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Abstract

A full theory for hinged beams with intermediate piers is developed. The analysis starts with the
variational setting and the study of the linear stationary problem in one dimension. Well-posedness
results are provided and the possible loss of regularity, due to the presence of the piers, is underlined.
A complete spectral theorem is then proved, explicitly determining the eigenvalues on varying of the
position of the piers and exhibiting the fundamental modes of oscillation.
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1 Introduction

We consider a multiply hinged beam divided in three adjacent spans (segments): the main (middle)
span and two side spans separated by piers. Without loss of generality, we normalize the total length
to 2π and represent the beam as in Figure 1.

−π −bπ aπ π

main span

Figure 1: A beam with two piers and 0 < a, b < 1.

The parameters 0 < a, b < 1 determine the relative measure of the side spans with respect to the main
span. The beam is hinged at the extremal points ±π and, in correspondence of the positions of the
piers, at the points −bπ and aπ. If γ > 0 denotes an elastic restoring parameter, the linear evolution
equation reads

utt + uxxxx + γu = 0 x ∈ I = (−π, π), t > 0, (1.1)

where u represents the vertical displacement and the equation is meant in a suitable weak sense.
Equation (1.1) is complemented with the boundary and internal conditions

u(−π, t) = u(π, t) = u(−bπ, t) = u(aπ, t) = 0 t > 0. (1.2)
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The constraints at −bπ, aπ impose no displacement in correspondence of the piers and give rise to a
multi-point problem for (1.1), for which no classical framework can be used. The first purpose of this
paper is precisely to provide a suitable functional setting for problem (1.1)-(1.2).

We start with the regularity theory for linear stationary beam equations with a forcing term, namely

u′′′′ + γu = f in I, u(−π) = u(π) = u(−bπ) = u(aπ) = 0, (1.3)

showing that the solutions have to be meant in a suitable weak sense. Equation (1.3) fits in the
framework of the so-called multi-point problems for ODE’s, that were introduced in the pioneering
work by Wilder [18], see also [14] for some developments in the subsequent decades. However, as
far as we are aware, there are no established results concerning (1.3), neither concerning a precise
weak formulation nor providing qualitative properties of the solutions. Also the spectral analysis is
completely missing; in fact, the research on multi-point fourth order ODE’s has mostly focused on the
search for positive solutions for nonlinear equations (through topological methods) and on numerical
schemes for approximation of the solutions. The only paper in literature (weakly) related to the present
investigation seems to be [7].

We continue with the spectral analysis of the linear problem

u′′′′ = λu in I, u(−π) = u(π) = u(−bπ) = u(aπ) = 0, (1.4)

giving a complete picture of the eigenvalues and of the associated eigenfunctions, whose nodal prop-
erties are described in detail. This requires a sound variational setting based on classical principles
of functional analysis and basic theory of linear differential equations. The underlying motivation for
studying equation (1.1) is a quantitative analysis of the instability of suspension bridges with respect to
the position of the piers. However, two main ingredients are missing in (1.1): some nonlinearity which
is intrinsic in complicated elastic structures such as bridges and the possibility of displaying torsional
oscillations. We will reach a reliable bridge model elsewhere [3]; however, even in the simplified setting
of the present paper, we will see that the two internal conditions in the piers create an interaction
between the three spans as in real suspension bridges, see [5]. Due to the extreme complexity of the
asymmetric case (b 6= a), at some point we restrict our attention to the case of symmetric beams (b = a),
also motivated by the fact that most suspension bridges have equal side spans.

Finally, we will show that, due to the presence of the piers, the fourth-order eigenvalue problem (1.4)
is not the square of a second-order eigenvalue problem, making the spectral analysis even more delicate.

The paper is organized as follows. In Section 2 we deal with the variational formulation of the linear
stationary beam equation. This requires the introduction of new functional spaces; in Theorem 1, we
show that they are subspaces of codimension two of the Sobolev space H2∩H1

0 and we fully characterize
them. The two missing dimensions prevent a nice regularity theory for weak solutions: in Theorem 3
we show why, in general, one cannot expect to have more than C2-smoothness, the reason being that
the piers yield impulses on the beam, to be added to most forcing terms. In Corollary 4 we provide a
simple way to recognize the cases where the weak solution is also a classical solution. In Section 3, our
linear analysis then tackles the spectral properties of the fourth order differential operator. Also for
the related eigenvalue problem we cannot expect regularity of the eigenfunctions and standard forms of
Sturm-Liouville-type results fail. Therefore, we proceed “by hand”. A full description of the spectrum is
extremely complicated, see Theorem 5; since most suspension bridges have equal side spans, we restrict
our attention to the symmetric case with equal side spans, for which simpler and elegant results can be
proved. By taking advantage of symmetries, in Theorem 6 we determine explicitly all the eigenvalues
and the associated eigenfunctions. As expected, they strongly depend on the position of the piers, as
described in Theorems 8 and 10, which also characterize the placement and the number of zeros of the
eigenfunctions. The pattern of “zeros moving on the spans” has an elegant form, which is depicted in
Figures 9 and 11. In Section 4 we show that, for the second order eigenvalue problem −u′′ = µu, with
the same hinged constraints as in (1.4), the eigenfunctions may be nonsmooth and the eigenvalues may
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be either simple, double or triple. At the end of the paper, we draw the conclusions and suggest some
future developments.

2 The functional setting for linear beams

In this section we consider a hinged beam of length 2π, represented by the segment I = (−π, π), which
has two intermediate piers in correspondence of the points −bπ and aπ, 0 < a, b < 1. We set

I− = (−π,−bπ), I0 = (−bπ, aπ), I+ = (aπ, π),

so that I = I− ∪ I0 ∪ I+. The aim is to provide a functional framework in which problem (1.1)-(1.2)
can be settled and to determine the vibrating modes of this kind of beam.

2.1 Weak solutions and regularity

In order to study both the functional setting and the regularity of the solutions, fairly instructive
appears the analysis of the stationary forced version of (1.1). To this end, we introduce the space

V (I) := {u ∈ H2 ∩H1
0 (I); u(−bπ) = u(aπ) = 0} ; (2.1)

notice that the boundary and internal conditions

u(−π) = u(π) = u(−bπ) = u(aπ) = 0 (2.2)

make sense since V (I) embeds into C0(I). We characterize V (I) through the following statement; in
Section 5.1 we provide its proof which, though elementary, we were not able to find in literature.

Theorem 1. The space V (I) defined in (2.1) is a subspace of H2∩H1
0 (I) having codimension 2, whose

orthogonal complement is given by

V (I)⊥ = {v ∈ C2(I) | v(±π) = v′′(±π) = 0, v′′ is piecewise affine on I−, I0 and I+}.

Therefore, V (I)⊥ ∩ C3(I) = {0}. A basis {v1, v2} of V (I)⊥ is given by

v1(x) =

 −(b+ 1)
(
x3 + 3πx2 + π2(b2 + 2b)x+ π3(b2 + 2b− 2)

)
x ∈ [−π,−bπ]

(1− b)
(
x3 − 3πx2 + π2(b2 − 2b)x− π3(b2 − 2b− 2)

)
x ∈ [−bπ, π]

(2.3)

v2(x) =

 (a− 1)
(
x3 + 3πx2 + π2(a2 − 2a)x+ π3(a2 − 2a− 2)

)
x ∈ [−π, aπ]

(1 + a)
(
x3 − 3πx2 + π2(a2 + 2a)x− π3(a2 + 2a− 2)

)
x ∈ [aπ, π].

(2.4)

Notice that V (I)⊥ is made by functions that are more regular than H2(I); they are C2(I), but
they fail to be C3 (except for the zero function) since each pier produces a discontinuity in the third
derivative. This effect is well seen by looking into expressions (2.3) and (2.4). Notice that the basis
{v1(x), v2(x)} is not orthogonal, but it has the advantage of highlighting separately the two singularities
at the piers. We will complement Theorem 1 by determining an explicit orthogonal basis of V (I) in
Theorem 8: all the elements of this basis will be of class C2(I), some of them may even be analytic. In
Figure 2 we represent the graphs of v1 and v2, as well as their second derivatives, in the case b = 3/4
and a = 1/4. The plots for other values of a and b, possibly different, are qualitatively similar.

We incidentally observe that the orthogonal complement of H2
0 (I) in H2 ∩H1

0 (I) is spanned by the
two functions π2 − x2, x(π2 − x2), whose second derivatives are the limits in L2(I), for a, b → 1, of
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Figure 2: From left to right: plots of the functions v1, v′′1 , v2, v′′2 in the case b = 3/4 and a = 1/4.

the second derivatives of two suitable functions in V (I)⊥. On the other hand, when a, b→ 0 the space
V (I) “converges” to the limit space

V∗(I) := {u ∈ H2 ∩H1
0 (I); u(0) = u′(0) = 0}, (2.5)

whose orthogonal complement V∗(I)⊥ is spanned by functions w1 and w2 having second derivatives

w′′1(x) =

 x+ π if − π 6 x 6 0

π − x if 0 6 x 6 π,
w′′2(x) =

 x+ π if − π 6 x < 0

x− π if 0 < x 6 π.

Note that w′′1 is continuous, while w′′2 is not. These functions are obtained as limits in L2(I) of v′′1 + v′′2
and v′′1 − v′′2 , as defined in (2.3) and (2.4), when a, b → 0. It is worth emphasizing that, contrary to
V (I)⊥, the space V∗(I)⊥ contains functions which are not C2.

We now pass to study the forced version of (1.1). First, we recall that if there are no piers, the
equation reads as

u′′′′(x) + γu(x) = f(x) x ∈ I (2.6)

and the natural functional space where solutions of (2.6) have to be sought is H2∩H1
0 (I), endowed with

the scalar product (u, v) 7→
∫
I u
′′v′′. The notion of weak solution is derived from a variational principle:

the total energy E(u) of the beam in position u is the sum of the bending energy, the restoring energy,
and the forcing energy.

If the beam does have intermediate piers, the energy is defined on the functional space V (I), that is,

E(u) =
1

2

∫
I

(
(u′′)2 + γu2

)
− 〈f, u〉V ∀u ∈ V (I), (2.7)

where 〈·, ·〉V denotes the duality pairing between V (I) and V ′(I), its dual space. If f ∈ L1(I), then the
crochet may be replaced by the integral

∫
I fu. By computing the Fréchet derivative of E in V (I), we

obtain the following definition.

Definition 2. Let f ∈ V ′(I). We say that u ∈ V (I) is a weak solution of (2.6)-(2.2) if∫
I
u′′v′′ + γ

∫
I
uv = 〈f, v〉V ∀v ∈ V (I). (2.8)

In the sequel, we denote by δ−bπ, δaπ ∈ V ′(I) the Dirac delta distributions at the points −bπ and aπ.
In the next statement, which will be proved in Section 5.2, we discuss the regularity of weak solutions.

Theorem 3. Let γ > 0. For all f ∈ V ′(I) there exists a unique weak solution u ∈ V (I) of (2.6)-(2.2),
according to Definition 2. Moreover, if f ∈ C0(I), then:

(i) the solution satisfies u ∈ C4(I−) ∩ C4(I0) ∩ C4(I+) ∩ C2(I) and u′′(±π) = 0;
(ii) there exist αf , βf ∈ R (depending on f , γ, a, b) such that u′′′′ + γu = f + αfδaπ + βfδ−bπ in

distributional sense;
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(iii) there exists a subspace X(I) ⊂ C0(I) of codimension 2 such that u ∈ C4(I) if and only if
f ∈ X(I);

(iv) we have that u ∈ C4(I) if and only if u ∈ C3(I).

From Item (i) we see that a weak solution of (2.8) makes the beam globally hinged. This means that
its least energy configuration is C2 at the piers and displays no bending at the endpoints. This may
lead to nonsmooth solutions of (2.8): indeed, Item (ii) says that

if the two-piers beam is subject to a continuous force f ,
then each pier yields an additional load equal to some impulse depending on f .

The procedure that we introduce in the proof of Item (ii) explains why, in most cases, the regularity
of the solution cannot be improved to C4(I). In particular, it entails the following statement.

Corollary 4. Let γ > 0 and f ∈ C0(I). Then the weak solution of (2.6)-(2.2) belongs to C4(I) if and
only if it coincides with the unique classical solution Uf of the problem

U ′′′′f (x) + γUf (x) = f(x) x ∈ I, Uf (−π) = Uf (−bπ) = Uf (aπ) = Uf (π) = 0. (2.9)

2.2 Examples and further remarks

We illustrate here the procedure mentioned in the previous section, applied to two simple and instructive
examples helping to better understand the statement of Theorem 3.
• Take γ = 0 and consider (2.6) with constant load, that is,

u′′′′(x) = 24 x ∈ I− ∪ I0 ∪ I+, (2.10)

whose solutions are fourth order polynomials. If (2.10) is complemented with the boundary and internal
conditions (2.2), then the function Uf defined by (2.9) is given by

Uf (x) = (x+ bπ)(x− aπ)(x2 − π2)

which does not satisfy (2.8), regardless of the values of a, b < 1. To see this, it suffices to notice that

U ′′f (−π) = 2π2(5− 3b+ 3a− ab) > 0, U ′′f (π) = 2π2(5 + 3b− 3a− ab) > 0 ∀a, b < 1,

violating the no-bending boundary behavior in Item (i) of Theorem 3. In Figure 3 we plot the graphs
of the functions Uf and of the weak solution u of (2.10) when b = 0.5 and a = 0.7: their difference is
quite evident.
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Figure 3: Plots of Uf (thin line) and of the weak solution u of (2.10) (thick line) for b = 0.5, a = 0.7.
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The function u, as characterized by Definition 2, may be obtained through the procedure explained
in the proof of Theorem 3. This solution minimizes the energy defined in (2.7): let us define

H(a, b) := E(Uf )− E(u) ∀(a, b) ∈ (0, 1)2. (2.11)

Then H(a, b) > 0 in the square (0, 1)2 and the graph of the map (a, b) 7→ H(a, b) is plotted in the left
picture in Figure 4. It turns out that 0 = H(1, 1) < H(a, b) < H(1, 0) = H(0, 1) for all (a, b) ∈ (0, 1)2.

0.2 0.4 0.6 0.8 1.0
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Figure 4: Plots of (a, b) 7→ H(a, b) on (0, 1)2 (left) and of a 7→ H(a, a) on (0, 1) (right).

Moreover, the graph is obviously symmetric with respect to the line a = b: in the right picture of Figure

4 we plot the graph of the map a 7→ H(a, a) = (5−a2)2(1+2a−3a2)π5

2a+1 for a ∈ (0, 1), which corresponds to
beams with symmetric side spans. Since u 6= Uf for all a, b, it never occurs that (αf , βf ) = (0, 0) and
therefore the constant load f(x) = 24 does not belong to the subspace X(I) introduced in Item (iii)
of Theorem 3. Clearly, the coefficients αf and βf depend on a and b; in Figure 5 we plot the graphs of

the map (a, b) 7→ βf (a, b) for (a, b) ∈ (0, 1)2 and of the map a 7→ βf (a, a) = 3(1+a)(a2−5)π
(1−a)(2a+1) for a ∈ (0, 1).

Both these functions diverge to −∞ as a→ 1, meaning that
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Figure 5: Plots of (a, b) 7→ βf (a, b) on (0, 1)2 (left) and of a 7→ βf (a, a) on (0, 1) (right).

the contribution of the piers, in terms of impulses depending on the force f ,
increases and tends to infinity as the piers approach the endpoints of the beam.

• Take again γ = 0 and consider now (2.6) with a trigonometric load, that is,

u′′′′(x) = m4 sin(mx) x ∈ I− ∪ I0 ∪ I+ for some integer m = 2, 3, 4... . (2.12)

Then,

Uf (x) = sin(mx) +

[
sin(bmπ)

1− b2
+

sin(amπ)

1− a2

]
x(x2 − π2)

(a+ b)π3
+

[
b sin(amπ)

1− a2
− a sin(bmπ)

1− b2

]
x2 − π2

(a+ b)π2
.
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According to Definition 2 and Corollary 4, this function is a weak solution of (2.12) if and only if
U ′′f (−π) = U ′′f (π) = 0. After some computations, one sees that this occurs if and only if sin(bmπ) =
sin(amπ) = 0, that is, b = h/m and a = k/m for any couple of integers h, k ∈ {1, ...,m − 1}. In
this case, the weak solution of (2.12) is u(x) = Uf (x) = sin(mx), which is of class C4(I); in fact, it is
analytic in I. This example tells us that, for some continuous forces f ,

the regularity of the solution depends on the relative lengths of the three spans.

Consider again the weak solution u of (2.12), as characterized by Definition 2, and the map (2.11).
For m = 3, in the left picture of Figure 6 we plot the graph of the map (a, b) 7→ H(a, b) in the square

(0, 1)2, while in the right picture therein we plot the graph of the map a 7→ H(a, a) = 3(3+a) sin2(3aπ)
(1−a)a2(1+a)2π3

for a ∈ (0, 1). The zeros of these functions are quite visible.
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5

10

15

Figure 6: Plots of (a, b) 7→ H(a, b) on (0, 1)2 (left) and of a 7→ H(a, a) on (0, 1) (right).

As noticed above, u = Uf if and only if a, b ∈ {1
3 ,

2
3}: for these four couples, we have (αf , βf ) =

(0, 0) and the load f(x) = 81 sin(3x) belongs to the subspace X(I), see Item (iii) of Theorem 3. By
emphasizing the dependence αf = αf (a, b) and βf = βf (a, b) as above, in Figure 7 we plot the graphs of

the map (a, b) 7→ βf (a, b) for (a, b) ∈ (0, 1)2 and of the map a 7→ βf (a, a) = 3 sin(3aπ)
(1−a)2a2π3 for a ∈ (0, 1). We

observe that βf (a, a) changes its sign in correspondence of a = 1/3, a = 2/3: in these cases, f(±aπ) = 0.
If instead f > 0 (resp., f < 0) in one pier, then the impulse due to that pier points downwards (resp.,
upwards), showing that

the piers “resist” to the action of the load f .
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Figure 7: Plots of (a, b) 7→ βf (a, b) on (0, 1)2 (left) and of a 7→ βf (a, a) on (0, 1) (right).

As we have just seen, for some continuous forces f the solution is not globally C4 regardless of a and
b, for some other f the solution may be globally C4 only for particular values of a and b. Moreover,

7



it may happen that βf = 0 and αf 6= 0 (or vice versa), in which case u ∈ C4(I− ∪ I0) ∩ C4(I+) (resp.
u ∈ C4(I−) ∩ C4(I0 ∪ I+)).
• We conclude this section with a simple remark and a related curious example. It is clear that the

piers constraint prevents the positivity preserving property to be true. This means that if γ = 0 and
f > 0, one cannot expect the weak solution of (2.8) to satisfy u > 0 as in beams with no piers. It is
however of physical interest to investigate which conditions on f yield a nonnegative solution u. As an
example, take a = b = 1/2 and consider the functions

f(x) = 177
16 cos(x2 ) cos2(x)− 17 cos(x) sin(x) sin(x2 )− 11 cos(x2 ) sin2(x) and u(x) = cos2(x) cos(x2 ),

whose plots are reported in Figure 8.
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Figure 8: Plots of the functions f (left) and u (right).

One can check that u′′′′(x) = f(x) for all x ∈ (−π, π) and that u(±π) = u′′(±π) = u(±π
2 ) = 0: hence,

by Corollary 4, u is a classical and positive solution of (2.8). Clearly, one can change the signs of both
f and u and stick to the convention that

u > 0 corresponds to a downwards displacement. (2.13)

The left picture in Figure 8 tells us that

the upwards displacement u of the beam with piers is obtained with a sign-changing load
f pushing downwards close to the piers and upwards far away from the piers.

3 Spectral theory for beams with two piers

3.1 Vibrating modes

In this section, we determine the modes of vibration for the beam I = (−π, π) with two intermediate
piers. We find the set of the eigenvalues µ and the corresponding eigenfunctions e ∈ V (I) solving the
problem ∫

I
e′′v′′ = µ

∫
I
ev ∀v ∈ V (I). (3.1)

Through a regularity argument similar to that in the proof of Theorem 3-(i), one can show that any
eigenfunction belongs to C2(I) and is of class C∞ on each span I−, I0, I+. Moreover, it necessarily
satisfies the no-bending boundary conditions

e′′(−π) = e′′(π) = 0
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at the endpoints of the beam. If e ∈ V (I) is an eigenfunction, by taking v = e in (3.1) one obtains that
all the eigenvalues are strictly positive. We thus set µ = λ4 and seek e ∈ V (I) such that∫

I
e′′v′′ = λ4

∫
I
ev ∀v ∈ V (I). (3.2)

The following result holds; we will provide its proof in Section 5.3.

Theorem 5. The eigenvalues µ of problem (3.1) are given by µ = λ4, for any λ > 0 solving the
following equation:

sin(2λπ) sinh
[
λ(1− b)π

]
sinh

[
λ(1− a)π

]
sinh2

[
λ(a+ b)π

]
− sin

[
λ(1− a)π

]
sin
[
λ(1 + a)π

]
sinh

[
λ(1− b)π

]
sinh

[
λ(1 + b)π

]
sinh

[
λ(a+ b)π

]
+ sin

[
λ(1− b)π

]
sin
[
λ(1− a)π

]
sin
[
λ(a+ b)π

]
sinh

[
λ(1 + b)π

]
sinh

[
λ(1 + a)π

]
− sin

[
λ(1− b)π

]
sin
[
λ(1 + b)π

]
sinh

[
λ(1− a)π

]
sinh

[
λ(1 + a)π

]
sinh

[
λ(a+ b)π

]
+2 sin

[
λ(1− b)π

]
sin
[
λ(1− a)π

]
sinh

[
λ(1− b)π

]
sinh

[
λ(1− a)π

]
sinh

[
λ(a+ b)π

]
− sin

[
λ(1− b)π

]
sin
[
λ(1− a)π

]
sin
[
λ(a+ b)π

]
sinh

[
λ(1− b)π

]
sinh

[
λ(1− a)π

]
= 0.

We omit writing the explicit form of the corresponding eigenfunctions. We give a complete result
only in the case of symmetric beams. So, assume that 0 < b = a < 1 and let

I− = (−π,−aπ), I0 = (−aπ, aπ), I+ = (aπ, π).

The symmetry of the position of the piers enables us to seek separately even and odd solutions of (3.2).
We obtain the following statement, whose proof will be given in Section 5.4.

Theorem 6. Let b = a. The set of all the eigenvalues µ = λ4 of (3.1) is completely determined by the
values of λ > 0 such that

sin(λπ) sinh(λaπ) sinh[λ(1− a)π] = sinh(λπ) sin(λaπ) sin[λ(1− a)π] (3.3)

cos(λπ) cosh(λaπ) sinh[λ(1− a)π] = cosh(λπ) cos(λaπ) sin[λ(1− a)π]. (3.4)

In case (3.3), the corresponding eigenfunctions are odd and given by:

- Oλ(x) = sin(λx) if λ ∈ N (implying both λa ∈ N and λ(1− a) ∈ N);

- the odd extension of

Oλ(x) =


sinh[λ(1− a)π]

sinh(λaπ)
(sinh(λaπ) sin(λx)− sin(λaπ) sinh(λx)) if x ∈ [0, aπ]

sin(λaπ)

sin[λ(1− a)π]
(sin[λ(1− a)π] sinh[λ(x− π)]− sinh[λ(1− a)π] sin[λ(x− π)]) if x ∈ [aπ, π]

if λ /∈ N (implying both λa /∈ N and λ(1− a) /∈ N).

In case (3.4), the corresponding eigenfunctions are even and given by

- Eλ(x) = cos(λx) if λ− 1/2 ∈ N (implying both λa− 1/2 ∈ N and λ(1− a) ∈ N);

- the even extension of

Eλ(x) =


sinh[λ(1− a)π]

cosh(λaπ)
(cosh(λaπ) cos(λx)− cos(λaπ) cosh(λx)) if x ∈ [0, aπ]

cos(λaπ)

sin[λ(1− a)π]
(sinh[λ(1− a)π] sin[λ(π − x)]− sin[λ(1− a)π] sinh[λ(π − x)]) if x ∈ [aπ, π]

if λ− 1/2 /∈ N (implying both λa− 1/2 /∈ N and λ(1− a) /∈ N).
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Some comments about Theorem 6 are in order. Let us notice that the eigenvalues λ4 associated with
the eigenfunctions Oλ and Eλ correspond to the values of λ for which both sides of the equalities (3.3)
and (3.4), respectively, vanish. For this reason, in the case of nonsmooth odd and even eigenfunctions
it has necessarily to be λ(1 − a) /∈ N, so that Oλ and Eλ are well-defined. Notice that we fix the
eigenfunctions to be all positive in x = 0 if even, and increasing in x = 0 if odd. Here the convention
(2.13) plays no role.

We also observe that the eigenfunctions Oλ and Eλ are of class C∞, while Oλ and Eλ are only C2.
In view of the conditions on λ, no C∞-eigenfunctions exist if a /∈ Q since, in this case, it cannot be
λ ∈ N and λa ∈ N (or λ− 1/2 ∈ N and λa− 1/2 ∈ N) at the same time. On the other hand, if a = p/q
with p, q ∈ N and g.c.d.(p, q) = 1, odd C∞-eigenfunctions appear for λr = rq, for every r ∈ N. As for
even C∞-eigenfunctions, they exist whenever a = p/q, with g.c.d.(p, q) = 1 and both p and q are odd;
in this case, the eigenvalues are given by λr = r + 1/2, with r ∈ N such that 2r + 1 is a multiple of q.
Thus, there are infinitely many regular eigenfunctions if a ∈ Q, but it may happen that they are all odd
(as in the case a = 1/2). The C∞-eigenfunctions Oλ and Eλ satisfy the strong form of the eigenvalue
problem

e′′′′ = λ4e.

As for merely C2-eigenfunctions, by computing explicitly the third derivative we can formally write
equation (3.2), as in Item (ii) of Theorem 3. Precisely, we have

e′′′′ = λ4e+ αλδaπ + βλδ−aπ,

for suitable constants αλ and βλ to be determined.
Finally, we notice that conditions (3.3) and (3.4) characterize the couples (a, λ) such that µ = λ4 is

an eigenvalue of (3.1). Since the least eigenvalue µ0 = λ4
0 of (3.1) satisfies the lower bound

λ4
0 = min

v∈V (I)

∫
I(v
′′)2∫

I v
2
> min

v∈H2∩H1
0 (I)

∫
I(v
′′)2∫

I v
2

=
1

16
, (3.5)

the curves implicitly defined by (3.3) and (3.4) in the (a, λ)-plane all lie above the line λ = 1/2. In the
next section, we characterize in full detail all such curves, which are depicted in Figure 9. Notice that
the ones representing the odd eigenvalues (in darker color in Figure 9) are symmetric with respect to
a = 1/2, since (3.3) does not vary when replacing a by 1− a.

In the case a = 1/2, Theorem 6 takes the following simple form.

Corollary 7. Let b = a = 1/2. The eigenvalues µ = λ4 of (3.1) are completely determined by the
values of λ > 0 such that

sin(λπ/2) = 0 or tan(λπ/2) = tanh(λπ/2) or tan(λπ) = tanh(λπ).

In the first case, a corresponding eigenfunction is given by Oλ(x) = sin(λx), while in the other two
cases it is given, respectively, by the odd extension of

Oλ(x) =


sin(λx)

sin(λπ/2)
− sinh(λx)

sinh(λπ/2)
if x ∈ [0, π/2]

sinh[λ(x− π)]

sinh(λπ/2)
− sin[λ(x− π)]

sin(λπ/2)
if x ∈ [π/2, π],

and by the even extension of

Eλ(x) =


tanh

(λπ
2

)(
cosh

(λπ
2

)
cos(λx)− cos

(λπ
2

)
cosh(λx)

)
if x ∈ [0, π/2]

cotan
(λπ

2

)(
sinh

(λπ
2

)
sin[λ(π − x)]− sin

(λπ
2

)
sinh[λ(π − x)]

)
if x ∈ [π/2, π].

.
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Figure 9: The curves implicitly defined by (3.3)-(3.4) in the region (a, λ) ∈ (0, 1)× (0, 6).

Therefore, for b = a = 1/2, the eigenvalues are given by

λ = 2k or λ ≈ 2k +
1

2
(odd), λ ≈ k +

1

4
(even), k = 1, 2, . . . , (3.6)

since the function s 7→ tanh(s) rapidly converges to 1.

3.2 Nodal properties of the vibrating modes

The main purpose of this section is to classify the eigenfunctions of problem (3.1), as given in Theorem
6, according to their number of zeros (nodal intervals) in I.

Preliminarily, it is convenient to consider the eigenvalues of the clamped beam on I, that is, the
numbers µ > 0 for which the problem∫

I
e′′v′′ = µ

∫
I
ev ∀v ∈ H2

0 (I) (3.7)

admits a nontrivial solution e. From Section 2.1 we recall that H2
0 (I) is the limit space of V (I) as a→ 1.

It is straightforward to verify that µ is an eigenvalue of (3.7) if and only if µ = Λ4
n (n = 0, 1, 2, . . .),

with Λn defined by tan(Λ2kπ) = − tanh(Λ2kπ) with even eigenfunction,

tan(Λ2k+1π) = tanh(Λ2k+1π) with odd eigenfunction.
(3.8)

The corresponding eigenfunctions ψn (n = 0, 1, 2, . . .) are all of class C∞(I) and are explicitly given by ψ2k(x) = cosh(Λ2kπ) cos(Λ2kx)− cos(Λ2kπ) cosh(Λ2kx)

ψ2k+1(x) = sinh(Λ2k+1π) sin(Λ2k+1x)− sin(Λ2k+1π) sinh(Λ2k+1x)
x ∈ I. (3.9)
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Moreover, it will be useful to consider also the limit space V∗(I) (as a→ 0) introduced in (2.5) and we
denote by µ = (Λ∗n)4 (n = 0, 1, 2, . . .) the eigenvalues of∫

I
e′′v′′ = µ

∫
I
ev ∀v ∈ V∗(I). (3.10)

Some computations show that each eigenvalue of (3.10) is double and that

Λ∗n = Λn if n is odd, Λ∗n = Λn+1 if n is even, (3.11)

namely the eigenvalues of (3.10) are exactly the eigenvalues of (3.7) with odd index n, all of them
having multiplicity 2. The corresponding eigenfunctions are obtained by extending by (even and odd)
symmetry the restriction to the interval [0, π] of ψ2k+1(π − x), where ψ2k+1 has been defined in (3.9).
Notice, in particular, that the so obtained eigenfunctions of (3.10) are not all of class C2; in fact, in
this case the integration by parts does not imply the matching of the second derivatives in 0, because
the test functions v satisfy v′(0) = 0, thus canceling the boundary term u′′(0)v′(0).

With these preliminaries, we may state one of the main results of this section, which will be proved
in Section 5.5.

Theorem 8. For any a ∈ (0, 1), the eigenvalues µ = λ4 of problem (3.2) are simple and form a
countable set, the corresponding eigenfunctions are of class C2 and form an orthogonal basis of V (I).
Moreover, (3.3) and (3.4) implicitly define, for a ∈ (0, 1), a family of analytic functions a 7→ λn(a)
which satisfy λn(a)→ Λn for a→ 1 and λn(a)→ Λ∗n for a→ 0 (n = 0, 1, 2, . . .).

We observe that, as a straightforward consequence of Theorem 8, we have

lim
a→0

λn+1(a)

λn(a)
=


1 if n is even

Λn+2

Λn
if n is odd.

Theorem 8 states that the set of couples (a, λ) satisfying either (3.3) or (3.4) is composed by the union
of connected branches which are graphs of regular functions λ = λ(a); their intersections with any
line a = ā < 1 give all the eigenvalues µ = λ4 of problem (3.2) corresponding to the choice a = ā,
see again Figure 9. It turns out that, even if all the eigenvalues are simple, the spectral gaps can be
very small. This means that the corresponding modes of the linear evolution equation (1.1) have fairly
similar frequencies.

We now turn to the nodal properties of the eigenfunctions. For a given a ∈ (0, 1), Theorem 8 allows
us to sort the eigenvalues in increasing order {λ0, λ1, λ2, . . .} and to label the associated eigenfunctions
as {e0, e1, e2, . . .}. We will always speak about even and odd eigenfunctions and eigenvalues, referring
to such labels. The placement of the zeros of the eigenfunctions en, depending on the couple (a, λ), is of
crucial importance. This was already noticed in the Federal Report [1], see the reproduction in Figure
10 where an inventory of the modes of oscillation seen at the Tacoma Narrows Bridge is drawn. Since
two zeros are always present in the piers, it is necessary to make this precise. First, it is clear that the
C∞-eigenfunctions Oλ and Eλ cannot have double zeros in any point of I. On the other hand, using
the explicit expression of Oλ (resp., Eλ), it turns out that x ∈ I0 is a double zero if and only if

sin(λx)

sinh(λx)
=

cos(λx)

cosh(λx)
=

sin(λaπ)

sinh(λaπ)

(
resp.,− sin(λx)

sinh(λx)
=

cos(λx)

cosh(λx)
=

cos(λaπ)

cosh(λaπ)

)
. (3.12)

Since(
sin(λx)

sinh(λx)

)′
= 0 iff

sin(λx)

sinh(λx)
=

cos(λx)

cosh(λx)
,

(
cos(λx)

cosh(λx)

)′
= 0 iff − sin(λx)

sinh(λx)
=

cos(λx)

cosh(λx)
,

12



Figure 10: Zeros seen at the Tacoma Bridge: hand reproduction of Drawing 4 in [1].
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condition (3.12) may be satisfied only in correspondence of the local minima (or maxima) of the func-
tion ξ(x) = sin(λx)/ sinh(λx) (resp., ξ(x) = cos(λx)/ cosh(λx)). Labeling these stationary points in
increasing order as xk, k = 1, 2, . . ., one sees that k 7→ |ξ(xk)| is strictly decreasing. Consequently,
(3.12) can be fulfilled only if x = aπ, that is, if the double zero is located at one pier. In a similar way
one can reason for the lateral spans, obtaining the following result.

Proposition 9. Let eλ be an eigenfunction of problem (3.2). Then eλ cannot have double zeros else-
where than at the piers.

If the eigenfunction has a double zero at the piers, its restriction to the central span is clamped,
while its restrictions to the side spans are partially hinged and partially clamped. Corollary 7 provides
an example (a = 1/2) where the eigenfunctions Oλ of (3.2) have this feature, but no zeros of order
greater than 2 are placed in the piers; in fact, the third derivative is therein defined - with nonzero
value - only for the C∞-eigenfunctions Oλ and Eλ. We thus define the number of “effective” zeros of
an eigenfunction eλ in I by

i(eλ) =

 #{x ∈ I− ∪ I0 ∪ I+ | eλ(x) = 0} if e′λ(aπ) 6= 0

#{x ∈ I− ∪ I0 ∪ I+ | eλ(x) = 0}+ 2 if e′λ(aπ) = 0.

Hence, if eλ possesses double zeros at the piers, then we count them as two additional simple zeros.
The second result of this section gives a complete description of the placement of the zeros of the

eigenfunctions; we postpone its lengthy proof to Section 5.6. In order to give the statement, fixed
a ∈ (0, 1) we underline the dependence of the eigenfunctions on a, denoting en by eλn(a), n = 0, 1, 2, . . .

Theorem 10. For a ∈ (0, 1), it holds that i(en) = n, for every n = 0, 1, 2, . . .. Fixed an integer n > 0,
on decreasing of a the zeros of eλn(a) move by couples from the central span to the side spans whenever
the curve λ = λn(a) intersects one of the hyperbolas {λ = Λk/a}, for some integer k > 0 having the
same parity as n.

By looking at Figure 11, we see that the hyperbolas {λ = Λk/a} describe a countable set of lines,
each of which intersects the countable set of curves representing the eigenvalues in a countable number
of points. Therefore, double zeros in the piers are possible only for a countable set of values of a < 1,
that is,

for almost every 0 < a < 1 all the eigenfunctions have simple zeros in the piers.

Theorem 10 states that a double zero is placed in a pier (and by symmetry also in the other one)
each time that the curve (a, λn(a)) crosses the graph of one of the hyperbolas {λ = Λk/a} (with k
having the same parity as n). From there on, proceeding in the direction of decreasing a, the zeros
of en move from I0 to I+ (and I−); for any odd n and for a sufficiently small such that λn(a) lies
below the hyperbola {λ = Λ1/a}, all the zeros of en lie in the lateral spans, except for the zero in the
origin. For even n, the threshold becomes λn(a) < Λ0/a and no zeros of en at all belong to I0 below
this threshold. We represent this pattern for some odd eigenfunctions in Figure 11, where the numbers
(α, β) in parentheses denote, respectively, the number of zeros of the eigenfunction in (0, aπ) and in
(aπ, π). The sum α+ β is constant on each branch.

We conclude this section with a curiosity, namely a property regarding the asymptotic behavior of
the eigenvalues, which will be proved in Section 5.7.

Theorem 11. For every a ∈ (0, 1), any interval of width 3 contains at least three values of λ for which
µ = λ4 is an eigenvalue of (3.2). As a consequence,

lim
n→+∞

λn+1(a)

λn(a)
= 1 ∀a ∈ (0, 1). (3.13)
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a

λ

λ = Λ5(2, 0)

(1, 1)←(2, 0)

(1, 1)

(0, 2)←(1, 1)

(0, 2)

••
λ = λ5(a)

λ = Λ3
(1, 0)

(0, 1)←(1, 0)

(0, 1)

•
λ = λ3(a)

λ = Λ1
(0, 0)λ = λ1(a)

Figure 11: A visual description of Theorem 10 for the curves λ = λ2m+1(a).

3.3 Plots of some particular eigenfunctions

In this section, we focus on some given values of a, for which the eigenvalues are determined numerically,
and we plot some pictures of eigenfunctions. In particular, we consider the cases a = 14/25 (the ratio
of the spans of the Tacoma Bridge, according to [1]) and a = 1/2 portraited, respectively, in Figures
12 and 13. In all the plots, the dot • represents the position of the piers. We recall that for a = 1/2
there are eigenfunctions with double zeros in the piers, as stated in Corollary 7.

In Table 1 we quote the eigenvalues relative to the eigenfunctions plotted in Figures 12 and 13.

a µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11

14/25 1.74 13.8 35.5 47.3 84 205 409 533 633 1004 1684 2347

1/2 2.44 16 25.6 39 112 256 326 410 760 1296 1526 1785

Table 1: The least 12 eigenvalues of (3.1) for a = 14/25 and a = 1/2, with an approximation of 1%.

The possibility of having double zeros in the piers naturally leads to wonder whether positive eigen-
functions may exist, namely eλ(x) > 0 for every x ∈ I−∪I0∪I+. Of course, this can happen only for an
even eigenfunction. Moreover, by Proposition 9 the only possibility is to have double zeros in the piers,
since otherwise the eigenfunction would change sign crossing the piers. Due to the nodal properties of
the eigenfunctions stated in Theorem 10, this means that the only eigenfunction that can be positive
is the third one. Denoting by µ2(a) = λ4

2(a) the third eigenvalue, we are thus led to seek the value of
a such that λ2(a) = Λ0/a, where µ = Λ4

0 is the least eigenvalue of (3.7). We numerically find that

if a ≈ 0.3759, then µ2 ≈ 16.0863 (λ2 ≈ 2.00269) and the third eigenfunction is positive;
this is the only choice of (a, λ) for which an eigenfunction of (3.2) is positive.
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Figure 12: The first twelve L2-normalized eigenfunctions of (3.1) when a = 14/25.
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Figure 13: The first twelve L2-normalized eigenfunctions of (3.1) when a = 1/2.

In Figure 14, we plot the shape of the third eigenfunction e2 on varying of 0 < a < 1. It can be
seen how the global minima of e2 move when the side spans are enlarged. In particular, for a ' 0.3759
(resp. a / 0.3759) the minima are in the central span (resp. lateral spans).
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Figure 14: The third eigenfunction e2 for a = 1 (i.e., for the clamped beam), a = 2/3, a = 1/2 (first
line), a = 0.3759 (second line), a = 1/4, a = 1/8, a = 0 (third line).

4 A related second order eigenvalue problem

This section is motivated by the observation that the operator L defined on V (I) by 〈Lu, v〉V =
∫
I u
′′v′′

is not the square of the operator L defined on W (I) by 〈Lu, v〉W =
∫
I u
′v′, where

W (I) := {u ∈ H1
0 (I); u(±aπ) = 0} (4.1)

and 〈·, ·〉W denotes the duality pairing between W ′(I), the dual space of W (I), and W (I). Notice that,
since W (I) ⊂ C(I), the pointwise constraints still make sense.

We formalize this observation through the following statement.

Proposition 12. Let a ∈ (0, 1) and let eλ be an eigenfunction of (3.2) with associated eigenvalue
µ = λ4. Then

Υ2
λ :=

∫
I(e
′
λ)2∫

I e
2
λ

 = λ2 if eλ ∈ C∞(I)

< λ2 otherwise.
(4.2)

The proof of Proposition 12 is obtained in two steps. First, the inequality Υλ 6 λ follows from an
integration by parts and from the Hölder inequality:∫

I
(e′λ)2 6

∫
I
|eλe′′λ| 6

(∫
I
e2
λ

)1/2(∫
I
(e′′λ)2

)1/2

= λ2

∫
I
e2
λ.

Then, this inequality is an equality if and only if eλ and e′′λ are proportional and, according to Theorem
6, this happens if and only if eλ ∈ C∞(I).

The number Υλ in (4.2) may be seen as a “correction term” due to the presence of the piers and
highlights a striking difference compared with the beam without piers, for which Υλ = λ for all λ.
Because of Υλ, there is no coincidence between the eigenvalues of (3.1) and the squares of the ones of∫

I
e′w′ = µ

∫
I
ew ∀w ∈W (I). (4.3)
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We provide some spectral results also for (4.3), giving their proof in Section 5.8.

Theorem 13. The eigenvalues µ = κ2 of problem (4.3) are completely determined by the numbers
κ > 0 such that

(i) sin(κaπ) sin[κ(1− a)π] = 0 or (ii) cos(κaπ) sin[κ(1− a)π] = 0,

that is,

(i) κ ∈ N
a
∪ N

1− a
or (ii) κ ∈ 2N + 1

2a
∪ N

1− a
. (4.4)

• If κ /∈ N/(1− a), denoting by χ0 the characteristic function of I0, then:
- in case (i), µ = κ2 is a simple eigenvalue associated with the odd eigenfunction Dκ(x) = χ0(x) sin(κx);
- in case (ii), µ = κ2 is a simple eigenvalue associated with the even eigenfunction Pκ(x) = χ0(x) cos(κx).
• If κ ∈ N/(1− a), then the following situations may occur:
- if κ /∈ N/a and κ /∈ (2N+ 1)/2a, then µ = κ2 is a double eigenvalue associated with the eigenfunctions

Dκ(x) =


sin[κ(x+ π)] if x ∈ I−

0 if x ∈ I0

sin[κ(x− π)] if x ∈ I+,

Pκ(x) =


sin[κ(x+ π)] if x ∈ I−

0 if x ∈ I0

sin[κ(π − x)] if x ∈ I+,

respectively odd and even;
- if κ ∈ N/a, then µ = κ2 is a triple eigenvalue associated with Dκ, Pκ and Dκ;
- if κ ∈ (2N + 1)/2a, then µ = κ2 is a triple eigenvalue associated with Dκ, Pκ and Pκ.

Notice that (4.4)-(i) corresponds to odd eigenfunctions, while (4.4)-(ii) to even ones. The eigenfunc-
tions of (4.3) are obtained by juxtaposing the eigenfunctions belonging to H1

0 of each span, since there
are no smooth junction constraints; for this reason, in general they are not C1. It is also worthwhile
noticing that the eigenvalues may be both simple or multiple. Simple eigenvalues are always associated
with eigenfunctions being zero on the side spans. Multiple eigenfunctions exist when κ ∈ N/(1 − a)
and, in this case, the choice of the associated eigenfunctions is quite arbitrary. In the case of a double
eigenvalue, we have chosen to maintain the distinction between odd and even generators, as in Theorem
6. For triple eigenvalues, we chose to separate the behavior on the central span from the one on the two
side spans, at the price of losing regularity. Indeed, in this case C∞-eigenfunctions exist and coincide
with Oλ and Eλ appearing in Theorem 6, but associated with the eigenvalue µ = λ2: for the eigenvalues
µ = λ4 of (3.2) associated with Oλ and Eλ one has in fact Υλ = λ, see (4.2). Observe that there are
no triple eigenvalues if a /∈ Q.

This choice of the eigenfunctions is motivated by the possibility of analyzing separately the behavior
on the central span, that is the most vulnerable part in bridges. Other equivalent bases are possible:
for instance, one could replace Dκ and Pκ by the functions having only one nontrivial component on
I− and I+, respectively. In Figure 15 we depict the curves of eigenvalues in the plane (a, κ): the bold
hyperbolas correspond to κ ∈ N/(1− a), the dashed lines to κ ∈ (2N + 1)/2a and the dot-dashed ones
to κ ∈ N/a.

We close the section providing a formula which identifies simple, double and triple eigenvalues. To
this purpose, we introduce the real sequence {ωn}n defined by

ωn =
n+ 1

n+ 3
, n > −1,

so that ωn → 1 for n→ +∞ and the first ωn’s are equal to 0, 1
3 ,

1
2 ,

3
5 ,

2
3 . We have the following statement,

which can be proved by noticing that the simple eigenvalues of (4.3) are given by the numbers n/2a,
n ∈ N.
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Figure 15: A pictorial description of the curves of eigenvalues for (4.3), in the (a, κ)-plane.

Proposition 14. The following facts hold:
• if ωn−1 < a 6 ωn, then the first n eigenvalues of (4.3) are simple (n > 0); moreover, if a = ωn, then
the (n+ 1)-th eigenvalue is triple;
• if 1

2m+3 6 a < 1
2m+1 , then the first m eigenvalues of (4.3) are double, with an odd and an even

eigenfunction (m > 0); moreover, if a = 1
2m+3 , then the (m+ 1)-th eigenvalue is triple.

In particular, we infer that the first eigenvalue is simple for a > 1/3, triple for a = 1/3, double
for a < 1/3. Moreover, the second eigenvalue is simple for a > 1/2 and triple for a = 1/2. Overall,
Proposition 14 states that the multiplicity increases on low eigenvalues when a is small and, since
multiplicity plays against stability,

when dealing with nonlinear problems it appears more convenient to consider large a.

Each bold hyperbola in Figure 15 carries a double eigenvalue, with one even and one odd eigenfunc-
tion, while each of the dashed and dot-dashed hyperbolas therein carries a simple eigenvalue, alternating
even and odd eigenfunctions. In Figures 16 and 17 we depict the shape of the first ten/twelve eigen-
functions for a = 1/2 = ω1 and a = 14/25 ∈ (ω1, ω2), and in Table 2 we quote the corresponding
eigenvalues: in case of multiple eigenvalues we plot first Dκ or Pκ (if they exist), then Dκ, finally Pκ.

a µ0 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

14/25 0.797194 3.18876 5.1653 5.1653 7.17474 12.7551 19.9299 20.6611 20.6611 28.6989

1/2 1 4 4 4 9 16 16 16 25 36

Table 2: The least ten eigenvalues of (4.3) for a = 14/25 and a = 1/2.
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Figure 16: The shape of the first ten eigenfunctions of (4.3) when a = 14/25.

Figure 17: The shape of the first twelve eigenfunctions of (4.3) when a = 1/2.

5 Proofs

5.1 Proof of Theorem 1

It is well-known that an orthogonal basis of the space H2 ∩H1
0 (I) is formed by the eigenfunctions of

the eigenvalue problem

u′′′′(x) = µu(x) x ∈ I, u(±π) = u′′(±π) = 0.

Some calculus computations show that the eigenvalues and the eigenfunctions are given by

n4

16
and sin

n(x+ π)

2
(n ∈ N).

Writing u ∈ H2 ∩H1
0 (I) in Fourier series with respect to this basis, that is,

u(x) =
∞∑
n=1

αn sin
n(x+ π)

2
with αn =

1

π

∫ π

−π
u(s) sin

n(s+ π)

2
ds,

and imposing the pointwise conditions in (2.1), we obtain the following characterization of the space
V (I):

u ∈ V (I) ⇐⇒
∞∑
n=1

αn sin
n(1− b)π

2
=
∞∑
n=1

αn sin
n(1 + a)π

2
= 0.
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This double constraint on the αn’s shows that the space V (I) has codimension 2. On the other hand,
let h ∈ H2 ∩H1

0 (I) be a continuous and piecewise affine function on [−π, π], namely

h(x) =


α(x+ π) if x ∈ [−π,−bπ]

α(b− 1) + β(1− a)

a+ b
x+

αa(1− b) + βb(1− a)

a+ b
π if x ∈ [−bπ, aπ]

β(π − x) if x ∈ [aπ, π]

for some α, β ∈ R. Then, by integration by parts on each of the intervals I−, I0, I+, it is immediately
checked that ∫

I
hu′′ = 0 ∀u ∈ V (I).

This fully characterizes V (I)⊥. The functions v1 and v2 are found explicitly by integrating twice the
function h for a suitable choice of the integration constants and by imposing vanishing conditions at
the endpoints ±π.

5.2 Proof of Theorem 3

Existence and uniqueness of the weak solution u ∈ V (I) follow directly from the Lax-Milgram Theorem,
since γ > 0.

(i) By arguing as in [7, Lemma 2.2] and performing an integration by parts similar to that in [14,
Example 1] in the final part, we find that a weak solution u(x) of (2.6)-(2.2) belongs to C2(I) and is
of class C4 on each subinterval I−, I0 and I+. Moreover, by performing two integration by parts on
each subinterval, the terms computed in −bπ, aπ compensate (due to the C2-regularity); Definition 2
is then fulfilled only if u′′(±π) = 0, due to the arbitrariness of v ∈ V (I).

(ii) In order to prove this statement, we introduce a general procedure for the analysis of (2.6) that
we first describe in detail in the case γ = 0. Let f ∈ C0(I) and consider the classical solution Uf of the
problem

U ′′′′f (x) = f(x) x ∈ I, Uf (−π) = Uf (−bπ) = Uf (aπ) = Uf (π) = 0.

Clearly, Uf ∈ C4(I) ∩ V (I) but Uf may not be a weak solution (according to Definition 2) because it
may fail to fulfill the conditions U ′′f (−π) = U ′′f (π) = 0 required by the just proved Item (i). Wishing to
satisfy (2.8), we add to Uf three third order polynomials Pb, P0, Pa defined, respectively, in [−π,−bπ],
[−bπ, aπ], [aπ, π], satisfying

Pb(x)=(x+π)(x+bπ)(Ax+Bπ), P0(x)=(x+bπ)(x−aπ)(Cx+Dπ), Pa(x)=(x−aπ)(x−π)(Ex+Fπ),

P ′b(−bπ)=P ′0(−bπ), P ′′b (−bπ)=P ′′0 (−bπ), P ′a(aπ)=P ′0(aπ), P ′′a (aπ)=P ′′0 (aπ).

(5.1)
The first line in (5.1) guarantees that these polynomials vanish at the endpoints of the interval where

they are defined, whereas the second line in (5.1) ensures that they match C2 in {−bπ, aπ}. Then we
introduce two further constraints of no bending at the endpoints, that is,

P ′′b (−π) = −U ′′f (−π) =: fb, P ′′a (π) = −U ′′f (π) =: fa. (5.2)

The first line in (5.1) introduces six unknowns A, B, C, D, E, F , to be determined. The second line
in (5.1) gives four equations, whereas (5.2) gives two further equations, all being linear and linking the
six unknowns. The former four conditions are “structural” since they only depend on a and b, while
the two latter conditions are “forced” since they also depend on the source f through the function Uf .
Since these six equations are linearly independent, they uniquely determine the unknowns A, B, C, D,
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E, F . Take these constants and replace them into the polynomials in (5.1). Then the solution of (2.8)
has the form

u(x) = Uf (x) +


Pb(x) if x ∈ [−π,−bπ]

P0(x) if x ∈ [−bπ, aπ]

Pa(x) if x ∈ [aπ, π].

(5.3)

Next, we analyze the possible discontinuities of the third derivative of this weak solution. In view of
(5.1) and (5.3), we have

u′′′(−bπ+)− u′′′(−bπ−) = P ′′′0 (−bπ)− P ′′′b (−bπ) = 6(C −A) =: βf ,

u′′′(aπ+)− u′′′(aπ−) = P ′′′a (aπ)− P ′′′0 (aπ) = 6(E − C) =: αf .
(5.4)

Therefore, we may rewrite (2.6) with γ = 0 in the following distributional form:

u′′′′ = f + βfδ−bπ + αfδaπ, (5.5)

which completes the proof of Item (ii) in the case γ = 0.
If γ = 4ν4 > 0, consider the classical solution Uf of the problem

U ′′′′f (x) + 4ν4Uf (x) = f(x) x ∈ I, Uf (−π) = Uf (−bπ) = Uf (aπ) = Uf (π) = 0. (5.6)

Such a solution exists and is unique: one may fulfill the four-point conditions in (5.6) by adding to any
solution of the differential equation in (5.6) a suitable linear combination of the functions in

K :=
{

cos(νx) cosh(νx), cos(νx) sinh(νx), sin(νx) cosh(νx), sin(νx) sinh(νx)
}
,

which generate the 4-dimensional kernel of the operator w 7→ w′′′′ + 4ν4w. Again, Uf may not be a
weak solution and, in order to satisfy (2.8), we seek three linear combinations of the functions in K,
that we call Pb, P0, Pa, defined respectively in I−, I0, I+, and satisfying the conditions

Pb(−π) = Pb(−bπ) = 0, P0(−bπ) = P0(aπ) = 0, Pa(aπ) = Pa(π) = 0,

P ′b(−bπ) = P ′0(−bπ), P ′′b (−bπ) = P ′′0 (−bπ), P ′a(aπ) = P ′0(aπ), P ′′a (aπ) = P ′′0 (aπ),

P ′′b (−π) = −U ′′f (−π), P ′′a (π) = −U ′′f (π).

(5.7)

The first line in (5.7) guarantees that these combinations vanish at the endpoints of the interval where
they are defined. The second line in (5.7) ensures that they match C2 in {−bπ, aπ}. The third line in
(5.7) forces the solution to have no bending at the endpoints, in line with Item (i). Overall, (5.7) contains
twelve conditions. There are also twelve unknowns: the four coefficients of the linear combinations of
the elements in K, for each of the three functions Pb, P0, Pa. One finds these unknowns by solving the
corresponding linear system and the weak solution of (2.8) is again given by (5.3). The same arguments
used for (5.4) and (5.5) lead to the distributional equation u′′′′ + 4ν4u = f + βfδ−bπ + αfδaπ. This
completes the proof of Item (ii) also for γ > 0.

(iii) The subspace X(I) ⊂ C0(I) is defined by the two (linear) constraints βf = αf = 0.
(iv) In view of (5.4), we have u ∈ C3(I) if and only if βf = αf = 0 which, by the just proved Item

(iii), yields u ∈ C4(I).
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5.3 Proof of Theorem 5

Since e(x) is of class C4 on I−, I0 and I+ in view of Theorem 3, we can write

e(x) =


eb(x) if x ∈ [−π,−bπ]

e0(x) if x ∈ [−bπ, aπ]

ea(x) if x ∈ [aπ, π],

(5.8)

where eb, e0 and ea are classical solutions of e′′′′ = λ4e on their intervals of definition. Consequently,
on each span, e(x) is a linear combination of the four functions

cos(λx), sin(λx), cosh(λx), sinh(λx). (5.9)

We thus seek the coefficients of all the nonzero linear combinations of (5.9) for which e(x) as in (5.8)
is a solution of (3.2).

By imposing that eb(−π) = e′′b (−π) = eb(−bπ) = 0, one finds that (Kb ∈ R)

eb(x) = Kb

{
sinh

[
λ(1− b)π

]
sin
[
λ(x+ π)

]
− sin

[
λ(1− b)π

]
sinh

[
λ(x+ π)

]}
.

By imposing that ea(π) = e′′a(π) = ea(aπ) = 0, one finds that (Ka ∈ R)

ea(x) = Ka

{
sinh

[
λ(1− a)π

]
sin
[
λ(x− π)

]
− sin

[
λ(1− a)π

]
sinh

[
λ(x− π)

]}
.

Finally, by requiring that e0(−bπ) = e0(aπ) = 0 one deduces that (K1,K2 ∈ R)

e0(x) = K1

{
sinh

[
λ(a+ b)π

]
cos(λx) + cos(λbπ) sinh

[
λ(x− aπ)

]
− cos(λaπ) sinh

[
λ(x+ bπ)

]}
+K2

{
sinh

[
λ(a+ b)π

]
sin(λx)− sin(λbπ) sinh

[
λ(x− aπ)

]
− sin(λaπ) sinh

[
λ(x+ bπ)

]}
.

Then (3.2) is satisfied if and only if these functions match C2 in −bπ and in aπ, so that the eigenfunction
e in (5.8) belongs to C2(I). This leads to a 4 × 4 linear system of Kb, Ka, K1, K2, and nontrivial
solutions are obtained by imposing that the determinant of such system is equal to 0. This requirement
is precisely the condition in the statement.

5.4 Proof of Theorem 6

Thanks to the symmetry of the interval I, we can seek odd and even eigenfunctions of (3.2) separately.
Moreover, we can restrict our attention to the half-interval [0, π], aiming at determining e0, ea such that

e(x) =

 e0(x) if x ∈ [0, aπ]

ea(x) if x ∈ [aπ, π]
(5.10)

solves (3.2) (recall (5.8)); the expression of e over [−π, 0] is then obtained by prolonging (5.10) by
symmetry, either even or odd. Following this scheme, we only have to impose the C2-matching of the
functions e0 and ea in x = aπ.

Using the same notation as in the proof of Theorem 5, when searching for odd solutions this leads to
set K1 = 0 and results into the system(cos[λ(1−a)π]sinh[λ(1−a)π]−sin[λ(1−a)π]cosh[λ(1−a)π])Ka =2 cosh(λaπ)(cos(λaπ)sinh(λaπ)−sin(λaπ)cosh(λaπ))K2

sin[λ(1−a)π] sinh[λ(1−a)π]Ka + 2 sin(λaπ) sinh(λaπ) cosh(λaπ)K2 = 0.

(5.11)

Nontrivial solutions of this system exist when the associated determinant is equal to zero, namely when
(3.3) holds. We distinguish two cases:
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- if λ ∈ N, then (3.3) has to hold with both sides equal to 0, so that necessarily λa ∈ N and,
consequently, also λ(1− a) ∈ N. The second equation in (5.11) is thus identically satisfied, while
the first equation reads

cos(λπ) sinh[λ(1− a)π]Ka = 2 cosh(λaπ) sinh(λaπ)K2

(recall that sin(λaπ) = 0, so that | cos(λaπ)| = 1). This yields the eigenfunction Oλ = sin(λx)
for the choices Ka = 1

cos(λπ) sinh[λ(1−a)π] , K2 = 1
2 cosh(λaπ) sinh(λaπ) ;

- if λ /∈ N, then by (3.3) it is necessarily λa /∈ N and λ(1 − a) /∈ N. The explicit form of Oλ can

then be derived by using the second equation of system (5.11), choosing Ka = − sin(λaπ)
sin[λ(1−a)π] and

K2 = sinh[λ(1−a)π]
2 cosh(λaπ) sinh(λaπ) .

This completes the proof for odd eigenfunctions.
Similarly, the search for even solutions leads to set K2 = 0 and results into the system{

(sin[λ(1−a)π]cosh[λ(1−a)π]−cos[λ(1−a)π]sinh[λ(1−a)π])Ka =2 sinh(λaπ)(cos(λaπ)sinh(λaπ)+sin(λaπ)cosh(λaπ))K1

sin[λ(1−a)π] sinh[λ(1−a)π]Ka + 2 cos(λaπ) sinh(λaπ) cosh(λaπ)K1 = 0.

The proof is here analogous to the one for odd eigenfunctions: the determinant associated with the
system is equal to zero if and only if (3.4) holds, and a similar analysis to the one performed above
yields the result.

5.5 Proof of Theorem 8

The linear operator L defined on V (I) by 〈Lu, v〉V =
∫
I u
′′v′′ is self-adjoint. Hence, its eigenfunctions

form a basis of V (I). For the rest of the proof, it is convenient to make a change of variables. We set
Λ = λa and α = 1/a, so that α ∈ (1,+∞) and the eigenvalue problem (3.1) is rephrased as∫

J
e′′v′′ = µ

∫
J
ev ∀v ∈ V (J), (5.12)

being J = (−απ, απ), J = J− ∪ J0 ∪ J+, with J− = [−απ,−π], J0 = [−π, π] and J+ = [π, απ], and
V (J) = {u ∈ H2 ∩H1

0 (J); u(−π) = u(π) = 0} . With this procedure, we view the piers as fixed in ±π
and move the endpoints ±απ of the beam. Accordingly, (3.3) and (3.4) are changed, respectively, into

sin(Λαπ) sinh(Λπ) sinh[Λ(α− 1)π] = sinh(Λαπ) sin(Λπ) sin[Λ(α− 1)π] (5.13)

cos(Λαπ) cosh(Λπ) sinh[Λ(α− 1)π] = cosh(Λαπ) cos(Λπ) sin[Λ(α− 1)π], (5.14)

and the corresponding eigenfunctions OΛ and EΛ are given, respectively, by the odd and the even
extensions of

Oλ(x) =


sinh[Λ(α− 1)π]

sinh(Λπ)
(sinh(Λπ) sin(Λx)− sin(Λπ) sinh(Λx)) if x ∈ [0, π]

sin(Λπ)

sin[Λ(α− 1)π]
(sin[Λ(α− 1)π] sinh[Λ(x− απ)]− sinh[Λ(α− 1)π] sin[Λ(x− απ)]) if x ∈ [π, απ],

and

Eλ(x) =


sinh[Λ(α− 1)π]

cosh(Λπ)
(cosh(Λπ) cos(Λx)− cos(Λπ) cosh(Λx)) if x ∈ [0, π]

cos(Λπ)

sin[Λ(α− 1)π]
(sinh[Λ(α− 1)π] sin[Λ(απ − x)]− sin[Λ(α− 1)π] sinh[Λ(απ − x)]) if x ∈ [π, απ],

while OΛ and EΛ respectively become equal to sin(Λx) and cos(Λx) for x ∈ J . Furthermore, the
hyperbolas λ = Λn/a in the (a, λ)-plane become the horizontal lines Λ = Λn in the (α,Λ)-plane, and
the curves defining the eigenvalues become strictly decreasing, as we state in the following theorem.
This is well depicted in Figures 18 and 19.

The statement that we are going to prove in this new framework is the following.
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Figure 18: The solutions λ = λ(a) of (3.3) and (3.4) (left) and Λ = Λ(α) of (5.13) and (5.14) (right).

Theorem 8’. For any α > 1, the eigenvalues µ = Λ4 of problem (5.12) are simple and form a countable
set. Moreover, (5.13) and (5.14) implicitly define, for α ∈ (1,+∞), a countable family of analytic and
strictly decreasing functions α 7→ Λn(α) satisfying Λn(α)→ Λn (see (3.8)) for α→ 1 (n=0, 1, 2, . . . ).

The proof of Theorem 8’ is based on two lemmas. With the first one, we characterize the eigenvalues
of problem (5.12) as functions of α. To this end, we define I, P : (1,+∞)× (0,+∞)→ R as

I(α,Λ) = sin(Λαπ) sinh(Λπ) sinh[Λ(α− 1)π]− sinh(Λαπ) sin(Λπ) sin[Λ(α− 1)π],

P (α,Λ) = cos(Λαπ) cosh(Λπ) sinh[Λ(α− 1)π]− cosh(Λαπ) cos(Λπ) sin[Λ(α− 1)π].

Moreover, we denote by CI and CP the 0-level sets of I and P , respectively, and we observe that they
are characterized by (5.13) and (5.14). We prove the following result.

Lemma 15. The equalities I(α,Λ) = 0 and P (α,Λ) = 0 implicitly define a family of analytic strictly
decreasing functions α 7→ Λ(α) on each connected component of CI and CP , respectively.

Proof. We carry on a detailed proof only for the odd eigenfunctions, since the arguments for the even
ones are similar. We set C0

I := CI ∩{(α,Λ) | Λ ∈ N} and we denote the partial derivatives with respect
to Λ and α through the subscripts Λ and α. Since

Iα(α,Λ) = Λπ(cos(Λαπ) sinh(Λπ) sinh[Λ(α− 1)π] + sin(Λαπ) sinh(Λπ) cosh[Λ(α− 1)π]

− cosh(Λαπ) sin(Λπ) sin[Λ(α− 1)π]− sinh(Λαπ) sin(Λπ) cos[Λ(α− 1)π]),

noticing that Λ ∈ N is equivalent to Λα ∈ N for the solutions of I(α,Λ) = 0 we immediately have that

Iα∣∣
C0
I

= Λπ cos(Λαπ) sinh(Λπ) sinh[Λ(α− 1)π], (5.15)

while some computations show that

Iα∣∣
CI\C

0
I

= Λπ sin(Λπ) sinh(Λπ)
sin[Λ(α− 1)π]2 − sinh[Λ(α− 1)π]2

sin[Λ(α− 1)π] sinh[Λ(α− 1)π]
. (5.16)
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On the other hand,
IΛ
∣∣
C0
I

= απ cos(Λαπ) sinh(Λπ) sinh[Λ(α− 1)π], (5.17)

and

IΛ
∣∣
CI\C

0
I

=
α− 1

Λ
Iα(Λ, α) + π sin[Λ(α− 1)π] sinh[Λ(α− 1)π]

sin(Λπ)2 − sinh(Λπ)2

sin(Λπ) sinh(Λπ)
. (5.18)

Therefore, Iα and IΛ are everywhere different from zero on CI and

Iα · IΛ > 0 for every (α,Λ) ∈ CI ; (5.19)

the sign in (5.19) is obtained on C0
I by using (5.15) and (5.17), while on CI \C0

I we see that (5.16) and
(5.18) both have the sign of − sin(Λπ) sin[Λ(α − 1)π]. As for (5.18), notice that the second summand
therein has the same sign as the first. Thus (5.19) follows and, by the Implicit Function Theorem, the
curves depicted in Figure 9 are graphs of an analytic function Λ = Λ(α) in any neighborhood of each
point of CI ; moreover, the function α 7→ Λ(α) is strictly decreasing in view of (5.19).

The statement for even eigenfunctions can be obtained by reasoning in an analogous way on the

function P , changing C0
I with C0

P := CP ∩
{

(α,Λ) | Λ− 1
2 ∈ N

}
. �

We now determine the limits of the function α 7→ Λ(α) for α→ 1 and α→ +∞.

Lemma 16. For any curve Λ = Λ(α) whose graph is a connected subset of CI or CP , there exists a
unique n ∈ N such that

lim
α→1+

Λ(α) = Λn. (5.20)

Moreover, this correspondence is one-to-one.

Proof. We restrict again our attention to odd eigenfunctions, the arguments for the even ones being
similar. Since α 7→ Λ(α) is strictly decreasing by Lemma 15, the limit in (5.20) exists and we denote it
by Λ̂. To compute Λ̂, we analyze the behavior of Λ(α) in a neighborhood of the point (α,Λ) = (1, Λ̂),
parametrizing its graph as the curve

Λ(s) = Λ̂ + l(s), α(s) = 1 + β(s), (s > 0), l(0) = β(0) = 0.

We first notice that
sin[Λβ(s)π]

sinh[Λβ(s)π]
= 1 + o(1) as s→ 0.

Therefore, if we perform an asymptotic expansion of the identity I(α(s),Λ(s)) ≡ 0 as s→ 0, we obtain

sin
[
(Λ̂ + l(s))(1 + β(s))π

]
sinh

[
(Λ̂ + l(s))π

]
= sinh

[
(Λ̂ + l(s))(1 + β(s))π

]
sin
[
(Λ̂ + l(s))π

]
(1 + o(1)).

Introducing the infinitesimal ε(s) := l(s) + Λ̂β(s), the last identity reads(
sin
[
Λ̂π
]

+ cos
[
Λ̂π
]
ε(s)π + o(ε(s))

)(
sinh

[
Λ̂π
]

+ cosh
[
Λ̂π
]
l(s)π + o(ε(s))

)
=
(

sinh
[
Λ̂π
]

+ cosh
[
Λ̂π
]
ε(s)π + o(ε(s))

)(
sin
[
Λ̂π
]

+ cos
[
Λ̂π
]
l(s)π + o(ε(s))

)
(1 + o(1)).

After computing all the products, some terms cancel. Then, by dropping the lower order terms and by
recalling that I(α,Λ) ≡ 0, we obtain

sin(Λ̂π)

sinh(Λ̂π)
=

cos(Λ̂π)

cosh(Λ̂π)
,
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namely Λ̂4 satisfies (3.8) and therefore it is an odd eigenvalue of (3.7).
We now prove that for every eigenvalue Λn of the clamped problem (3.7) there exists exactly one

connected branch of eigenvalues of (3.2) emanating from it. We consider the hyperbolas

Hn = {(α,Λ) | Λα = n}, n ∈ N.

From (3.8) we deduce that for every couple of consecutive integers n and n + 1, there exists a unique
odd eigenvalue Λ̂ of the clamped problem (3.7) such that (1, Λ̂) belongs to the region delimited by Hn
and Hn+1: precisely, Λ̂ = Λ2n−1. Moreover, since

I(α,Λ)=sin(Λαπ)
[
sinh(Λπ) sinh[Λ(α−1)π]−sinh(Λαπ) sin(Λπ) cos(Λπ)

]
+sinh(Λαπ) sin2(Λπ)cos(Λαπ)

changes sign passing from Hn to Hn+1, there exists at least one curve Λ = Λ(α) of solutions of
I(α,Λ) = 0 included therein. In fact, such a curve is unique, since formula (5.18) implies that on
each branch emanating from (1,Λ2n−1) the function IΛ has strictly the same sign: this would be a
contradiction in presence of multiple branches, since on each branch it is I(α, λ) = 0. �

Lemmas 15 and 16 prove all the statements of Theorem 8’ and thus all the ones of Theorem 8, except
the limit λn(a)→ Λ∗n for a→ 0. For even eigenfunctions, the limit is obtained simply by letting a→ 0
in (3.4), noticing that the limit equation is the one defining the eigenvalues Λ∗n (recall (3.8) and (3.11)).
For odd eigenfunctions, this does not work since it produces an identity; the thesis instead follows from
the just proved fact that λn(a)→ Λn for a→ 1 (Lemma 16), together with the invariance of (3.3) upon
the substitution a 7→ 1− a.

5.6 Proof of Theorem 10

As in the proof of Theorem 8, we work with the variables Λ = λa and α = 1/a. In view of Theorem 8,
we can sort the eigenvalues of (5.12) in increasing order {Λ0,Λ1,Λ2, . . .} and label the corresponding
eigenfunctions again as {e0, e1, e2, . . .}. Theorem 10 is now rephrased as follows.

Theorem 10’. For α > 1, it holds that i(en) = n, for every n = 0, 1, 2, . . .. Moreover, as α increases,
the zeros of en = eΛn(α) move by couples from the central span to the side spans whenever the curve
Λ = Λn(α) intersects any of the horizontal lines {Λ = Λk}, for integers k > 0 having the same parity
as n.

The nice properties of the curves Λ = Λ(α), which we visualize in Figure 19, bring further evidence
of the convenience of the change of variables made above.

To prove Theorem 10’, we fix the notations

ko(Λ) =

[
Λ− 1

2

]
, ke(Λ) = [Λ], r(Λ) =

[
Λ(α− 1)− 1

2

]
, (5.21)

where [·] denotes the integer part and is set equal to 0 for negative numbers. Moreover, we introduce
the two functions

g(s) =
sin(sπ)

sinh(sπ)
− cos(sπ)

cosh(sπ)
, h(s) =

sin(sπ)

sinh(sπ)
+

cos(sπ)

cosh(sπ)
.

With these preliminaries, we first state a technical result.

Lemma 17. Let α > 1 be fixed. Let µ = Λ4 be an eigenvalue of (5.12), with corresponding eigenfunction
eΛ. If eΛ is odd, then its number of zeros in J0 is

2ko(Λ) + 1 if g(Λ) < 0, 2ko(Λ) + 3 if g(Λ) > 0, when ko(Λ) is odd;

2ko(Λ) + 1 if g(Λ) > 0, 2ko(Λ) + 3 if g(Λ) < 0, when ko(Λ) is even.
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α

Λ

Λ = Λ5

(2, 0)

(2, 0)→(1, 1)

(1, 1)

(1, 1)→(0, 2)

•

•
Λ = Λ5(α)

Λ = Λ3

(1, 0)

(1, 0)→(0, 1)

(0, 1)

•

Λ = Λ3(α)

Λ = Λ1

(0, 0)

Λ = Λ1(α)

Figure 19: A visual description of Theorem 8’ for odd eigenfunctions.

If eΛ is even, then its number of zeros in J0 is

2ke(Λ) if h(Λ) < 0, 2ke(Λ) + 2 if h(Λ) > 0, when ke(Λ) is odd;

2ke(Λ) if h(Λ) > 0, 2ke(Λ) + 2 if h(Λ) < 0, when ke(Λ) is even.

Finally, the number of zeros of eΛ in J− (and thus in J+) is

r(Λ) if g[Λ(α− 1)] < 0, r(Λ) + 1 if g[Λ(α− 1)] > 0, when r(Λ) is odd;

r(Λ) if g[Λ(α− 1)] > 0, r(Λ) + 1 if g[Λ(α− 1)] < 0, when r(Λ) is even.

Proof. We carry on a detailed proof only for odd eigenfunctions, the argument for the even ones being
similar. In this case, x = 0 is a zero of eΛ in J0; on this interval, we thus restrict our attention to the
sub-interval (0, π). Therein, the zeros of eΛ correspond to the zeros of the function

ζ(x) :=
sin(Λx)

sinh(Λx)
− sin(Λπ)

sinh(Λπ)
,

which we now count by focusing on the behavior of the sine-function appearing in the numerator. To
this end, observe first that ζ(x) is decreasing and positive for x ∈ (0, π/2Λ]. Therefore, if Λ 6 1/2 then
ζ(x) > 0 for every x ∈ (0, π), otherwise ζ(x) > 0 for every x ∈ (0, π/2Λ). In the former case, ko(Λ) = 0
and the statement is proved since tan(Λπ) > tanh(Λπ) for Λ ∈ (0, 1/2]. In the latter case, in any
interval of the kind [(2s + 1)π/2Λ, (2s + 3)π/2Λ], with s > 0 integer (corresponding to a “half-cycle”
of the sine function between two consecutive extremal values), ζ(x) has exactly one zero in view of the
Intermediate Value Theorem. Since there are exactly ko(Λ) such intervals strictly contained in (0, π),
we obtain ko(Λ) zeros in (0, π). We then find at least 2ko(Λ) + 1 zeros in J0; however, there may be
another zero in the “residual” interval R = ((2ko(Λ) + 3)π/2Λ, π), where the sine function does not
perform a complete half-cycle. Indeed, since ζ(π) = 0, there is a supplementary zero in (0, π) if and
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only if ζ has in R a local extremum with opposite sign with respect to ζ((2ko(Λ) + 3)π/2Λ). This
happens if and only if e′Λ(π−) < 0, so that g(Λ) > 0 when ko is odd, and e′Λ(π−) > 0, so that g(Λ) < 0
when ko is even. Similar arguments prove the statement for the lateral spans. This completes the proof
of the lemma. �

In Lemma 17 we have not considered the cases when g(Λ) = 0 or h(Λ) = 0 (and similar conditions
on the lateral spans). This is due to the fact that

eΛ(±π) = e′Λ(±π) = 0, that is, a double zero appears in the piers ⇐⇒ g(Λ)h(Λ) = 0. (5.22)

Indeed, it is immediate to check that (5.22) may be fulfilled only for the eigenfunctions OΛ and EΛ for
which, respectively, such condition reads

g(Λ) = 0 and g[Λ(α− 1)] = 0,

h(Λ) = 0 and g[Λ(α− 1)] = 0.

We continue the proof of Theorem 10, carrying on the details only for odd eigenfunctions, the case of
even eigenfunctions being similar. Let Λ2m+1 be an odd eigenvalue of (3.7) for some integer m > 0.
The strategy is to start from the point (1,Λ2m+1) of the (α,Λ)-plane and to show that the number of
zeros along the branch (α,Λ(α)) is constant, so that it equals #{x ∈ J0 | ψ2m+1(x) = 0} = 2m+ 1 as
can be checked by recalling (3.9); here, Λ(α) is the function found and characterized in Theorem 8’.

To this end, we introduce some notations. We define the open strips determined by the horizontal
lines {Λ = Λ2k+1} in the (α,Λ)-plane, that is,

R0 = R+ × (0,Λ1), Rk = R+ × (Λ2k−1,Λ2k+1), k = 1, 2, 3, . . . ; (5.23)

notice that, since Λn ≈ n/2 + 3/4 by (3.8), such strips contain one horizontal line corresponding to an
integer Λ; more precisely, the line {Λ = k} is contained in Rk−1.

We denote by C2m+1 the branch (α,Λ(α)) that begins at (1,Λ2m+1) and continues in the direction of
increasing α and, for k 6 m, we set Ck2m+1 := C2m+1 ∩Rk. Notice that, recalling (3.8), it holds

sgn g(Λ) = (−1)k on Ck2m+1. (5.24)

By (5.22), we know that in correspondence of C2m+1 ∩ {Λ = Λ2k+1} the eigenfunction eΛ(α) displays a
double zero in the piers. By (3.8) and (3.9), we have that Λ2m+1 ≈ m + 5/4 and ψ2m+1 has 2m + 1
zeros in J0. Hence, if α − 1 is sufficiently small, by continuity it turns out that ko(Λ) = ko(Λ2m+1)
and r(Λ) = 0: therefore, the numbers of zeros on the central span J0 and on the lateral spans J± are
maintained equal to 2m+ 1 and 0, respectively, in a neighborhood of (1,Λ2m+1) while following C2m+1

(notice that g has constant sign on Cm2m+1, that g[Λ(α− 1)] > 0 for α close to 1 and that the procedure
to count the number of zeros in J0 used to prove Lemma 17 holds as well for the eigenfunctions of
the clamped problem on [−π, π]). By Lemma 17, on growing of α these numbers are ruled by the
maps ko(Λ(α)) and r(Λ(α)) defined in (5.21); indeed, in view of (3.8), following the (decreasing) branch
C2m+1 the curve Λ = Λ(α) alternatively crosses the lines {Λ = n + 1/2} for integers n 6 m, and
{Λ = Λ2k+1} for integers k < m. The following lemmas detect the changes in the number of zeros of
the eigenfunctions on each span in correspondence of such crossings.

Lemma 18. The number of zeros of eΛ(α) in J0 decreases by 2 at each crossing of Λ = Λ(α) with the
lines {Λ = Λ2k+1}, elsewhere it does not vary.

Proof. Recalling (5.24), we see that whenever the branch Λ = Λ(α) crosses the lines Λ = Λ2k+1, k < m,
the integer ko(Λ) remains constant but g(Λ) changes sign, so that the number of zeros on J0 changes
from 2ko(Λ) + 3 to 2ko(Λ) + 1. This proves the first part of the statement.
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On the other hand, any crossing with the lines {Λ = n + 1/2} does not modify the total number of
zeros in the spans, since in this case ko(Λ) changes parity but g(Λ) maintains the same sign. To see
this, assume first that m is odd; then, the sign of g(Λ) is negative in view of (5.24), implying that
above the line Λ = n + 1/2 it is ko(Λ) = m (odd) and the corresponding eΛ has 2ko(Λ) + 1 = 2m + 1
zeros, and below such line ko(Λ) = m− 1 (even) and eΛ possesses 2ko(Λ) + 3 = 2(m− 1) + 3 = 2m+ 1
zeros. If m is even, a similar argument holds. �

Lemma 19. The numbers of zeros of eΛ(α) in J− and in J+ both increase by one unit at every crossing
of Λ = Λ(α) with the lines {Λ = Λ2k+1}, elsewhere they do not vary.

Proof. We begin by stating three facts which follow from some calculus arguments. For the sake of
brevity, we only give a hint of their proof.

Fact (I). The hyperbolas

Hn =
{

(α,Λ) ∈ R2
+ | Λα = n

}
, n = 1, 2, . . . ,

are such that C2m+1 is contained in the region between Hm+1 and Hm+2 and is tangent to Hm+2, see
the left picture in Figure 20. The tangency points correspond to couples (α,Λ) for which eΛ ∈ C4(J).

To prove this, one can change variables by introducing the homeomorphism

Φ : (1,+∞)× (0,+∞)→ {(x, y) ∈ R2
+ | x > y}, (x, y) = Φ(α,Λ) = (Λαπ,Λπ), (5.25)

so as to straighten the hyperbolas Hn, which become vertical lines, see the right picture in Figure 20.
One can then check that Φ(C2m+1) is contained in the region between Φ(Hm+1) and Φ(Hm+2) and that
it is tangent to Φ(Hm+2). The second part of the statement follows from the fact that Λα = λ.

Figure 20: The hyperbolas Hn (left, dashed) and their images (right) through the map Φ in (5.25).

Fact (II). On the branch α 7→ Λ(α), it holds sgn g[Λ(α− 1)] = −sgn [g(Λ) sin(Λαπ)], so that

sgn g[Λ(α− 1)] = (−1)m+k+2 on Ck2m+1,

implying in particular
g[Λ(α− 1)] > 0 on Cm2m+1.
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This follows by rewriting (5.13) as

sin(Λπ) sinh(Λπ)(cos[Λ(α− 1)π] sinh[Λ(α− 1)π]− cosh[Λ(α− 1)π] sin[Λ(α− 1)π]) =

sin[Λ(α− 1)π] sinh[Λ(α− 1)π](sin(Λπ) cosh(Λπ)− cos(Λπ) sinh(Λπ)),

and using (5.24) and Fact (I), which says that

sgn sin(Λαπ) = (−1)m+1 on C2m+1.

Fact (III). The hyperbola

H̃n =

{
(α,Λ) ∈ R2

+ | Λ(α− 1) = n+
1

2

}
, n = 0, 1, . . .

crosses C2m+1 if and only if n 6 m. In this case, the intersection between H̃n and C2m+1 is unique and
takes place in the strip Rm−n (recall the notation introduced in (5.23)).

This is quite evident in the left picture in Figure 21. Through the change of variables Φ defined in
(5.25) one may again straighten the considered hyperbolas, as displayed in the right picture in Figure
21. Then one rewrites (5.13) in this new coordinate system as

sin(x) sinh(y) sinh(x− y) = sinh(x) sin(y) sin(x− y). (5.26)

Noticing that the regions Φ(Rk) remain horizontal strips, while the vertical lines Φ(Hn) depicted in
the right picture in Figure 20 determine lower and upper bounds for x on each transformed branch
Φ(C2m+1), one can then show that there exists a unique intersection between Φ(H̃n) and Φ(C2m+1) for x
within such bounds. This may be done rigorously by combining equation (5.26) with x−y = (n+1/2)π:
existence and uniqueness of the solutions of this system follow from monotonicity arguments. Notice
that, in correspondence of the hyperbola H̃n, the number r(Λ) changes.

Figure 21: The hyperbolas H̃n and their straightening through the map Φ in (5.25).

With these three facts, we can now complete the proof of the statement. In the strip Rm, the branch
C2m+1 crosses the hyperbola H̃0 thanks to Fact (III) but, according to Lemma 17, no zeros appear in the
lateral span in correspondence of such intersection, since r(Λ) remains equal to 0 and g[Λ(α−1)] > 0 on
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Cm2m+1. Thanks to this fact and with a similar argument, using again Lemma 17 it is possible to show

that none of the crossings with the hyperbolas H̃n contributes to modify the number of zeros in the
lateral span. Indeed, by Fact (III) the hyperbola H̃n crosses C2m+1 in Rm−n, with r(Λ) passing from
n− 1 to n in correspondence of the intersection. Moreover, by Fact (II) sgn g[Λ(α− 1)] = (−1)2m+2−n

in a neighborhood of the intersection. Lemma 17 then applies, showing that the number of zeros of
eΛ in J− and J+ is not affected by this crossing. On the other hand, at each crossing of C2m+1 with
{Λ = Λ2k−1}, k 6 m, the integer r(Λ) remains constantly equal to m − k, but sgn g[Λ(α − 1)] passes
from (−1)m+k+2 to (−1)m+k+1, so that by Lemma 17 eΛ(α) acquires a zero in J− and a zero in J+. �

The proof of Theorem 10’ follows from Lemmas 18 and 19.

5.7 Proof of Theorem 11

From Fact (I) in the proof of Lemma 19, using the notations therein, we know that C2m+1 lies between
Hm+1 and Hm+2, which means that

λ2m+1 ∈ [m+ 1,m+ 2]. (5.27)

In turn, this means that any interval of the kind [m,m + 1] (for integer m > 1) contains at least
an odd eigenvalue of (3.2) (namely, an eigenvalue with an odd label). By the nodal properties of
the eigenfunctions stated in Theorem 10, odd and even eigenvalues alternate and so, in the interval
[m,m+ 2], there are at least three eigenvalues, two odd and one even. The thesis follows from the fact
that any interval of width 3 contains an interval of the kind [m,m+ 2] for integer m.

5.8 Proof of Theorem 13

First, reasoning as in [6, Lemma 2.2], one can see that any solution of (4.3) is of class C∞ on each
single span I−, I0 and I+, but, differently from the fourth order case (3.1), it is not in general C1 on
the whole I. Any solution is a linear combination of the two functions cos(κx) and sin(κx) on each
span, so that the solutions over I are obtained by extending by symmetry

e(x) =

 e0(x) if x ∈ [0, aπ]

ea(x) if x ∈ [aπ, π],

where e0 = H0 sin(κx), ea(x) = K cos(κx) + H sin(κx) for odd eigenfunctions, while for the even ones
it is e0 = K0 cos(κx) and ea(x) = K cos(κx) + H sin(κx). Imposing the three vanishing conditions
in aπ and π, we obtain a 3 × 3 linear system in the unknowns H0,K,H (or K0,K,H) and nontrivial
solutions are obtained imposing that the determinant of such system is equal to 0. All the statements
of Theorem 13 are then obtained by mimicking the arguments developed in the proof of Theorem 6,
with obvious changes. �

We notice that, after a change of variables (a, κ) 7→ (α,K) similar to the one performed to prove
Theorems 8 and 10, the eigenvalue problem (4.3) is transformed into∫

J
e′w′ = µ

∫
J
ew ∀w ∈W (J),

where J = (−απ, απ) and W (J) := {u ∈ H1
0 (J); u(±π) = 0} . In Figure 22, we depict the eigenvalues

curves for such a problem; again, the change of variables seems to simplify the interpretation of the
pictures.
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Figure 22: A pictorial description of the eigenvalues curves for (4.3), in the (α,K)-plane.

6 Conclusions

In the present paper, Section 2, we have introduced all the basic tools for the analysis of hinged beams
with two piers. The functional and variational setting, as well as the spectral analysis, highlighted
some curious phenomena such as the explicit form of the underlying functional space and the lack of
regularity of weak solutions of the related equations. We showed that each pier reduces by one the
dimension of the functional space and inserts a Dirac delta within the equation. Of particular relevance
for future developments is the behavior of the eigenvalues of (3.2) as the position of the piers varies.
For this reason, we gave a full picture of the behavior of the nodes of the eigenfunctions of (3.2), a
feature that is essential also for engineers in order to study the oscillations of a bridge, see once again
Figure 10. Moreover, we showed that the functional space (of codimension two) does not allow to view
the fourth order eigenvalue problem (3.2) as the “squared” second order eigenvalue problem (4.3), a
fact that highlights how the stretching energy propagates in a disordered way across the piers.

As already mentioned, this theoretical framework will be used in a forthcoming work [3], where the
focus will be on the nonlinear analysis (both for beams and for degenerate plates) and stability issues
related to suspension bridges.

We finally mention two open issues related to the contents of this paper:

1) We have mainly considered the case of symmetric side spans (b = a). The main advantage of this
restriction is that one can deal with even and odd eigenfunctions, see the discussion in Section
3. But some suspension bridges, such as the three Kurushima Bridges (see [8, Figure 2.4.6]) have
asymmetric side spans. In this respect, let us also recall a forgotten suggestion from the 19th
century: while commenting the collapse of the Brighton Chain Pier (1836), Russell [17] claims
that the remedies I have proposed, are those by which such destructive vibrations would have been
rendered impossible. His remedies were to alter the place of the cross bars and to put stays
below the bridge which should be put at distances not perfectly equal. His scope was to break
symmetry in the longitudinal oscillating modes of the deck. Therefore, the optimal position of
the piers should also be discussed in the asymmetric framework, it is not even clear if symmetry
yields better stability performances: a full analysis for the case b 6= a and the comparison with
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symmetric side spans appears quite important and challenging.

2) Several suspension bridges, such as the San Francisco-Oakland Bay Bridge (see [15, Fig. 15.10]),
have more than two intermediate piers. Some of the results in the present paper may be extended
to the case of multiple intermediate piers. With the same proof as for Theorem 1, one can
show that the subspace of H2 ∩ H1

0 (I) with n interior vanishing constraints has codimension
n. Also Theorem 3 continues to hold with some obvious changes. However, a different and
general procedure seems necessary to prove smoothness of a solution, since problem (2.9) has
exactly the same number of constraints (four) as the order of the ODE. Furthermore, the spectral
analysis carried out in Section 2, including the discussion about the possible existence of positive
eigenfunctions (see Figure 14) appears much longer and possibly more difficult than in the case of
only two piers. In this respect, anyway, taking into account the definition of i(eλ) in Section 2, in
presence of n piers it would be reasonable that the only positive eigenfunction is the (n+ 1)-th.
But the main difficulty is certainly to determine the optimal length of the secondary spans in
order to minimize the dangerous energy exchanges within the main span.
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