extrapolating the full tensors G and
H. In fact, the nonlinear force vectors H(¢,,, ¢,,,. ¢,,.),
G(amm, d,,), and G(f)mm, ¢,,) can be either computed
in an intrusive manner by integration over each element
in the FE code, or non-intrusively by means of the STEP

method. This resultis also in full accordance with previ-
ous derivations reported in [53]. As detailed in [53], the
STEP method allows extrapolating the required nonlin-
ear force vectors in a non-intrusive manner from any
finite element code by imposing a series of displace-
ments on the structure and subsequently extracting the
resulting forces. If mappings and reduced dynamics
coefficients are not truncated, then higher-order terms
appear in the reduced dynamics and the whole process
can be pushed further. It is possible to show that also in
the case of higher-order calculations, the method can
be implemented non-intrusively even though the num-
ber of calculations required in the STEP method would
grow consistently with the order.

5 Applications

The DNF method is here validated on three different
MEMS structures with complex geometries, with and
without internal resonance. MEMS are known to be
operated in near-vacuum packages and are thus sub-
jected to very small damping values. They are also
generally actuated at resonance to fulfil technological
requirements such as high sensitivity or large drive dis-
placements. This in turn makes MEMS systems sub-
jected to large displacements and geometric nonlinear-
ities, hence making the DNF approach ideal for devel-
oping a predictive ROM strategy for design purposes.
MEMS actuation is performed using either electro-
static, magnetic, or piezoelectric actuation. These types
of actuation introduce nonlinearities that are not taken
into account in the present work, their treatment via the
DNF approach being postponed to further studies.

Let us denote as ¢; the actuated mode, hereafter
referred to as drive mode. We assume that the excita-
tion is provided thanks to a body force proportional to
¢; with a driving frequency in the vicinity of wi, the
eigenfrequency of the drive mode. The choice of a force
proportional to the mode ensures that the forcing does
not alter the dynamics of the manifold at zero order,
even if from a practical standpoint for systems actuated
at resonance arbitrary forcings can be adopted without
noticeable losses in accuracy [53]. The losses are mod-
elled with the assumption of mass-proportional damp-
ing, with coefficient equal to w;/Q, where Q is the
quality factor of the drive mode. The resulting model
for MEMS structures in the physical space of the dofs
of the FE mesh then reads:
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(b)

Fig. 2 a Optical microscope picture of the MEMS micromirror. b Schematic representation of half-mirror geometry, D = 3000 pm. ¢
Magnified displacement field associated with the first resonant mode of the structure

MU + %Mﬁ +KU + G(U, U) + H(U, U, U)

= kMg cos (wt), (68)

with k a scalar load multiplier representing the intensity
of the forcing. The damping model is pragmatic and
corresponds to an established practice in microsystems.
Indeed simplified models are often utilised to identify
a unique damping parameter, i.e. a single Q value, for
the whole structure. This assumption is of current use
in MEMS community, and it has shown to be reliable
for a number of test cases [80,81].

The ROMS are derived thanks to the second-order
DNF method, where the nonlinear mapping is trun-
cated at second-order, while the reduced dynamics is
truncated at third order. The reduced model is then
obtained by mapping Eq. (15) to real variables, fol-
lowing the guidelines given in Sect. 4. Modal forc-
ing is then simply added at the right-hand side of the
reduced dynamics. This assumption has already been
usedin[9,21,53,82], and has been justified in [9,21] by
the fact that the variations of the time-dependent mani-
folds are of second-order as compared to other effects.
A mathematical justification of this assumption has also
been given in [30]. Since a mass-proportional damping
is selected and dissipation values are small, the simplest
solution consists in adding directly the modal damping
factors to the selected master modes. This simplifica-
tion can be overcome by adding a more complex formu-
lation of the damping that takes into account the losses
of all the slave modes to better represent the damping on
the invariant manifold, following the general formula

@ Springer

presented in [21,53], and leading to a nonlinear form of
the damping in the reduced dynamics. As shownin [53],
this more complete model is particularly meaningful
when using stiffness-proportional damping. In case of
mass-proportional Rayleigh damping, the decay rates
of the slave modes are rapidly negligible so that the
assumption of modal master damping is sufficient.

The proposed model is applied for the analysis of
three MEMS structures showing different types of non-
linearity: a MEMS micromirror that undergoes large
rotations, a beam resonator featuring 1:3 internal reso-
nance, and a shallow arch resonator showing 1:2 inter-
nal resonance.

5.1 MEMS micromirror: single-mode reduction

The first device addressed is a MEMS micromir-
ror developed by STMicroelectronics®. The device in
shown in Fig. 2a, b. The structure is composed of a cir-
cular reflective surface with a diameter of 3000 pm
and is connected to the substrate through two torsional
springs. Actuation of the device is performed with two
pairs of lead-zirconate titanate PZT patches deposited
on top of four trapezoidal beams. Patches are high-
lighted in orange in Fig. 2a. Silicon is anisotropic and a
general discussion of its mechanical properties can be
found e.g. in [69,83].

The device is operated at resonance in the vicinity
of its first mode with eigenfrequency fy = 2266Hz,
corresponding to a rotation of the main mirror around
the axis that passes through the two torsional springs.
The displacement field of the mode is represented in
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Table 1 First six eigenfrequencies of the MEMS micromirror

Mode Frequency [MHz] Ratio f,,/f1
1 0.00227 1

2 0.00726 3.198

3 0.02523 11.11

4 0.02527 11.13

5 0.05605 24.69

6 0.07335 32.31

Fig. 2c. The first six eigenfrequencies of the structure
are reported in Table 1, highlighting that no second-
order resonance condition occurs between the first and
higher modes.

The ROM is obtained by imposing lIl‘(xl) = lII/(Sl) =
¢,, with m 1 (master mode), and by computing
the mappings in Eq. (39). Noticeably, only two lin-
ear systems with symmetric matrices must be solved
to obtain the second-order mapping and third-order
reduced dynamics by exploiting the symmetries of the
A operator. Furthermore, only the eigenvalue and the
eigenfunction of the master mode is required. The oper-
ator G(lllg,l), lII/(Sl)) needs to be computed only for the

(@) 270

—— HBFEM

Amplitude [deg]

0.0

0.970 1.000 1.010 1.020

f/to [-]

0.980  0.990 1.030

Fig.3 aMaximum opening angle as a function of the frequency,
comparison of HBFEM with the DNF method with single-mode
reduction. Four increasing forcing amplitudes « [wm/ps?] are
shown: 0.1, 0.2, 0.3 and 0.4. b Phase space representationn of the
computed invariant manifold obtained with second-order DNF
(colored surface), as compared to trajectories computed with the

(b)

u, [um]

master mode and this step has moderate impact on the
total running time of the analysis. Overall, the tech-
nique is suitable for heavy parallelisation and vectorisa-
tion on modern processors. In the present contribution,
all calculations have been realised thanks to a custom
FE code developed by the authors without resorting to
any STEP-like computation.

Reduced dynamics coefficients are obtained as
detailed in Sect. 3. The results of the proposed model
are compared with full-order simulations of the device,
which are performed with the harmonic balance finite
element method (HBFEM) with pseudo-arc length
continuation. The solution of the HBFEM model is
obtained with Fourier series expansion up to seven to
ensure model convergence, which has been found to
be reached from five harmonics. The geometry is dis-
cretised with quadratic (15 nodes) wedge elements and
the HBFEM model has 15,341 nodes, corresponding to
690,345 Fourier coefficients. Also the ROM is solved
with the harmonic balance (HB) method with an order
seven Fourier expansion.

The comparison between HBFEM and single-mode
ROM solutions obtained for four « values, 0.1, 0.2,
0.3, and 0.4 um/usz, is reported in Fig.3a. The chart

100

0
uy [pm]

-1000
vy [um/ps] 2000

full-order model (black lines). The data are reported along the
three-dimensional subspace (up, vy, u2), corresponding to the
modal displacement uj and velocity v; of the master mode to the
modal displacement uy of the second mode of the structure, that
is, a slave mode. HBFEM trajectories correspond to the points
of the FRF in a highlighted by the bullets
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Fig.4 Comparison 27.0
between HBFEM solution, —— HBFEM
DNF method, and implicit —— DNF 2
condensation method (IC). 22.5 1
« [wm/ps?] values
associated with each curve
are highlighted by the tags 18.01
in the chart o0
=)
o 135
s=]
2
=
E 901
4.5 1
0.0 : T T T T T T
0.970 0.985 1.000 1.015 1.030 1.045 1.060 1.075
£/% [-]

presents the maximum rotation angle reached by the
mirror for a single steady-state oscillation cycle and
for a given frequency value. The results show an excel-
lent agreement between the HBFEM and ROM solution
at any rotation angle, up to the curve with the highest
« value. Furthermore, the invariant manifold defined
by the expansion coincides with the trajectories of the
HBFEM solutions, as highlighted by the phase-space
representation of the system in Fig. 3b, where the veloc-
ity dependence of the manifold is clearly observable.
A slight departure between the ROM and the full-order
solution appears at very large rotations, as a conse-
quence of the second-order DNF method used. Using
higher-order developments would likely improve the
match even at higher amplitudes.

The reduction to a single master mode offers the
main benefit of embedding within the equation of
motion of the master mode all contributions of non-
resonant slave modes, hence accounting for the cur-
vature of the manifold. This in turn yields impressive
computational performance compared to the HBFEM
simulations. The time required to integrate the ROM
was less than 1 minute using a custom HB solver. The
time required to compute the four HBFEM solutions
reported in Fig. 3 was equal to 1 week, hence high-
lighting how the present method offers outstanding
results with little computational resources. Stability is
not reported in the present analysis since the HBFEM
solution has not this feature implemented. Considera-
tions on the stability are postponed to Sect. 5.2.3.
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In order to better highlight the quality of the results
obtained with the DNF method, we compare with
another reduction strategy using implicit condensation
(IC) as proposed in [39,41]. As shown for example
in [42,50] with the case of a cantilever beam, IC method
fails at reproducing correctly the nonlinear dynamics of
structures when inertia nonlinearities are importantly
excited. In particular, the IC method condenses stat-
ically the contribution of slave modes on the master
mode trajectory, hence neglecting velocity dependent
terms [49]. The comparison between the DNF and IC
methods is reported in Fig. 4, highlighting the benefits
of adopting the proposed method for modelling systems
subjected to large rotations and, more in general, to
large transformations. The IC reduction method over-
estimates the hardening behaviour, and cannot be used
in such context of large rotations, whereas the DNF
approach is giving uniformly valid solutions without
the need of any extra assumption thanks to the invari-
ance property.

Further insight can be gained by looking more
closely at the individual values of the coefficients of
the reduced dynamics with single mode, Eq. (66). The
MEMS micromirror under investigation does not show
mode interactions even at large rotation amplitudes, yet
methods based on static condensation show difficul-
ties in modelling the nonlinear response of the device.
For this device, the physical cubic coefficient h,, in
Eq. (66) is equal to 6.479x 10710 uN/um3. On the
other hand, the first correction term computed by the
normal transform A,, equals —6.479x 10~ 10 W N/pum?3,
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Fig.5 Computational time 102

as a function of the model
size for different mesh sizes.
Results are obtained for an
intrusive version of the
method. The computation
was run on a desktop
workstation with an AMD
Ryzen™ 5 1600 Six-Core
Processor 3.20 GHz and 64 100 |
GB RAM

10" 4

Time [min]

107"

105

hence their sum cancels out on the leading cubic term
"31 in Eq. (66). This is a remarkable result from a phys-
ical standpoint since it can be stated that elastic non-
linearities associated with the excited mode are not
the main source of nonlinear response of the struc-
ture. On the other hand, B,, is equal to 4.53%10712
wNps?/wm?3. This last term is a velocity-dependent
nonlinearity which accounts for the change in inertia
of the system during motion. Therefore, the nonlinear
response of the structure is conveyed by the change in
configuration of the structure rather than elastic nonlin-
earities. Interestingly, similar observations on the par-
ticular values of the coefficients have been reported in
the case of a cantilever beam [50,53].

An example of the performance of the proposed
method is reported in Fig.5, where the CPU times
required to obtain the mappings and reduced dynam-
ics coefficients of the MEMS micromirror for differ-
ent mesh refinements are reported. The computation
is performed on a desktop workstation with an AMD
Ryzen™ 5 1600 Six-Core Processor 3.20 GHz and 64
GB RAM. The computational times highlight how the
proposed technique is scalable to large models even
with moderate computational resources. The integra-
tion of the ROM with the HB is not reported since it is
has a negligible cost.

5.2 Internally resonant MEMS resonators

In this section, two different internal resonance sce-
narios are investigated on MEMS resonators having a
beam-like and an arch-like structure, respectively. In
the first case, a 1:3 internal resonance is investigated,

106 107

Degrees of Freedom [-]

where the second-order DNF method does not need
extra assumptions. Indeed the third-order monomials
are not affected by the second-order mappings, and they
all remain in the reduced dynamics, making the exci-
tation of the 1:3 resonance possible. This advantage of
the second-order DNF as compared to higher orders
has been already underlined in [53] and will be further
commented herein. The second case is a 1:2 resonance
which needs extra developments of the DNF approach
as discussed in Sect. 3.3, with the reduced dynamics
given in Appendix F. In both cases, reduction to the
two internally resonant modes is able to catch the com-
plex nonlinear phenomena and retrieve the frequency-
response functions of the structures. The dynamics is
reduced to a four-dimensional invariant manifold. One
can note in particular that exact resonances are never
met in practice such that only approximate internal res-
onances are found from the eigenfrequencies. From
a theoretical point of view, this can be related to the
presence of small divisors during nonlinear mappings
calculation. A practical method to handle approximate
resonance is to introduce a tolerance on the relationship
fulfillment, as explained in Appendix G.

5.2.1 MEMS beam resonator: 1:3 internal resonance

In this section, the analysis of a 1:3 internally resonant
beam is reported. The device is shown in Fig. 6a. The
structure is made of two beams with a length of 1000
pm and a thickness of 5 wm. The two parts are con-
nected in three points. The structure is not symmetric
with respect to the centre since the external connection
points are located at different distances (see the val-
ues of Py and P, reported in the caption of Fig. 6). The
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Table 2 First six eigenfrequencies of the 1:3 internally resonant
beam

Mode Frequency [MHz] Ratio
1 0.08100 1

2 0.10411 1.285
3 0.19690 2.431
4 0.24306 3.001
5 0.28683 3.541
6 0.41043 5.067

material is polycrystalline silicon which is modelled as
isotropic with a Young’s modulus of 167 GPa and a
Poisson’s ratio of 0.22.

The first six eigenfrequencies of the structure are
reported in Table 2, which highlights an almost perfect
1:3 ratio between mode 1 and mode 4, whose displace-
ment fields are reported in Fig. 6b, c.

The ROM is built by taking the pairs (z,, z,4N) and

(24> 74+N) such that ¥ = lIISJ)rN — ¢, and W =

W;E)FN = ¢4. All remaining terms of z are set to zero.
This implies a moderate increase in the computational
burden as compared to the previous case of single-mode
reduction, since only mappings and reduced dynamics
coefficients that multiply a nonzero entry of z need to
be computed.

As for the MEMS micromirror, the ROM is vali-
dated with full order HBFEM solutions with a Fourier
expansion coefficient of order seven. The geometry is

discretised with quadratic (15 nodes) wedge elements
and the resulting HBFEM model is made of 12,906
dofs, corresponding to 193,590 nodal unknowns of the
HBFEM problem. The quality factor of the model is
set to 3000. Analyses are performed for k values equal
to 0.00025, 0.0005, 0.001, and 0.0015 pwm/jLs”. The
ROM s solved again with the HB method with a Fourier
expansion order equal to 9. Stability is not reported.
The comparison between HBFEM and ROM solu-
tions is shown in Fig. 7a. The accuracy of the reduced
model is remarkable for any « value. The strong non-
linear interaction is put in evidence by the loop appear-
ing in the frequency response function, even at small
k values. A further comparison is shown in Fig. 7b,
where three trajectories are represented in the space
(uy, vi, ug). They have been obtained for the largest
k value selected, and have been chosen in the vicinity
of the 1:3 resonance loop, as marked by the coloured
points in Fig. 7a. While the orange point is before the
1:3 resonance, the black point is exactly at resonance,
and the green point after. Comparison between full and
reduced solutions shows a very good match for the tra-
jectories. Interestingly, the trajectories show a cubic
shape with either positive or negative linear term, and
they can be related to the two families of periodic orbits
(backbone curves) arising in the 1:3 internal resonance.
As a matter of fact, the solutions keep these shapes all
along the FRF, before and after the 1:3 resonance. At
exact resonance when the forcing frequency is equal
to w4/3, a transition form is obtained and reported in
black in Fig. 7b, c. The gain in computational time is

(a)¢ < Py > < Py >
SeE ' : : =
L B
(b) Max
éL 1= oy

Fig. 6 a Beam view along the e;—e; plane on the left and beam
transverse section geometry on the right. The geometrical dimen-
sions of the beam are B=12 pm, H=5 pm, L = 1000 pm, P,
=311 pm, P, =316 pm, and S = 15 pm. S size includes the
two beams thicknesses as well as the interspace, each of them
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of 5 wm. Modes that satisfy the 1:3 internal resonance condition
are mode 1 (b) and mode 4 (c¢). The colormap reports the magni-
tude of the displacement field. The deformation of the structure
is amplified to improve the visualisation of the field
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Fig.7 aFrequency-response function (FRF) of the beam MEMS
resonator featuring 1:3 resonance. Comparison between HBFEM
and ROM for increasing values of « [Mm/usz], from?2.5x10~% to
1.5%1073. b Representation of three trajectories in phase space
along the uj-v|-uy4 coordinates, comparison between the HBFEM

again impressive, with a factor of 3000 between the
ROM and the full-order HBFEM solution since a sin-
gle FRF of the device requires approximately two days,
while the solution of the reduced model requires less
than a minute.

5.2.2 MEMS arch resonator with 1:2 internal
resonance

The structure under investigation is the MEMS arch
resonator depicted in Fig. 8a. The arch has a length
of 530 wm and it is made by two arched beams with
a thickness of 5 wm connected at their midpoint. The
structure is made in polycrystalline silicon which is
modelled as isotropic with a Young’s modulus of 167
GPa and a Poisson’s ratio of 0.22.

As given in Table 3, the structure shows an almost
perfect 1:2 internal resonance between mode 1 and
mode 6. The displacement field associated with the two

solution (bullets) and the ROM solution (continuous line). Tra-
jectories are sampled from the regions highlighted by the bullets
in (a), corresponding to the largest forcing amplitude. ¢ Projec-
tion of the sampled trajectories along the uj-uy plane

Table 3 First six eigenfrequencies of the 1:2 internally resonant
arch

Mode Frequency [MHz] Ratio
1 0.43416 1

2 0.52597 1.211
3 0.60391 1.391
4 0.66759 1.537
5 0.75695 1.743
6 0.86367 1.989

modes is reported in Fig.8b, c. Due to the 1:2 inter-
nal resonance, the reduced model is built by taking the

1 1
(zp, zpyN) and (z4, z41N) such that III;) = 'II;_?_N =

¢, and III,(II) = llléllN = ¢, hence yielding a two oscil-
lators model as the one reported in Sect. 3, while the
reduced dynamical equations are given in Appendix F.
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(a)
% %:
Siéﬁ:’////—#i‘m I:RH

(b)

I Max

(c)

\/

Fig.8 Arch view along the e -e; plane on the left and arch beam
section geometry on the right (a). The geometrical dimensions
of the arch are B=20 um, H=5 pm, L =530 um, R = 134
wm, and S =20 wm. S size includes the beams thickness. Modes

Damping and forcing is added following the general
guidelines given at the beginning of Sect. 5.

The results provided by the ROM are compared with
the full-order HBFEM solution of the MEMS device.
HBFEM Fourier expansion order is taken up to order
nine to ensure convergence of the method. The geome-
try is discretised with quadratic (15 nodes) wedge ele-
ments and and the resulting HBFEM model is made of
5,913 dofs, hence the total number of nodal unknowns
is equal to 112,347. The ROM is solved with the HB
method with order nine. Curves are computed assum-
ing a quality factor Q equal to 500 and analyses are
performed for four « values: 0.05, 0.1, 0.15, and 0.2
pwm/ps”. The comparison between HBFEM and ROM
solution is reported in Fig.9a. The chart presents the
maximum displacement reached by the device during
an oscillatory cycle for each frequency value. The data
highlight a perfect agreement between HBFEM and
ROM solutions for each « value. Only at the highest
amplitude, a small discrepancy is observed.

A set of trajectories of the solution is reported in
phase space in Fig.9b, c. The trajectories are selected
from the points in the FRF shown by bullets in
Fig.9a, obtained for the largest forcing amplitude k¥ =
0.2 wm/ps?. Comparison between full and reduced-
order models on the trajectories shows again an excel-
lent agreement. Interestingly, the shape of the trajecto-
ries in phase space can be related to the properties of
the underlying backbones of the 1:2 system, as inves-
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that satisfy the 1:2 internal resonance condition are mode 1 (b)
and mode 6 (c). The colormap reports the magnitude of the dis-
placement field. The deformation of the structure is amplified to
improve the visualisation of the field

tigated in [84]. Indeed, two families of periodic orbits
exist in that case, and are named as parabolic p™ and
p~ modes depending on the sign of the curvature. The
left-hand part of the FRF follows the p~ backbone such
that the shape of the trajectories reproduce the nega-
tive parabola in the correct axis, as shown in Fig.9b, c.
The right-hand part corresponds to p* solutions. When
the forcing frequency equals wg/2, a transition form is
obtained.

5.2.3 Stability analysis

A complete characterisation of the nonlinear dynamic
response associated with the structures reported in this
section requires evaluating the stability of the response
and the detection of bifurcation points. However, the
direct implementation of stability in large-scale numer-
ical procedures such as the HBFEM is challenging and
asks for special attention. In particular, in our imple-
mentation of HBFEM, the stability is not computed yet.
On the other hand, a number of available open-source
continuation codes can be applied to small-scale sys-
tems like the ROMs previously discussed. Herein, sta-
bility analyses are performed using the ManLab contin-
uation package [85] on the reduced dynamics, in order
to give insight to the results presented in previous sec-
tions.

The 1:3 internally resonant beam is addressed
in Fig.10a for a load multiplier x value equal to
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Fig. 9 aFrequency-response function (FRF) of the arch MEMS
resonator featuring 1:2 resonance. Comparison between HBFEM
and ROM for increasing values of « [pm/ps?], from 0.05 to 0.2.
b Representation of three trajectories in phase space along the
u;—vi—ug coordinates, comparison between the HBFEM solu-

0.0015 wm/ps®. Starting from lower frequency val-
ues and moving towards larger values, the data high-
light the presence of an unstable region enclosed
between two saddle-node (SN) bifurcations. After-
wards, the response becomes stable again, until the
system encounters another unstable region enclosed
between two Neimark-Sacker (NS) bifurcations, hence
suggesting the onset of quasi-periodic response of
the system. The system becomes then stable again
until a new unstable region enclosed between another
set of SN bifurcations is found. Finally, the system
becomes stable again, and it retains the usual quasi-
static response at higher frequencies. Overall, stability
and bifurcation analysis of the system highlights impor-
tant features that are compulsory for correct estimation
of the structure response. Furthermore, this result was
obtained with a negligible computational cost.

The stability analysis of the 1:2 internally resonant
arch is reported in Fig. 10b for « equal to 0.0015

tion (bullets) and the ROM solution (continuous line). Trajecto-
ries are sampled from the regions highlighted by the bullets in a,
corresponding to the largest forcing amplitude. ¢ Projection of
the sampled trajectories along the u;-ug plane

pwm/ps. Starting from low frequencies, the chart shows
the same sequence of stable and unstable regions
observed for the 1:3 internally resonant beam. Indeed,
starting from lower frequencies and moving upward,
the system starts as stable. Then, an unstable region
enclosed between two SN bifurcations is found. After-
wards, the system becomes stable again. An unstable
region enclosed between two NS bifurcations is then
observed. Stability is then recovered, only to be bro-
ken once again by another unstable region enclosed
between two other pairs of SN bifurcations. Therefore,
both 1:2 and 1:3 internal resonance examples show two
pairs of SN bifurcations and one pair of NS bifurca-
tions, all enclosing an unstable region of the system.

Overall, the proposed reduction technique does not
only allow for an efficient estimation of the frequency
response function of the device, but it also enables
refined stability analysis that would be computation-
ally expensive for large-scale models.
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Fig. 10 Stability analysis of the internally resonant MEMS res-
onators. Chart a details the stability analysis of the 1:3 internally
resonant beam. Data are shown for x = 0.0015 wm/ps®. Chart

6 Conclusions

In this paper, a direct normal form approach for model
order reduction of the discretised equation of linear
momentum for mechanical systems subjected to geo-
metric nonlinearities is proposed. The direct computa-
tion has been rewritten with a state-space formulation
as starting point, resulting in a symmetric and complex
formulation of all the main quantities (mappings and
reduced dynamics). The major outcome is the generali-
sation of the method by a formulation of the homologi-
cal equations that keeps trace of the mechanical setting,
thus facilitating further developments of the method.
The complete rewriting also allows formulating a com-
parison with the real-valued approach of the DNF orig-
inally proposed in [53], underlining the equivalence of
the different methodologies. A special emphasis has
also been put on the treatment of second-order internal
resonance, a feature that had not been developed in all
previous studies using this approach.

For illustration purposes, only second-order DNF
has been used for numerical examples in this contri-
bution, where the nonlinear mapping is truncated at
second-order, while third-order dynamics is computed.
The method proves efficient for developing ROMs
of large-scale finite element models, showing excel-
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b reports the same analysis on the 1:2 internally resonant arch
resonator. Data are shown for x = 0.2 um/ps2. SN: saddle-node
bifurcation point, NS: Neimark-Sacker bifurcation point

lent computational performance and accuracy. Fur-
thermore, the method does not rely on the slow-fast
assumption between master and slave modes, since
the velocity is directly accounted by the parametrisa-
tion procedure. This is a major achievement since it
offers a uniformly valid and simulation-free method
that could be blindly applied to any structure without
the need of extra assumptions [48-51], for the same
computational cost of other methods. Normal form the-
ory makes the distinction between resonant and non-
resonant couplings. Non-resonant couplings are auto-
matically embedded in the master mode thanks to the
curvature of the invariant manifold, so that there is no
need of computing extra vectors (like MDs or dual
modes) to achieve convergence of the ROM. Resonant
couplings create strong energy exchange between the
internally resonant modes and drastically modify the
nonlinear dynamics of the system, such that modes
in internal resonance must be appended to the ROM
dimension.

A further advantage of the method is that it does not
need to rely on the knowledge of all nonlinearities of the
full-order model, since it needs to evaluate system non-
linearities only for the mapping vectors associated with
the master modes, hence further enhancing the scalabil-
ity of the method. Furthermore, it has been underlined
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that the explicit results of the mappings presented in this
contribution open the door to a non-intrusive coding of
the method, hence making the DNF easily integrable
within finite element commercial software.

The efficiency of the method is proved by studying
nonlinear structures with reduction to 1 or 2 master
modes. The accuracy showed by the technique on the
proposed examples combined with its small compu-
tational cost make it an excellent choice to address
geometric nonlinearities during the design stage of
mechanical components [86]. Higher-order develop-
ments may be required for studying more complex
structures, for instance structures that show an initial
softening behaviour followed by hardening response,
a topic that is left for future works, together with the
treatment of damping and forcing within the procedure.
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A Notation

Compact expressions are introduced throughout the
paper in order to improve readability. For polynomial

representation of nonlinear terms, functional and indi-
cial formulations are linked with the following rela-
tionships for Ty, Tk, Tk, vectors of coefficients:

Tx = Z T,x;, (69a)
N
T(x,x) =Y Tuxixi, (69b)
k.l
T, % %) = Y ThmXiXiXm, (69¢)
k,,m

The distributive property can be expressed as:
Tx,x+y,x) =TX, x,x) + TX,Yy, x). (70)

Moreover, since T, Ty, Tikim are constant vectors of
coefficients used for polynomial representation, the fol-
lowing definitions hold for time derivatives:

d .
= (Tx) =Tk, (71a)
% (T(x,x)) =T(%, x) + T(x, X), (71b)

% (T(x, x,x)) =T, x,x) + T(x, x, x) + T(x, x, X).
(71¢)

B Explicit expressions for geometric nonlinear
terms

We develop analytical expressions for quadratic and
cubic nonlinearities in mechanical systems subjected to
large transformations (geometric nonlinearities). The
weak form of the linear momentum conservation equa-
tion mapped to reference configuration is expressed as:

/ poﬁ-ﬁdﬂo
20

+ [ S:(F'Va)d2)=0, Va e C(0), (72
20

with £2¢ the domain in reference configuration, pg the
reference density, u the displacement field, u the test
field defined over the space C(0) of functions that van-
ish on the portion of boundary where Dirichlet bound-
ary conditions are prescribed. S is the second Piola-
Kirchhof stress tensor, F is the deformation gradi-
ent, i.e. I + Vu with V(-) denoting material gradi-
ent. The first integral in Eq. (72) is the kinetic power,
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while the second term represents the power of internal
forces. We introduce the Green-Lagrange strain tensor
as e = (FTF — I)/2. Using a Saint-Venant Kirchhoff
constitutive model, i.e. S = A : e with A fourth order
elasticity tensor, Eq. (72) is expressed as:

/poii~12d90+/ se: A:edf20=0,Vu € C(0).
£20

£20
(73)

We notice that since e is nonlinear with respect to the

displacement, Eq. (73) is nonlinear. We express e and
its first variation in terms of the displacement gradient:

e(u) = (Vu +VTu+ 9Ty Vu) , (74a)

se(u, it) =

| =N =

(va +V % + Vi Vu + V' va) .
(74b)

Let e(a) = (Va + VTa) /2 and the nonlinear oper-
ator " (a, b) = (VTaVb + VT'bVa)/2. With these
definitions:
-~ 1 ~ ns

(Se:.A:e:e(u):A:e(u)+§e(u):A:e (u, u)

+e¥@m,u): A:e)

1

+ Ee”s(ft, u): A:e"w,u). (75)

The first terms is linear, the second and the third are

quadratic and the last term is cubic. The power of inter-
nal forces term can then be rewritten as:

/ de: A:ed2o=k(u,u)+ gu,u,u)
20

+h(u,u,u,u). (76)

By taking a triplet of displacement fields uy, u;, and
u,, the three terms k, g, and h are expressed as:

k (uy, u) =/ e(u): A:e(uy) dSy,
20

(77a)
1
g (ui,uy, i) =§/Q e(@): A:e" (ug, u)
0
+e" (@, uy) : A:e(u)
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+e" (@, uy) : A:e(uy) d2o,
(77b)

h (ui,u;, uy,, i) =1/ e (i, uy) : A:e” (u, uy)
6 Ja,
+e" (@, uy) : A: e (uy,,uy)
+e" (,uy): A:
" (uy, u;) d2y, (77¢)

where Eq. (77a) is linear with respect to the displace-
ment, Eq. (77b) is quadratic, and Eq. (77¢c) is cubic.
Upon finite element discretisation of Eqs. (77), one
obtains:

ki (uy, i) = UTKU, (78a)
g, (e, u, ) =UTG (U, U)), (78b)
iy (e, up, @) =UTH (Ug, Uy, U,y) (78¢)

where U denotes the vector of nodal values for the
test function and subscript (-);, identifies approximated
quantities. In the present work, the terms in Eq. (77)
are computed directly as proposed in [87] and in [88]
for MITC shell elements. Non-intrusive methods can
be used as well, as for instance the STEP [37,89].

C Physical system diagonalisation

In this appendix, we recall, for the sake of complete-
ness, some well-known results regarding the diagonal-
isation of the state-space formulation used in Eq. (5).
Let the matrix @ collect column-wise the real-valued
eigenvectors ¢, of the linear part of Eq. (1). By setting
U = &u and pre-multiplying Eq. (1) by @7, one gets:

i + 220+ g(u, u) +h(u, u,u) =0, (79)
where $2 is the diagonal matrix that stores the eigen-

frequencies of the system, and g(u, u), h(u, u, u) are
the modal quadratic and cubic nonlinearities:

2?2 = o"'Ko, (80a)
g(u,u) = ¢TG(du, du), (80b)
h(u,u,u) = ®TH(Pu, du, Pu). (80c)

Introducing the modal velocity v = u, Eq. (79) is writ-
ten as a system of first-order differential equations. By
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letting x = {v, u}:

x = ax + b(x, x) + ¢(x, X, X), (81)
with:
0 —2°
a=— |:I 0 j| , (82a)
b(x, x) = {_g((')" ) } (82b)

(X, X, X) = {_h(“(’)“’ w } (82¢)
Let us now introduce the matrix R defined as:

i —iR
R = [ I 1 } (83)

with I the N x N identity matrix, and setx = Rp, with p
the 2N-dimensional vector of generalised coordinates.
In particular, one has:

Vs=1,...,N, (84a)
Vs=1,...,N. (84b)

Us =Ps + Ps+N

Vs =1wsPs — lwsPs4N

The linear operator a is diagonalised by R. Indeed, pre-
multiplying Eq. (81) by R™!, the following equation is
obtained:

p=Ap+I(p,p) + AP, PP (85)
with:

A =R 'aR, (86a)

r e, p) =R 'bx,x), (86b)

A, p,Pp) :R_lc(x, X, X). (86¢)

In this framework, A is a diagonal matrix which reads
i 0
A_[o —iﬂ] (87)

D Higher-order expansions

In Sects. 2 and 3, the normal form approach has
been introduced with focus on low-order mapping and

reduced dynamics. This choice is motivated by the sim-
plicity of low-order formulations, which in turn high-
lights the efficiency of the presented method for the
development of reduced-order models. However, the
method can be implemented in an algorithmic way for
arbitrary-order expansions. Indeed the general struc-
ture of homological equations is:

MoT[r™” 0K][r™
0 —1])g®[FT]10]]w®
) H®
+{0 }+{0 }_0, (88)

with G defined as the sum of all G(¥ @, ¥®)) such
that @ + b = n, and H® equal to the sum of all
HW@, w® @) guch that a + b + ¢ = n. Let
M = G™ 4 H™. For the sake of completeness,
we detail hereafter the equations needed up to order
five.

First order:

AMY D 4 Kel) =0, (89a)
A WD =71, (89b)

Second order:

[Gu+2oMr + MY rD] + KD + 2 =o0.

(90a)
[Guc 420w + w0 Q] =1 (90b)
Third order:
[(xk s+ ) MY, MY 1) ]
2 2 2 2)

+ Knp}j}n + :,S}n = 0. (91a)
[+ 2+ 2 w0, + 9D £ ]+
[.1,@ 2 w® f<2>] r® (91b)

Fourth order:

[ 24 2+ )M MY £

sklmn

almn

[sz) 9 Mr® O ]

2 3 2 3
+[ MY 2 mr® O T}((l;f@)]

amn amn
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) =(4)
+ KY n + Ekimn = 0- (92a)
4 4
[+ 20+ 3+ 2 (D, + 90 150
2) »(3) 2) 3
+ [ r0 + o 1]
3 L2 e 3 L2
I:.Ilén)mf( ) I(ca)nf( ) l(cl;fa(m)n]

almn

(92b)

Fifth order:

[(kk +h A+ A+ Ap) MY

—i—MT(l)f(S) ]

skimno

aklmn

3) O3 3) (3 3 £3)
[ Y fklm Tkapfalmn Tklafamnp]

2) (4
+Mr s+

anp

+[MT<4> FOeMr® O @ )

amnp kanpJ alm klapJ amn

MY S ]

klmaJ anp
+K¥) 0+ Einy = 0. (93a)
[(xk A A A ) W ‘I’(”f(/fz)mno]
[P+ 912 2

3) £ (3) (3) (3) 3)
+ ‘I’anpf klm kapflmn klafamnp:l

4 (2) @ @
+ ‘I’() f .I’kanpf ]

amnp
(O NI¢) 4 2
+ ‘Ilklapfa(m)n + .I’klma a(ngril
(5
= Tklmnp (93b)

This set of equations highlights the general structure
of the problems to be solved and gives the framework
for computation of higher-order automated solutions;
the implementation of the method for a generic order
is out of the scope of this work and will be the subject
of future contributions by the authors.

E Implementation algorithm

We provide herein some details of the implementation
procedure, as schematically reported in Algorithm 1.
The input parameters of the model are a discreti-
sation of the system domain (MESH), together with
boundary conditions (BCS), and material properties
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(PROP). Furthermore, the user should provide the list
of master modes to be selected in the reduction, col-
lected in the subset Z(1/?) following the notation used
in the main text.

The algorithm starts by computing the mass M and
stiffness K matrices (LinInt) as well as the eigenmodes
@, and the eigenfrequencies $2,, (GenEig) of the
selected master modes only. Since our basic assump-
tion is that of a conservative vibratory system, all maps
¥ @ are real-valued and the reduced dynamics coeffi-
cients £, £ are purely imaginary. This implies that
the formulation allows working on real double preci-
sion arithmetic even for the coefficients of the reduced
dynamics by storing only the imaginary parts.

First-order reduced dynamics coefficients V) are
obtained as +if2. First-order displacement mappings
are the linear eigenmodes.

Second-order reduced dynamics coefficients f 2
and mappings ¥ are then computed by iterating over
all kI permutations. For n master modes, each index
spans from 1 to 2n. For each permutation, first we
check that (A; + X;) does not yield a resonance condi-
tion (CheckResonance2). Then, the matrix D required
to compute ¥ ? is assembled (AssemblyMapMatrix):

D— [[(xk + )M + K] [M¢R]:| 7 (94)

M&gr]T 0

where the two blocks M@y are used to impose mass-
orthogonality between the mapping and the eigen-
modes of the resonant monomials. The right-hand side
of Eq. (28), i.e. GOW", WD), is then assembled in
a vector L of dimensions compatible with D (Inte-
grateFNL2). By solving the resulting linear system:

2
'I’kl (2)
(AR — AR+N) kal
-1
_p-'L - [ [ +2)’M + K] [M&g]
[Mg]" 0

_ @ M
{ G(nI/O,-I/, )}’ (95)
with AR and ARN being the diagonal matrices with
entries A, and AN such that 'Ilﬁl) = lIlilﬁN =¢, €
Py, and f 1(22121 is the vector of monomials fr(,? that
cannot be cancelled in the reduced dynamics. From
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Eq. (95), both mappings and reduced dynamics coeffi-
cients are obtained.

For second-order DNF, a second iteration is then
performed to compute f©. Therefore, all klm permu-
tations are spanned. For each permutation, L is assem-
bled as (IntegrateFNL3):

2) £(2) 2 2 =3
L=-MYQ f5 = MY £ = Eie 96)
Finally, fs(,f l)m terms are computed by projecting L onto
the master modes and by exploiting Eq. (51b) (step
“Project” in the algorithm).

Algorithm 1: Implementation algorithm.
Input: MESH,BCS,PROP,Z(1/2)
Result: W w@ ¢ @ ¢Q)
K, M <« LinInttMESH,BCS,PROP) ;
®,,, 2,, < GenEig(K, M, 2(1/2)y;
f(l) <~ 2 ;
v D, ;
for k € Z do
for/ € Zdo
@R < CheckResonance2(®,,,82,,.k]) ;
L « IntegrateFNL2(|Il(1), k1) ;
D <« AssemblyMapMatrix(K,.M,®Rr,82,,, k,1) ;
v @ DL,
end
end
for k € Z do
for/ € Zdo
for m € Z do
L < IntegrateFNL3(W D W@ @ k1 m);
f® « Project(¢,,, L);
end
end
end
return

F Third-order monomials for 1:2 internally
resonant system

The linear mapping relating complex to real-valued
quantities reported in Eq. (57) can be applied to
reduced-order models with an arbitrary number of mas-
ter modes. The case of a 1:2 internally resonant system
is here considered as an illustration, since this case is
explicitly investigated in the example of Sect. 5.2.2. Let
us assume that the two modes satisfying the 1:2 relation

are mode 1 and mode 2 for the sake of simplicity. There-
fore, model order reduction with the present method
requires selecting as master coordinates (zy, z;4N) and
(22, Z24N). The reduced dynamics given in Eq. (15)
when mapped to real-valued quantities using Eq. (57)
yields the following equations for ¥:

i1+ g2 (46111r1r281 + 26122r%82> =5y, (97a)

4+ 211 (46212r1r252 + 2baporisy + 26222@52) = .
(97b)

The same operation yields the following equations for
S:

§1 + ity + (g2 + g2 1

+ (At +hi) 1) +3 (A +hi) el

+3 (A2 +hi) rin + (A2 + hioo) 1

+ BmmS% + BIZIITZS% + Bl]22r15% + 2By112118182

+2B1p10128152 + Biooaras)

— g2 (45111 —4byjj @] + 2412 — 2512260%) rir =0,

(98a)

§o 4+ w3ty + g1t}

+ (Aoi11 +ho111) 1] + 3 (A2122 + ho12) 1413

+ 3 (A2112 + h2112) 1712 + (A2 + hoom) 13

+ Bai 1r18% + Bzznrzs% + B2122r18% + 2Bs112118182

+ 2Byy1o128152 + Boooaros)

+ —ga1 ((25212 - 2621260%) ]

+ <251222 — 2622260%) 171

+ (451212 - 4621260%) rlr%) =0. (98b)

An important remark compared to previous develop-
ments is that the normal velocity s is not equal to the
time derivative of the normal displacement r. This is
a noticeable result that cannot be observed for real-
valued reduced dynamics truncated at third order if
no second-order resonances between master modes are
observed. By taking the derivatives of Eq. (97) with
substitution truncated at third order:

I + g2 (451111?25%
+ (46111 +46122) 18182

— (46111&)% + 26122&)%) r%rz) =3, (99a)
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. fo93 4 22 )
I + g1 (—2b212w1r1 — 2bypwiriTy — 4bojpwiT 1y

+4byorisysy + 4bajaras sy + 462|2r|s% + 4]3212r]sf) =%.

(99b)
Summing Egs. (99) and (98) and substituting s with

i) + ity + (2112 + gi21) 1112
+ (A +hin
+ (3A1122 4 3h1122) 1113 4+ BAr112 + 3hi112 + Prig) rin
+ (A2 +hip) 13
+Brinriit + Brain + Quain) raff
+ Biioriis + 2Biin2 + Quiiz) iz
+ 2By21o02ft 2 + Biopotais = 0, (100a)
By + wir + ganir}
+ (Aa111 +hoiiy +Pappn) 1}
+ (3A2122 + 3h2122 + Paiz) 113
+ (3A2112 + 3ho112 + Parp2) 1
+ (A2 +hoo) 13
+ Bai11 + Qarpy) 11}
+ Booninai + (Baizz + Qo) 113
+ (2B2112 + Qa112) 111112
+ (2B2212 + Q2212) r2f112
+ Baananai; = 0.

(100b)

This last set of equations represent the exact normal
form of the system in real-valued formalism if trun-
cated to second order, with the presence of the only
two resonant monomials. Third-order monomials are
all kept in the reduced dynamics in accordance with
the assumption of truncating the nonlinear mapping
at second order and the reduced dynamics at third.
Writing the exact normal form up to the third order
would need application of third-order mappings that
would cancel all non-resonnt third-order monomials
in Egs. (100). Second-order physical coefficients are
obtained as usual with:

gpit = 6,G (b1, ¢1) (10D)

which also applies to the cubic physical modal coupling
coefficients hpsp,, reading

hpiim = ¢ H (br, b1, b1n) - (102)

@ Springer

From G and mappings a, b, one obtains the values for
Apklm and Bpklm as

Apkim =2 ¢,G (@, i),
Bpklm =2 ¢;G(¢kv lA)lm)'

(103a)
(103b)

These equations follow the general computation guide-
lines for all the coefficients used in the case where no
internal resonance is present, i.e. by direct application
of the formula given in [9,53]. The only difference
being that the coefficients day;,, and 13k1m corresponding
to the 1:2 resonant monomials are now equal to zero,
which does not impact the general formula. Finally,
new terms that arise due to the presence of nonzero
second-order terms in a 1:2 internally resonant system
read:

Pii12 = gi12 (—451111 — 24120 + 8by 107 + 461220)%)

(104a)
Pari1 = gani (—251212 + 4621260%) , (104b)
Pai12 = ga11 (—25222 + 41322260%) , (104c)
P2122 = 211 (—451212 + 8621260%) , (1044d)
Qi211 = —4gi12b111, (104e)
Qiiz = —4gin2 (Bm + 6112) ; (104f)
Q11 = Q122 = Qairz = —4go11boro, (104g)
Q12 = —4g11b2n, (104h)

with A/, b obtained by the pre-multiplying the
real-valued mappings 4/, bis by M and subsequently
projecting on ¢,,. These new terms are of particular
importance and are completely related to the existence
of a 1:2 resonance. They are the consequence of the
remaining second-order monomials in the normal form
that in turn creates new cubic terms that have been here
computed and made explicit.

G On the identification of non trivial resonance
conditions for discrete models

The identification of non trivial internal resonance con-
ditions in finite element systems needs to be decided
by giving a tolerance since perfect integer ratios are not
possible due to round-off errors. As given in Sect. 2,
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the generic mapping ¥ can be estimated through
solution of a linear system of the type:
Ev™ =L, (105)
with E a symmetric matrix which is singular in the pres-
ence of resonance conditions. For trivial resonances,
det (E) is always zero. For non-trivial resonances in
floating point arithmetic the determinant of E is not
zero, yet E is ill-conditioned. For each mapping term
lII("), one has to invert a matrix of the form:
E=[o’M+K], (106)
with 0 summation of A entries. Resonance condition
implies that o2 is equal to minus any of the entries of
22 Therefore, resonance conditions of a given order
can be detected by taking the norm of the difference
between o2 and the square of any eigenfrequency of
the master modes w,. If the value is below a given
tolerance ¢:

o2 +0?| <é, (107)
then a resonance condition is assumed. An impor-
tant remark is that according to the presented crite-
rion, approximate resonance relations between master
modes are treated as exact resonance relations. Two
reasons motivate this choice. First, approximate reso-
nance relations yield an ill-conditioning of the prob-
lem, which can be safely avoided by treating them as
exact resonances. Furthermore, strongly coupled solu-
tions are observed even in the presence of a detun-
ing between eigenfrequencies [84], hence cancelling
monomials that approximately satisfy a resonance rela-

tion would deprive the model from the ability to detect
this last class of solutions.
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