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Abstract: The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers
in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft
configurations in their design phase. In this work, the mid-fidelity aerodynamic solver DUST,
which is based on the novel vortex particle method (VPM), was used to perform simulations of
the static and dynamic motion conditions of the Stability And Control CONfiguration (SACCON):
an unmanned combat aerial vehicle geometry developed by NATO’s Research and Technology
Organisation (RTO), which is used as a benchmark test case in the literature for the evaluation of
aircraft stability derivatives. Two different methods were exploited to extract the dynamic stability
derivative values from the aerodynamic coefficient time histories that were calculated with DUST.
The results for the mid-fidelity approach were in good agreement with the obtained experimental
data, as well as with the results obtained using more demanding high-fidelity CFD simulations.
This demonstrates its suitability when implemented in DUST for predicting the static and dynamic
behavior of airloads in different conditions, as well as in reliably predicting the values of stability
derivatives, with the advantage of requiring limited computational effort with respect to classical
high-fidelity numerical approaches and the use of wind tunnel tests.

Keywords: aerodynamics; dynamic derivatives; flight dynamics; vortex particle method; CFD

1. Introduction

Aircraft design is characterized by the need to predict the static and dynamic behavior
of a vehicle, and this begins with the preliminary stage of the process. Indeed, the ability
to obtain reliable and robust quantitative information is useful, as this helps to avoid the
need for future redesign operations. The knowledge of stability derivatives allows us,
in particular, to create linear aerodynamic models that can be implemented during the
preliminary development of aircraft control systems. It also allows for the computation of
the modes associated with the free response (i.e., the longitudinal short period, phugoid,
roll subsidence, spiral, and dutch roll), as well as to predict the time history of the loads
acting on the aircraft in more complex maneuvers. Consequently, different methods have
been developed for predicting aircraft control and stability behavior, and this has been
achieved using both experiments and numerical simulations.

The experimental methods used for the prediction of aerodynamic coefficients and
stability derivatives essentially include wind tunnel tests and flight tests, with the latter
representing the most reliable and safe method by which to obtain the required information
with a higher accuracy. However, they can only be performed at an advanced stage of
design since they require the availability of a working prototype of the aircraft. Wind
tunnel tests also provide a high degree of accuracy, but they are also characterized by
certain drawbacks such as the difficulty of calculating appropriate corrections for dynamic
tests due to the presence of walls and the model supporting a sting, which could alter the
airload’s evaluation. Moreover, experimental methods are characterized by the high cost
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associated with the manufacturing of a model or a prototype, as well as with the realization
of a complex test rig (particularly for dynamic tests [1]).

A first review of various experimental methods for estimating stability derivatives was
presented by K.J. Orkil-Ruckemann [2]. Starting from the 1970s, there was an increasing
demand for the development of accurate methodologies to estimate these quantities. This
demand arose in this historical period due to the interest in aeronautics in developing
aircraft that are capable of achieving higher angles of attack during extreme maneuvers
at faster speeds compared to their predecessors. With the advancement of computational
techniques, the information obtained from wind tunnels began to be utilized for a different
purpose. It was recognized that the most effective approach for determining stability
derivatives could only be achieved through the combined use of computational fluid
dynamics (CFD) and experimental techniques. Hence, wind tunnel tests began to be
exploited to create large databases that are useful for validating and complementing com-
putational code outputs. The Advisory Group for Aerospace Research and Development
(AGARD), for example, started certain activities in the 1990s that aimed at obtaining large
amounts of experimental data, which were then to be coupled with numerical results [3].
Schütte et al. [4] presented a collection of dynamic experiments that were useful for the
validation of CFD codes. More recently, a huge experimental campaign aimed at deter-
mining the ability of computational methods to accurately predict the static and dynamic
stability derivatives that were performed in the frame of NATO RTO/STO AVT-161 and
AVT 201 [5]. These task groups [6] were focused on providing “best practice” procedures
for predicting the static and dynamic behavior of an aircraft, where there was also a focus
on non-linear effects. In particular, in the frame of the AVT-161 task group, the unmanned
combat aerial vehicle (UCAV) aircraft configuration of the Stability And Control CON-
figuration (SACCON) was tested at the DNW-NWB and in NASA’s 14x22-foot Langley
tunnel [1]. The experimental results obtained for this aircraft configuration were considered
in different studies within international projects (e.g., MEGAFLUG, AeroSUM, SikMA,
and SimSAC [7]) for validating the numerical evaluations of dynamic derivatives. Further
studies associated with the estimation of the stability and control characteristics of low-
aspect-ratio aircraft are provided in [8], where the work of AVT Task Group 189 described
how unsteady, reduced aerodynamic models can be obtained from the estimation of stabil-
ity derivatives. Moreover, Pfnür et al. [9] concluded that the damping derivatives of the
SAGITTA flying wing, which were analyzed through the aerodynamic responses to oscilla-
tions, revealed non-linearities and varying stability across different freestream conditions,
with the vertical tail notably enhancing the yaw damping. Bergmann et al. [10] presented
a comprehensive historical overview focusing on the experimental methods employed
by the DNW-NWB (the low-speed wind tunnel in Braunschweig, Germany). The article
also described the implementation of an oscillatory motion test rig during dynamic tests.
In particular, the rolling and spinning derivative support (RDT) system—which allows
for a continuous rotation motion around the wind longitudinal axis—and the innovative
model-positioning mechanism (MPM)—a six-degrees-of-freedom mechanism with parallel
actuation—were described in detail.

Semi-empirical lower-order models were found to be the simplest computational
models used when considering computational methods for the calculation of static and
dynamic stability derivatives (even if they are characterized by the lowest degree of fidelity).
These methods are based on the use of empirical formulas coupled with simple aerodynamic
theories (such as strip theory and 2D aerodynamic theories), and they allow for a direct
estimation of the stability derivatives of the aircraft. For example, the USAF Stability
and Control DATCOM [11] is a database collection of methods for estimating stability
and control parameters. Modern computational techniques provide different solutions
for the appropriate estimation of stability derivatives, and they are also characterized
by different levels of fidelity. These techniques include, for example, the use of high-
fidelity computational fluid dynamics (CFD) as URANS solvers or linear methods such as
vortex lattice methods (VLMs). Mialon et al. [7] presented an overview of the numerical
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activity performed within the SimSAC project. In particular, in that work, numerical
predictions from the CFD simulations and linear methods (vortex lattice method and
doublet lattice method) were compared with the experimental results on the DLR-F12 and
Transonic CRuiser (TCR) configurations. The comparison with both static and dynamic
test results showed that the linear methods exhibited good correlation with the CFD and
experimental data, particularly at relatively low angles of attack prior to the onset of
separations and the formation of complex vortical structures. J.F. Roy and S. Morgan [12]
performed high-fidelity CFD simulations to validate the use of the elsA software for the
calculation of aircraft static and dynamic stability derivatives when using the SACCON
UCAV configuration as a benchmark. The results obtained in this latter work will be used
as a comparison for the validation of the mid-fidelity approach proposed in the present
paper. Moreover, Frink [13] presented a systematic study through which to guide the
selection of a numerical solution strategy for the URANS computation of aircraft that are
undergoing periodic motion about their body axes using the SACCON aircraft geometry.
Da Ronch et al. [14] presented two test cases for calculating stability derivatives using the
CFD software PMB of the University of Liverpool. The procedure for computing dynamic
stability derivatives, starting from the loads’ time history, is presented in detail in this
work; furthermore, two methodologies, in particular, are exploited. The first consists of
computing stability derivatives as Fourier coefficients of the temporal history of force and
momentum coefficients, while the second consists of performing a regression of the data
to obtain the stability derivatives as the solution of a least squares problem. Nevertheless,
high-fidelity CFD simulations still require a huge computational effort to accurately predict
the flow phenomenology, particularly when considering the dynamic motion conditions of
complex aircraft and rotorcraft configurations. These characteristics make this approach
unsuitable for the preliminary design stage of a novel aircraft configuration since it requires
different geometries, as well as different flight conditions, to be tested.

On the other hand, mid-fidelity methods, which have been widely investigated in
the literature, have been made suitable for the calculation of stability derivatives with low
computational effort. For instance, the vortex lattice method was used in the work by
Tomac et al. [15] to calculate the aerodynamic characteristics of the SACCON configuration,
and they compared their obtained results with higher fidelity methods. Another example
is the work by Boschetti et al. [16], where an unsteady vortex lattice method was used
for evaluating the ground effect in aerodynamic coefficients. Moreover, the work by
Green et al. [17] showed the comparisons of the numerical and experimental evaluations of
static and dynamic aerodynamic coefficients for the F-16XL aircraft (which is characterized
by extreme geometries and a delta wing). In particular, in this work, three different
methods for obtaining separate stability derivatives using a low-order, time-dependent
panel methodand CFD were compared.

Recently, Politecnico di Milano developed a novel, flexible mid-fidelity aerodynamic
computational tool called DUST, which aims at representing a fast and reliable asset for
the simulation of the aerodynamics of complex aircraft configurations such as electrical
vertical take off and landing (eVTOL) aircraft and tiltrotors. DUST is an open-source
code that was released under an MIT license and that integrates different aerodynamic
models for solid bodies as thick surface panels, thin vortex lattice elements, and lifting line
elements. Moreover, a vortex particle method (VPM) was implemented for wake modeling,
whereby a stable Lagrangian description of a free-vorticity flow field was provided, which
is suitable for the numerical simulations of configurations that are characterized by strong
aerodynamic interactions. Details about the mathematical formulation of the solver can
be found in [18]. The DUST tool enables one to consider the simulations of complex
geometries, ones that are characterized by the presence of multiple rotors and that create
arbitrarily imposed complex motions. These features, when combined with a robust VPM
for wake modeling, allowed for easier and faster aerodynamic simulations of aircraft
or rotorcraft dynamic conditions when compared to CFD (this was even the case when
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also accurately considering the interactional aerodynamic phenomena that are typical of
eVTOLs and tiltrotors [19,20]).

The present work, therefore, aims at investigating the capability of the DUST mid-
fidelity aerodynamic solver in performing a preliminary evaluation of the static and dy-
namic stability derivatives of aircraft configurations in their design phase, as well as to
understand the limits of the application of this new tool. In particular, numerical simula-
tions were performed in this framework for both the static attitudes and dynamic motions
over the SACCON configuration, which is considered a benchmark aircraft, as was con-
ducted in [12]. The results obtained with the DUST simulations were used to compute
the static and dynamic derivatives of the SACCON geometry using two different methods
that have been described in the literature [14]. The accuracy of the static and dynamic
derivatives obtained using the mid-fidelity numerical tool were then validated by compari-
son with the experimental data from [1] and with the results from Roy and Morgan [12],
which were obtained using high-fidelity CFD simulations. The novelty of the present work
is in showing the robustness and capability of the modern mid-fidelity numerical solver
DUST with respect to evaluating a key feature in the design process of an aircraft as the
calculation of aerodynamic dynamic derivatives. In particular, the advantages and limits of
the present approach will be discussed via a thorough comparison with the experimental
and CFD results.

This paper is organized as follows. Section 2 provides a summary of the mathematical
model used to compute the dynamic stability derivatives, including both the methods
described in the literature and a review of the oscillatory motions to be implemented for
their calculation. Section 3 provides a brief description of DUST’s mathematical formulation.
Section 4 provides a description of the numerical model that was built in DUST for the
simulations of the SACCON aircraft configuration. Section 5 presents a comparison and
discussion of the results that were obtained from the DUST simulations with respect to the
experiments and high-fidelity CFD simulations’ evaluation available in the literature for
the same test case. The conclusions are drawn in Section 6.

2. Dynamic Stability Derivative Calculation Methodology

The computation of dynamic stability derivatives was performed by imposing a
sinusoidal oscillatory motion on the aircraft in its partial or complete configuration around
a material point that belongs to its volume (typically, the center of gravity). The definition
of the main stability derivatives along with the aircraft motions to be considered for their
calculation are briefly summarized in Table 1.

Table 1. Definition of the stability derivatives in the aircraft body axes (Figure 7b) and oscillatory
motions to be simulated for their calculation.

X Axis Y Axis Z Axis

Rolling Clp + Clβ̇
sin α CYp + CYβ̇

sin α Cnp + Cnβ̇
sin α

Pitching CXq + CXα̇
Cmq + Cmα̇ CZq + CZα̇

Yawing Clr − Clβ̇
cos α CYr − CYβ̇

cos α Cnr − Cnβ̇
cos α

Phugoid CXq Cmq CZq

Plunging osc. CXα̇
Cmα̇ CZα̇

The hypothesis underlying the definition of stability derivatives is that the aerody-
namic forces and moments acting on the aircraft follow a linear behavior with respect
to variations of both the angle of attack and its derivative, i.e., α, α̇, the angle of sideslip
and its derivative, that is, β, β̇, and the angular rates and accelerations in the body axes
(i.e., p, q, r, ṗ, q̇, and ṙ). Taking this hypothesis into account, it is then possible to use a
first-order Taylor series development for the description of the aerodynamic coefficients.
Non-linear, higher order, frequency-dependent, and time-dependent terms were neglected.
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In the following mathematical description, for the sake of consistency, only longitudinal
aerodynamic force coefficients were considered, while lateral and directional directions
will be described in detail in Section 2.3.

As demonstrated and described in [14], the following equation can be written for
longitudinal aerodynamic coefficients Cj (j can be X, Z or m):

∆Cj = Cj − Cj0 = Cjα ∆α +
l
v

Cjα̇ α̇ +
l
v

Cjq q + (
l
v
)2 Cjq̇ q̇, (1)

where l is the characteristic dimension of the aircraft (as well as the chord for the longitu-
dinal motions and the semi-span for the lateral-directional motions in the present work)
and v is the freestream velocity. Under the validity of Equation (1), the behavior of the
longitudinal aerodynamic coefficient Cj with respect to the angle of attack, i.e., the Cj − α
curve, follows an elliptical path, as shown in Figure 1. The following kinematic relations
were obtained by assuming an imposed sinusoidal motion with respect to the pitch axis:

∆α = αA sin(ωt),
α̇ = q = ω αA cos(ωt),
α̈ = q̇ = −ω2 αA sin(ωt).

(2)

Figure 1. Graphical representation of the extraction of the dynamic derivative.

Then, by substituting the terms of (2) in Equation (1), we obtained

∆Cj = αA (Cjα − k2Cjq̇) sin(ωt) + αA k (Cjα̇ + Cjq) cos(ωt), (3)

where (Cjα − k2Cjq̇) is the “in-phase” stability derivative of the aerodynamic coefficient,
while (Cjα̇ + Cjq) is the “out-of-phase” derivative, which can also be defined as

C̄jα = (Cjα − k2Cjq̇),

C̄jq = (Cjα̇ + Cjq).
(4)

This led to obtaining the following expression for the aerodynamic coefficient:

∆Cj = αA C̄jα sin(ωt) + αA k C̄jq cos(ωt). (5)

Equation (5) provides the starting point for the two methods that are used to calculate
stability derivatives, i.e., the single-point method and the Fourier coefficient method, which
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are briefly described in the following for the sake of completeness. For a more detailed
description of the mathematical methods, the readers are referred to [14].

2.1. Single-Point Method

By inverting Equation (5), when ωt = 0, the out-of-phase stability derivative can be de-
rived. This operation coincides with measuring the thickness of the aerodynamic coefficient
hysteresis ellipse around α0 (see Figure 1). Substituting ωt = 0 in Equation (5) yields

∆Cj(t)
∣∣
t=tα0

= αA k C̄jq . (6)

Consequently, the dynamic stability derivative can be obtained as

C̄jq =
∆Cj(t)

∣∣
t=tα0

αA k
. (7)

Figure 1 shows that the extent of the ellipse area around α0 was proportional to the
combined out-of-phase stability derivative.

2.2. Fourier Coefficient Method

A second method, which is based on considering Equation (5) as a Fourier series
truncated at the first term, was then investigated.

The sine–cosine form of the Fourier series, from Ref. [21], reads as follows:

f (t) ∼ A0 +
∞

∑
n=1

(
An cos

(
2πnt

T

)
+ Bn sin

(
2πnt

T

))
(8)

A Fourier series allows us to represent a general periodic function as a sum of sinusoidal
functions (sine and cosine). The Fourier series coefficients are defined as

A0 =
1
T

∫ T/2

−T/2
f (t) dt

An =
2
T

∫ T/2

−T/2
f (t) cos

(
2πnt

T

)
dt

Bn =
2
T

∫ T/2

−T/2
f (t) sin

(
2πnt

T

)
dt. (9)

The Fourier series when truncated to the first harmonic can be written as

f (t) ∼ A0 + A1 cos
(

2πt
T

)
+ B1 sin

(
2πt
T

)
. (10)

However, the Taylor series expansion of the aerodynamic force coefficient Cj = f (t),
from Reference [14], can be written as follows:

f (t) = Cj0 + αAC̄jα sin(ωt) + αAk C̄jq cos(ωt). (11)

This equation represents a good approximation for the aerodynamic force or moment
coefficient as a function of time. It can be rewritten as

f (t) = Cj0 + αAC̄jα sin
(

2πt
T

)
+ αAk C̄jq cos

(
2πt
T

)
. (12)

By comparing (10) and (12), it is easy to see that the out-of-phase dynamic stability deriva-
tives C̄jq can be calculated starting from the following:

αA k C̄jq = A1. (13)
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When explicitly writing the expression of the Fourier coefficient A1, Equation (13) becomes

αAkC̄jq =
2
T

∫ T/2

−T/2
f (t) cos(ωt) dt. (14)

This can be rewritten as

C̄jq =
2

αA k T

∫ T/2

−T/2
f (t) cos(ωt) dt, (15)

which can be demonstrated to be equivalent to the following expression (when considering
nc the number of periods of oscillation):

C̄jq =
2

αA k ncT

∫ ncT

0
∆Cj(t) cos(ωt) dt. (16)

Equation (16) is the expression used within the context of the present dissertation to
compute the out-of-phase dynamic stability derivatives.

2.3. Simulated Motions for Dynamic Derivatives

As already mentioned, to calculate dynamic stability derivatives, the harmonic mo-
tions of the aircraft have to be simulated to evaluate the time histories of the aerodynamic
coefficients acting on the aircraft. A detailed description of the dynamic motions simulated
in the present work using the DUST software for SACCON is provided in the following.
On the other hand, static stability derivatives (Cjα , Cjβ ) can be computed via performing
aerodynamic simulations of the aircraft at various angles of attack or sideslip angles, which
is then followed by calculating the slope of the Cj − α or Cj − β curves. The linearity of the
relationship must be verified within the context of linear aerodynamics.

2.3.1. Rolling Oscillation

It was assumed that the harmonic roll maneuver (Figure 2) was performed at a zero
angle of attack and at an angle of sideslip (α, β = 0). The Taylor series expansion of
the lateral-directional aerodynamic coefficients, when coupled with the kinematic law of
motion, reads as follows:

∆Cj = Cj − Cj0 = l
v Cjp p + ( l

v )
2 Cjṗ ṗ

ϕ(t) = ϕA sin(ωt),
ϕ̇ = p = ω ϕA cos(ωt),
ϕ̈ = ṗ = −ω2 ϕA sin(ωt),

(17)

which can be rewritten as

∆Cj = −ϕA k2 (Cjṗ) sin(ωt) + ϕA k (Cjp) cos(ωt). (18)

Therefore, the methods described in Sections 2.1 and 2.2 can be applied to Equation (18).
Figure 2 shows a schematic of the rolling motion.

2.3.2. Pitching Oscillation

It was assumed that a harmonic pitch maneuver (Figure 3) is performed at a zero
angle of sideslip (β = 0). Both the angle of attack and the pitch angle were found to vary
sinusoidally. The Taylor series expansion of the longitudinal aerodynamic coefficients,
which was coupled with the kinematic law of motion, reads as follows:
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∆Cj = Cj − Cj0 = Cjα ∆α + l

v Cjα̇ α̇ + l
v Cjq q + ( l

v )
2 Cjq̇ q̇

∆α = θ(t) = αA sin(ωt),
α̇ = θ̇ = q = ω αA cos(ωt),
α̈ = θ̈ = q̇ = −ω2αA sin(ωt),

(19)

which becomes

∆Cj = αA (Cjα − k2Cjq̇) sin(ωt) + αA k (Cjα̇ + Cjq) cos(ωt). (20)

to which the methods described in Sections 2.1 and 2.2 may be applied.

Figure 2. Graphical representation of the rolling motion.

It is important to underline that, from this simulation, it was possible to only obtain the
combined out-of-phase dynamic derivative (Cjα̇ + Cjq ). To separate these two derivatives,
either a plunging oscillation (Section 2.3.5) or a phugoid motion (Section 2.3.4) is required,
even if (since the calculations are performed within the context of a linearized theory)
the value obtained from pitching is not perfectly coincident with the sum of the values
obtained from the phugoid and plunging oscillations. Figure 3 shows a schematic of the
pitching motion.

Figure 3. Graphical representation of the pitching motion.

2.3.3. Yaw Oscillation

A harmonic yaw motion, at a zero angle of attack (α = 0), was considered. The Taylor
series expansion, which was coupled with the kinematic law of motion, in this case, reads as

∆Cj = Cj − Cj0 = Cjβ ∆β + l
v Cjβ̇ β̇ + l

v Cjr r + ( l
v )

2 Cjṙ ṙ

ψ = −∆β = ψA sin(ωt),
ψ̇ = −β̇ = r = ω ψA cos(ωt),
ψ̈ = −β̈ = ṙ = −ω2 ψA sin(ωt),

(21)

which can be rewritten as

∆Cj = ψA (k2Cjṙ − Cjβ) sin(ωt) + ψA k (Cjr − Cjβ̇) cos(ωt). (22)
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These were applied once again similarly to the methods described in Sections 2.1 and 2.2.
The simulation enables one to obtain only the combined out-of-phase dynamic derivative
(Cjr − Cjβ̇ ). To separately obtain these two derivatives’ values, either a lateral oscillation
simulation or a lateral phugoid motion simulation needs to be performed. Figure 4 shows
a schematic of the yawing motion.

Figure 4. Graphical representation of the yawing motion.

2.3.4. Phugoid Oscillation

It was assumed that a phugoid motion is performed at a zero angle of attack (α = 0).
The phugoid motion is a longitudinal oscillatory motion of an aircraft. It is characterized
by alternating cycles of pitch-up and pitch-down movements. During the phugoid motion,
the aircraft experiences changes in altitude and pitch angle while maintaining a constant
angle of attack; hence, the only derivatives that appear in the Taylor series expansion are
the ones associated with the angular rate q as follows:

∆Cj = Cj − Cj0 = l
v Cjq q + ( l

v )
2 Cjq̇ q̇

θ(t) = θA sin(ωt),
θ̇ = q = ω θA cos(ωt),
θ̈ = q̇ = −ω2 θA sin(ωt),

(23)

which becomes
∆Cj = θA(−k2Cjq̇) sin(ωt) + θAk(Cjq) cos(ωt). (24)

It is to this that the methods described in Sections 2.1 and 2.2 may be applied. This
method permits one to directly evaluate the separated dynamic stability derivative Cjq .
Figure 5 shows a schematic of the phugoid motion.

Figure 5. Graphical representation of the phugoid motion.

It is important to note that, in the calculations derived from Equation (23), it is assumed
that the pitch angle time history θ(t) is known. Usually, it is easier to express the description
of the phugoid motion in terms of the amplitude of the oscillation in z, which is strictly
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related to the pitch angle θ by the fact that the angle of attack α0 must remain constant. If it
is assumed that

z(t) = zA sin(ωt + π/2)

ż(t) = ω zA cos(ωt + π/2),
(25)

then, if it is imposed that α = α0 = const., the relation between θA and zA is

θA = − zA ω

Vin f
. (26)

2.3.5. Plunge Oscillation

A harmonic plunging maneuver (one that features a rigid vertical translation and is,
therefore, q = 0) is defined as being performed with a zero angle of sideslip (β = 0). The
Taylor series expansion, which was coupled with the kinematic law of motion, was, thus,
simplified as 

∆Cj = Cj − Cj0 = Cjα ∆α + l
v Cjα̇ α̇

∆α = αA sin(ωt),
α̇ = ω αA cos(ωt),
α̈ = −ω2 αA sin(ωt),

(27)

which becomes
∆Cj = αA (Cjα) sin(ωt) + αA k (Cjα̇) cos(ωt). (28)

The methods described in Sections 2.1 and 2.2 could then again be applied. From this
simulation, it was possible to obtain the separate out-phase dynamic derivative Cjα̇ . This
information can be used together with the combined results of Section 2.3.2 Cjα̇ + Cjq to
derive the stability derivative Cjq . Alternatively, it was possible to calculate Cjq with a
phugoid simulation. Figure 6 shows a schematic of the phugoid motion.

Figure 6. Graphical representation of the plunging motion.

It is common to impose the value of the vertical translation ∆z when approaching a
plunging simulation. Once ∆z is fixed, it is easy to verify that the angle of attack amplitude
of the oscillation caused by the plunging motion is

αA =
∆z ω

Vin f
. (29)

3. DUST Mid-Fidelity Aerodynamic Software

DUST is an open-source software that was developed using the object-oriented
paradigms of the FORTRAN standards. It was designed to solve complex aerodynamics
problems with a flexible and reliable approach. The vortex particle method (VPM) is a
computational technique that involves discretizing the vorticity field using Lagrangian
particles. In the VPM, the velocity field is decomposed into a potential component and
a rotational component. The vorticity equation is resolved using a Lagrangian approach
(which will be briefly described later). In this formulation, a lifting body sheds a wake
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behind itself, and it starts from an identified trailing edge. Initially, the wake is modeled
with panels, where each panel represents a vortex ring. After each time step, the wake is
advected, and a new set of wake panels is shed from the lifting body. These wake panels
can then be converted into vortex particles, thereby providing a more robust formulation
of the wake.

The governing equation for the mathematical problem associated with the vortex
particle method implemented in DUST was based on the assumption of an incompressible
fluid. It was from the Stokes hypothesis (when applied to the constitutive equation of a
Newtonian fluid) that the following form of the Navier–Stokes equations was obtained:

∇ · u = 0, (30)

∂u
∂t

+ u · ∇u = −1
ρ
∇p + ν∇2u. (31)

The Helmholtz decomposition theorem was then applied, with which the velocity
field can be written as a sum of two different terms, i.e., an irrotational vector field uϕ and
a solenoidal vector field uψ, as follows:

uϕ = ∇ϕ, (32)

uψ = ∇ψ, (33)

where uϕ is the potential velocity, uψ is the rotational field, ϕ is the scalar potential, and ψ
is the vector potential. Thanks to their definitions, as well as by taking the divergence and
the curl of the decomposed velocity field, it was possible to obtain the Laplace equation
and the Poisson equation as follows:

∆ϕ = 0, (34)

−∆ψ = ω, (35)

where ω is the vorticity vector field, and under the incompressible fluid hypothesis, its
form reads as

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω. (36)

In the context of the vortex particle method (VPM), the vorticity field was approxi-
mated by a Lagrangian discrete method, and it was discretized through vortex particles
of intensity α(t) in position r(t). The Lagrangian elements were called vortex particles.
The approximation of the vorticity field can be written as

ω(r, t) =
Np

∑
i=1

αi(t)ξ(r − ri(t)), (37)

where ξ(r) is a cut-off function of the vorticity induced by the vortex particles. The evolution
equations for the position and intensity of a generic particle i can be derived by substituting
Equation (37) into Equation (36), thus obtaining

dr
dt

= u(ri(t), t), (38)

dαi
dt

= ∇u(ri(t), t)αi + ν′′∆αi
′′. (39)

The first equation describes the convection of the particle via the means of the local
flow velocity u(ri), while the second describes the variation in time of the intensity αi,
which was determined with a vortex stretching–tilting term and a vortex diffusion term.
Equation (38) is the governing equation of the problem.
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The rotational part of the velocity uψ(r, t) was produced from the vortex particles and
from the line vortices of the vortex panels. Starting from Equations (35) and (38), as well as
using Green’s function method, the rotational velocity can be calculated from the vorticity
field as follows:

uψ(ri, t) =
Np

∑
i=1

Kξ × αip , (40)

where K(r, r0) is the consistent velocity kernel—that is, the Biot–Savart kernel regularized
by the cut-off function ξ(r)—which eliminates the singularity of K(r, r0) when r is equal to
r0. This equation represents the contribution of the velocity induced by the particles. More
details about the formulation can be found in [18].

The potential velocity field uϕ(r, t) is instead generated by the superposition of surface
elementary singularities, ones that are associated with the aerodynamic element types,
surface panels, vortex rings, and lifting lines, as well as the part of the wake that is modeled
by panels.

4. DUST Numerical Model of the SACCON Aircraft

This section describes the numerical model built to perform the dynamic simulations
with DUST for the SACCON aircraft.

SACCON is an unmanned combat aerial vehicle (UCAV), which is characterized by
the configuration of a flying wing with a sweep angle of 53 degrees, and it is not equipped
with horizontal and vertical empennages. The geometrical scheme, with the dimensions
of the aircraft geometry, can be observed in Figure 7a. The chord at the aircraft centerline
that characterizes the fuselage was 1.608 m, while the chord at the wing root of the wing
(cre f , which is used for the calculation of the aerodynamic coefficients for the longitudinal
motions) was 0.479 m. The wing semi-span b/2 was used for the computation of the
aerodynamic coefficients for lateral and directional motions. The aerodynamic model of
the aircraft for the DUST simulations was built using surface panel elements.

Surface panels were used in DUST to model solid bodies with a non-negligible thick-
ness. Triangular or quadrilateral surface panel elements were used to discretize these
surfaces. A piecewise-uniform distribution of doublets and sources was associated with
these elements according to a Morino-like formulation for the velocity potential. In using a
uniform-intensity panel discretization and defining the intensity of the doublets and the
sources on the surface panels, the discrete counterpart of the problem was written as a
linear system, and it could be solved for the singularities’ intensities (implicit scheme).
The resulting formulation is shown in detail in [18]. Surface panel elements do not consider
viscous effects, and they are more costly with respect to the lifting line and vortex lattice
elements in terms of computational effort; however, having said that, they do not consider
thickness effects.

The reference system employed for the DUST simulations is depicted in Figure 7b. All
the oscillating motions simulated in the present work were performed around the point
of rotation, which is represented in Figure 7a, which also shows the moment reduction
reference point (MRP).

A spatial sensitivity analysis of the mesh was performed by considering static simu-
lations at a constant angle of attack. The selected flight condition for this study was char-
acterized by a freestream velocity of 50 m s−1 and an angle of attack of α = 5◦. Figure 8a
illustrates the variation in the aerodynamic coefficients Cz and Cm, which were computed
by changing the number of the surface panel elements in the chord while the spanwise
discretization was adjusted proportionally. The simulation results showed a particularly
small variation in the aerodynamic coefficients between the two finer configurations; thus,
the mesh with 20 elements along the wing chord was chosen as it provided the best compro-
mise between computational time and accuracy. Figure 8b shows the final mesh considered
in the present activity.
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(a)

(b)

Figure 7. (a) SACCON geometrical scheme, the moment reference point (MRP), and the point of
rotation (picture from [1]). (b) Definitions of the aerodynamic coefficients and reference frames.

A sensitivity analysis was also performed to assess the influence of the length of the
computational domain. This was conducted as DUST allows one to select the perimeter
within which the vortex particles are considered to be influencingthe aerodynamic problem.
The results shown in Figure 9 demonstrate that increasing the length of the domain by
more than 5 m provides a negligible variation in the computed aerodynamic coefficients.
Therefore, a domain length of 5 m was chosen for all the simulations performed in the
present activity.

A time step sensitivity analysis was also performed by considering the simulations
of the harmonic rolling motion of the aircraft. As shown by the DUST results presented
in Figure 10 (which were obtained by varying the time discretization of the simulations),
the solution was time step-independent, even for the especially small time steps. Conse-
quently, the time step ∆t = 0.00625 s (160 time steps in one period of dynamic oscillation)
was chosen for all the simulations performed in the present activity.
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(a)

(b)

Figure 8. (a) Results of the mesh discretization sensitivity analysis. (b) Final mesh of the SAC-
CON aircraft.

Figure 9. Results of the box length sensitivity analysis.

The computational time required to perform DUST simulations for each harmonic
motion condition using the numerical model parameters selected from these studies was
approximately a few minutes when using a single commercial laptop.
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Figure 10. Results of the time discretization analysis for the aircraft rolling motion.

5. Results and Discussion

The test conditions selected for the DUST simulations included both static tests. These
tests were performed by varying the angle of attack and the angle of sideslip, finalizing
them to obtain static stability derivatives, as well as for the rolling, pitching, yawing,
phugoid, and plunging motions (which allowed us to obtain a wide set of dynamic stability
derivatives for the aircraft object of this study). The flight parameters and freestream condi-
tions considered for the DUST simulations on the SACCON’s geometry are summarized in
Tables 2 and 3.

The DUST simulation results were validated in the present work using experimental
data, which are available from the tests at the DNW-NWB and the tests in NASA’s 14 × 22 ft
Langley subsonic tunnel [1]. Finally, some of the flight conditions considered by the DUST
simulations were compared with the high-fidelity simulations that were performed with
the elsA CFD software and that were used by ONERA in their contribution to the AVT161
RTO group [12].

Table 2. The flight parameters considered for the DUST simulations on the SACCON’s geometry.

Motion α0 k Amp. ϕ θ ψ

Static α 0, 3, 6, 9, 12, 15◦ / / 0◦ 0, 3, 6, 9, 12, 15◦ 0◦

Static β 10◦ / / 0◦ 10◦ ±0, 3, 6, 10◦

Rolling 0, 5, 10◦ 0.070 5◦ −5 to 5◦ 0, 5, 10◦ 0◦

Pitching 0, 5, 10◦ 0.060 5◦ 0◦ −5◦ to 15◦ 0◦

Yawing 0, 5, 10◦ 0.060 5◦ 0◦ 0, 5, 10◦ −5 to 5◦

Phugoid 5◦ 0.060 0.6 m 0◦ ±4.32◦ 0◦

Plunging 10◦ 0.150 0.05 m 0◦ 0◦ 0◦
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Table 3. Freestream conditions considered for the DUST simulations on the SACCON’s geometry.

Motion Vinf [m/s] ρinf [kg/m3] Ma Re Pinf [Pa]

Static α 50 1.225 0.147 1.63 × 106 101,325

Static β 50 1.225 0.147 1.63 × 106 101,325

Rolling 43 1.225 0.126 1.40 × 106 101,325

Pitching 50 1.225 0.147 1.63 × 106 101,325

Yawing 50 1.225 0.147 1.63 × 106 101,325

Phugoid 50 1.225 0.147 1.63 × 106 101,325

Plunging 50 1.225 0.147 1.63 × 106 101,325

5.1. Static Stability Derivative Analysis

In this section, the static simulation results are analyzed to validate the numerical
model built with DUST for the calculation of static stability derivatives. Each test point
was obtained by performing a time marching simulation of 2 s, and the integral load values
were extracted at the end of the transient after the solution reached a stationary condi-
tion. The freestream velocity for all simulations was set to 50 m s−1. For the simulations
performed by varying the sideslip angle, the angle of attack was kept constant at 10◦.

Figure 11 shows the aerodynamic coefficients calculated by DUST for static test condi-
tions as a function of the angle of attack when compared to the experiments and CFD data.
A good agreement with the data available in the literature was found for both the computed
vertical and horizontal force coefficients in the body axes’ reference frames (i.e., Cz and
Cx), as well as for the pitching moment coefficient (i.e., Cm). The offset of the experimental
curves from the numerical data, which was particularly evident for the pitching moment
curve, can be justified by the presence of the sting, which was not corrected in the wind
tunnel data. This was visible in [22], where the wind tunnel rear and ventral mountings
were compared, as well as in [6,23], where the CFD models did not include the sting and
the gap in the pitching moment was visible. Figure 12 shows the trend of the static stability
derivatives with respect to the angle of attack computed by extracting the slope of the
previous curves at each angle of attack that was tested. The static stability derivatives
evaluated by the experiments and CFD simulations were, again, particularly well repro-
duced by the data provided by the DUST simulations, thus validating the suitability of the
numerical model for this study within the linear aerodynamic region. Further validation of
the suitability of the mid-fidelity numerical tool is provided by Figure 13, wherein good
agreement with the pressure coefficient distributions calculated by DUST on the surface of
the SACCON aircraft with respect to the experimental data from the DNW-NWB T2373 and
high-fidelity numerical data was obtained from the CFD elsA. The pressure distributions
were evaluated on the measurement lines, which are visible in Figure 14b. Moreover,
the flow topology over the aircraft surface was also captured well by DUST with respect to
CFD [12,13], as shown by the visualization that was created of the surface streamlines and
pressure coefficient contours that are presented in Figure 14a and Figure 14b, respectively.
Figure 14c shows the flow field and pressure contours for α = 16.83◦, thereby showing
that DUST is not capable of capturing the complex flow topology that is generated by the
configuration, which is a consequence of the leading edge separation beginning and is
typical of delta wing aircraft.
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Figure 11. Static stability analysis: the aerodynamic coefficients as a function of the angle of attack
α in comparison with the CFD elsA [12] and DNW-NWB T2373 experiments [1]. Vinf = 50 m s−1,
Ma = 0.147, and Re = 1.63 × 106.

Figure 12. SACCON static stability derivatives with respect to the angle of attack in comparison with
the CFD elsA [12] and DNW-NWB T2373 experiments [1].

Figure 13. Pressure coefficient comparison that was evaluated at α = 10◦ on the aircraft longitudinal
sections defined in [1] in comparison with the CFD elsA [12] and DNW-NWB T2373 experiments [1].
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(a)

(b)

(c)

Figure 14. Streamline visualizations and pressure coefficient contours that were evaluated at α = 5.28◦,
α = 10◦, and α = 16.83◦. Comparison between the DUST and CFD simulations [12,13].

Figure 15 shows the aerodynamic coefficients that were calculated via DUST for the
static test conditions as a function of the sideslip angle in comparison with the experiments.

The roll moment coefficient Cl , lateral force coefficient CY, and yawing moment
coefficient Cn curves were found to be in good agreement with the experimental data that
were obtained by the DNW-NWB (test T2373 [1]) experiment, even if a slight discrepancy of
the curves’ slope was also found from the DUST simulation results. A partial justification
for these discrepancies could be provided by the fact that SACCON is a flying wing aircraft
without any vertical empennages, thus providing especially low values of lateral-directional
loads; nevertheless, the errors produced by the DUST simulations for all the considered
force and moment coefficients can be considered acceptable.
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Figure 15. Static stability analysis: the aerodynamic coefficients as a function of the sideslip angle
β in comparison with the DNW-NWB T2373 experiments [1]. Vinf = 50 m s−1, Ma = 0.147, and
Re = 1.63 × 106.

Figure 16 shows the static stability derivatives with respect to the sideslip angle, which
were computed by extracting the slope of the previous curves at each sideslip angle that
was tested. Considering the low values obtained due to the lack of vertical empennages,
the agreement of the calculations that are based on the DUST simulations may provide a
good preliminary indication of the stability derivative values.

Figure 16. SACCON static stability derivatives with respect to the sideslip angle in comparison with
the DNW-NWB T2373 experiments [1].

5.2. Dynamic Stability Derivatives Analysis

This section presents the results that were obtained using the DUST simulation out-
comes to compute the dynamic stability derivatives of the SACCON aircraft along the
rotation axes. All of the DUST simulations presented in this section were conducted with a
total marching time of 2 s.

5.2.1. Roll Dynamic Oscillation

In order to calculate the dynamic stability derivatives around the roll axis, the har-
monic rolling motions of the aircraft with an oscillation frequency were set to 1 Hz, and a
freestream velocity of 43 m s−1 was considered for the DUST simulations. In particular,



Aerospace 2024, 11, 213 20 of 28

different sinusoidal oscillation cycles with a roll angle amplitude fixed to ϕ = 5◦ around an
angle of attack of 0◦, 5◦, and 10◦ were simulated. A visualization of the solution computed
by DUST for a roll oscillation case is shown in Figure 17; there, the dissymmetry that
occurred due to the rolling-motion-induced velocity on the pressure coefficient distribution
is visible.
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Figure 17. Visualization of the DUST solution for the roll oscillation cycle with an amplitude of ϕ = 5°
around α = 0°. The particles were wake-colored by singularity intensities and the contour of pressure
coefficients on the wing surface. (a) ϕ = 0°, t = 0 T; (b) ϕ = +5°, t = 0.25 T; (c) ϕ = 0°, t = 0.5 T;
(d) ϕ = −5°, t = 0.75 T.

Figure 18, in particular, shows the hysteresis ellipses that were obtained for the aero-
dynamic coefficients of the oscillation cycles, which were calculated by DUST, with 0◦ and
5◦ mean angles of attack. A satisfactory agreement with the experimental data obtained by
NASA at Langley (test T134, Run 15 [1]) was clearly visible, thus highlighting the capabili-
ties of the mid-fidelity solver in reproducing the unsteady airloads that characterized the
dynamic test conditions.

When starting from the computed hysteresis ellipses that are shown in Figure 18,
the aircraft stability derivatives were extracted by using both of the methods described in
Sections 2.1 and 2.2. The results presented in Figure 19 show that, since the hypothesis
of the linear behavior turned out to be valid, the aerodynamic coefficients followed an
elliptical path; therefore, both methods used to calculate the dynamic derivatives provided
analogous outcomes. A particularly good agreement with the data was obtained by DUST
with respect to the experimental evaluation, as well as for the dynamic derivative values
(particularly for those oscillations around 0◦ and 5◦ mean angles of attack). A limited
discrepancy with respect to the experimental data can be observed for the roll oscillation
at a mean angle of attack equal to 10◦ (see Figures 19 and 20). This was most likely
due to the onset of a leading edge separation of the delta wing, which—in the dynamic
case—occurred at a lower angle of attack compared to the static case [24]. Despite this,
the good correspondence between the DUST and NASA Langley experimental results
confirmed the effectiveness of the mid-fidelity approach that was implemented in DUST,
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as well as the preliminary evaluation of the aircraft dynamic derivatives (which were
obtained with low effort with respect to the experimental test activities).

Figure 18. Roll oscillation aerodynamic coefficient time histories in comparison with the DUST
simulations and NASA’s Langley experiments, T134 and Run 15 [1]. Vinf = 43 m s−1, Ma = 0.126
and Re = 1.40 × 106.

Figure 19. Out-of-phase rolling dynamic stability derivatives that were computed with different
methods in comparison with the DUST and NASA Langley T134 and Run 15 experiments [1].
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Figure 20. The roll oscillation aerodynamic coefficient time histories at α0 = 10◦ in comparison
with the DUST simulations and NASA’s Langley T134 and Run 15 experiments [1]. Vinf = 43 m s−1,
Ma = 0.126, and Re = 1.40 × 106.

5.2.2. Pitch Dynamic Oscillation

In order to calculate the dynamic stability derivatives around the pitch axis, the sinu-
soidal pitching motions of the aircraft that had an oscillation frequency were set to 1 Hz,
and a freestream velocity of 50 m s−1 was considered for the DUST simulations. Different
sinusoidal pitching cycles were analogously reproduced in the rolling motion simulations
with an angle of attack amplitude that was fixed to α = 5◦ around a mean angle of attack of
0◦, 5◦, and 10◦.

Figure 21 shows the hysteresis ellipses of the vertical force and pitching moment
coefficients that were obtained via DUST for the pitching cycles with mean angles of attack
of 5◦ and 10◦ compared with the experimental curves measured under the same motion
conditions at the DNW-NWB [1].

Figure 21. Pitch oscillation aerodynamic coefficient time histories in comparison with the DUST sim-
ulations and DNW-NWB T2373 experiments [1]. Vinf = 50 m s−1, Ma = 0.147, and Re = 1.63 × 106.

The airload experimental hysteresis loop amplitudes were well captured via the DUST
simulations for both presented pitching motion test cases. The offset of the numerical curves
with respect to the experimental ones was again due to the presence of the supporting sting
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during the wind tunnel tests, albeit that these were not corrected in the result representation
(see the wind tunnel mounting dependency study in [22] and the CFD computations
without the sting in [6]).

Figure 22 shows the comparison of the dynamic stability derivatives that were com-
puted from the DUST pitching cycle simulations using both the single-point and Fourier
coefficient methods with the experimental data obtained from the DNW-NWB tests [1].
In particular, the stability derivatives presented in Figure 22 were combined derivatives,
as discussed in Section 2.3.2. Indeed, due to the nature of the pitching motion, it was not
possible to directly derive the stability derivatives of the force coefficient Cj separately from
a motion involving α̇ and q.

A good resemblance with the experimental data of the values obtained from the DUST
simulations can be observed from this comparison by using both of the methods. In par-
ticular, the dynamic behavior of the vertical force coefficient was especially limited, while
the pitching moment presented more accentuated dynamic characteristics. As observed in
the rolling motion test case, a limited discrepancy with respect to the experimental data
could be observed for the pitch oscillation with a mean angle of attack α = 10◦. This un-
derlined the limits of the mid-fidelity approach for the evaluation of aircraft aerodynamic
performances at high angles of attack that could be characterized by local or extended flow
separation regions.

Figure 22. The out-of-phase pitching dynamic stability derivatives that were computed with different
methods in comparison with the DUST and DNW-NWB T2373 experiments [1].

5.2.3. Yaw Dynamic Oscillation

In order to calculate the dynamic stability derivative around the yaw axis, sinusoidal
motions of the aircraft with an oscillation frequency set to 1 Hz and a freestream velocity
of 50 m s−1 were considered for the DUST simulations. The simulated motions were
characterized by oscillations with fixed amplitudes of ∆β = 5◦ while keeping the angle of
attack constant at α0 = 0◦, 5◦, and 10◦.

Figure 23 shows the airload hysteresis ellipses that were obtained via the DUST simu-
lations for the yawing motions around angles of attack of 0◦, 5◦, and 10◦. The comparison
of the experimental curves for the aerodynamic coefficients is not reported due to the lack
of the tests’ data in [1]. The numerical airload curves exhibited relatively small magnitudes
and hysteresis amplitudes, as was expected due to the absence of vertical empennages.
However, the slopes of the curves demonstrated consistent trends when compared to the
static curves shown in Section 5.1.

Figure 24 shows the yawing stability derivatives that were obtained from the DUST
simulations when compared to the data obtained from the experiments at the DNW-
NWBT2373 [1] under the same flight conditions. The experimental data are herein pre-
sented for the yawing motions. The lack of aircraft vertical empennages led to an increased
dispersion in the results. The yawing stability derivatives obtained from the DUST simula-
tions remained consistent with the experimental findings as their trend for all the motions
considered were inside the experimental data dispersion.
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Figure 23. The yaw oscillation aerodynamic coefficients’ time histories obtained via the DUST
simulations. Vinf = 50 m s−1, Ma = 0.147, and Re = 1.63 × 106.

Figure 24. The out-of-phase yawing dynamic stability derivatives that were computed with different
methods in comparison with the DUST and DNW-NWB T2373 experiments [1].

5.2.4. Phugoid Dynamic Oscillation

In order to calculate the separated pitching dynamic stability derivatives, i.e., those
influenced solely by the pitch rate q, a simulation of the phugoid motion (which was
described in detail in Section 2.3.4) was performed using DUST. In particular, the simulation
was conducted with a freestream velocity of 50 m s−1, an oscillation frequency of 1 Hz,
a plunge oscillation amplitude of 0.6 m, and a pitch oscillation amplitude of 4.32◦. The pitch
oscillation amplitude was calculated to maintain a constant 5◦ angle of attack for the aircraft.

The aerodynamic coefficient time histories for the vertical force and pitching moment
coefficients are presented in Figure 25, while Figure 26 presents the separated stability
derivatives extracted from the airload coefficient hysteresis curves. The values obtained
using the two previously described methods, starting from the DUST simulation outcomes,
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were compared with the results obtained from the high-fidelity CFD simulations (elsA [12]).
However, the high-fidelity CFD simulations were performed over a quasi-steady pitch-
ing motion, which allows one to calculate (similar to the phugoid motion) the stability
derivative Cjq . Indeed, a quasi-steady pitching motion refers to an aircraft’s motion that
is characterized by a constant pitch attitude over a specific period. The aerodynamic
forces acting on the aircraft were assumed to be primarily determined by the instanta-
neous pitch angle, and the effects of acceleration and transient phenomena were ignored.
This approximation allows for a simplified analysis and prediction of the aircraft’s behav-
ior in steady-state or quasi-steady conditions during pitching maneuvers. In particular,
the quasi-steady pitching flight condition tested with elsA was characterized by M = 0.17,
Re = 1.92 × 106 and a constant angle of attack α = 5◦.

Figure 25. The longitudinal phugoid motion aerodynamic coefficients time histories that were
computed with DUST. Vinf = 50 m s−1, Ma = 0.147, and Re = 1.63 × 106.

Figure 26. The SACCON separated pitch rate dynamic stability derivative in comparison with the
DUST simulations and high-fidelity CFD elsA experiments [12].

Figure 26 shows that, although the simulated motions were different, the methodolo-
gies led to especially similar results for the separate pitch stability derivative. This result
highlighted the potential of the mid-fidelity approach in obtaining a faster calculation of
the dynamic stability derivatives with the same degree of accuracy with respect to the
high-fidelity CFD.

5.2.5. Plunge Dynamic Oscillation

Finally, in order to calculate the separated dynamic stability derivatives, i.e., those
influenced solely by α̇, a plunge motion of the aircraft was simulated using DUST. The con-
sidered flight condition was characterized by a freestream velocity of 50 m s−1 and an
oscillation frequency of 2.5 Hz. By imposing a vertical translation motion with an am-
plitude of 0.05 m, it was possible to calculate the corresponding change in the angle of
attack during the period—which amounted to 0.90◦. A direct comparison of the computed
airloads with the experiments was possible as the same flight condition was tested at the
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DNW-NWB T2373 [1]. Figure 27 shows the comparison of the vertical force and pitching
moment coefficients as a function of the angle of attack, which was obtained from both
static and dynamic (plunging) tests. Once again, a shift of the numerical curves with respect
to the experimental ones can be observed due to the presence of the supporting sting in the
wind tunnel tests. Nevertheless, DUST captured the slope and the hysteresis amplitude
of the experimental vertical force coefficient particularly well, while the pitching moment
hysteresis amplitude was slightly underestimated.

Figure 27. The plunging motion aerodynamic coefficient time histories in comparison with the DUST
and DNW-NWB T2373 experiments [1]. Vinf = 50 m s−1, Ma = 0.147, and Re = 1.63 × 106.

The comparison of the separated α̇ dynamic stability derivative that was obtained from
the numerical and experimental aerodynamic coefficients hysteresis curves is presented in
Figure 28. The vertical force coefficient stability derivative that was computed from the
DUST simulations was well inside the experimental data dispersion related to the different
leading edge geometry that was used for the wind tunnel model. Meanwhile, the pitch
moment coefficient stability derivative was slightly underestimated by DUST with respect
to the experiments. This was probably due to the fact that, as already observed, one is close
to a condition of separation at α = 10◦ in the dynamic case. Nevertheless, the correlation
with the experimental values obtained from the DNW-NWB test campaign was again good.
This outcome represented a particularly interesting result considering the fact that the
DUST simulations only required low effort to obtain the dynamic stability derivatives
(which also applied for the complex dynamic motions of the aircraft).

Figure 28. The SACCON separated α̇ dynamic stability derivatives in comparison with the DUST
and DNW-NWB T2373 experiments [1].

6. Conclusions

The present activity aimed at investigating the potential in the use of a mid-fidelity
aerodynamic software for the calculation of the static and dynamic stability derivatives of
an aircraft. With this aim, a well-defined geometry as the SACCON UCAV was used as
the benchmark test case, which was possible thanks to the availability in the literature of a
comprehensive experimental database for the evaluation of the stability derivatives of this
aircraft. Simulations with the mid-fidelity solver DUST were performed to evaluate the
aircraft aerodynamic coefficients for both the static attitudes and harmonic motions of the
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aircraft, as well as their outcomes. These were used to, respectively, compute the static and
dynamic stability derivatives with two different mathematical methods.

The results that were obtained using the mid-fidelity numerical approach showed
good agreement with the experimental data, and they also provided a similar level of
accuracy with respect to the stability derivative values that were calculated with a high-
fidelity CFD approach (which is available in the literature). A limitation of the mid-fidelity
approach was found when considering the calculation of the dynamic stability derivatives
for harmonic motions around a high angle of attack: a higher discrepancy within the
experimental evaluation most likely occurs due to the occurrence of a consistent flow
separation, which could not be accurately reproduced by a VPMpanel.

Nevertheless, the low computational effort required for this approach and the good
accuracy obtained with respect to both the experiments and high-fidelity CFD open up new
scenarios in the evaluation of aircraft stability derivatives. Indeed, this numerical activity
was completely performed using the computing performance of a single commercial laptop
for all the static and harmonic motion simulations. Thus, the lesson learned from this
activity was that mid-fidelity aerodynamic solvers are in a mature state for improving
the level of accuracy regarding the preliminary design of novel aircraft configurations.
This is the case thanks to their capabilities of performing fast and accurate simulations,
thereby allowing one to characterize the aerodynamics and flight mechanics performance
parameters of complex aircraft architectures.
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Abbreviations
The following abbreviations are used in this manuscript:

Cj Aerodynamic coefficient
Cj0 Zero-attitude aerodynamic coefficient
Cl Rolling moment coefficient
Cm Pitching moment coefficient
Cn Yawing moment coefficient
Cp Pressure coefficient
cre f Reference chord
CX X-force coefficient
CY Y-force coefficient
CZ Z-force coefficient
k Reduced frequency = lω/V
nc Number of periods
p Roll rate
q Pitch rate
r Yaw rate
t Time
T Period = 2π/ω

α Angle of attack
β Angle of sideslip
θ Pitch angle
ϕ Roll angle
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ψ Yaw angle
ω Angular frequency
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