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Abstract. We introduce a model of automaton for picture language recognition
which is based on tiles and is called Wang automaton, since its description re-
lies on the notation of Wang systems. Wang automata combine features of both
online tessellation acceptors and 4-ways automata: as in online tessellation accep-
tors, computation assigns states to each picture position; as in 4-way automata,
the input head visits the picture moving from one pixel to an adjacent one, ac-
cording to some scanning strategy. We prove that Wang automata recognize the
class REC, i.e. they are equivalent to tiling systems or online tessellation accep-
tors, and hence strictly more powerful than 4-way automata. We also consider a
very natural notion of determinism for Wang automata, and study the resulting
class, comparing it with other deterministic classes considered in the literature,
like DREC and Snake-DREC.

Keywords: picture languages, 2D languages, tiling systems, 4-way automata,
online tessellation acceptors, Wang systems, determinism.

1 Introduction

Picture languages are a generalization of string languages to two dimensions: a picture
is a two-dimensional array of elements from a finite alphabet. The literature on picture
languages is quite rich of models, see e.g. [14,12,17,9,5,7,3,8]. Here we regard class
REC, introduced in [12] with the aim to generalize to 2D the class of regular string
languages. REC is a robust class that has various characterizations: for instance it is the
class of picture languages that can be generated by online tessellation automata [13],
tiling systems [11], or Wang systems [10].

In this paper we characterize REC by introducing a new model of 2D automata
based on tiles. We call such model Wang automaton, since its description is based on
the notation of Wang systems. Wang automata combine features of both online tes-
sellation acceptors [13] and 4-ways automata [14]: as in online tessellation acceptors,
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computation assigns states to each input picture position; as in 4-way automata, the in-
put head visits the input picture following a given scanning strategy, that is a method to
visit its positions.

The choice of a suitable scanning strategy is a central issue in this context. In partic-
ular it has been considered recently in [2,6]. Here we introduce polite scanning strate-
gies, that sort all positions in a picture, and visit each of them exactly once, in such a
way that the next position to visit is always adjacent to the previous one, and depends
only on this information: which neighboring positions have already been visited, and
which direction we are moving from. Examples of such scanning strategies are those
following the boustrophedonic order, spirals, and many others.

Differently from 4-way automata, Wang automata directed by polite scanning strate-
gies visit each position exactly once; moreover, one can consider various polite scan-
ning strategies, but next position cannot depend on the input symbol (in a sense, like
traditional finite state automata on strings). However, we prove that this kind of au-
tomata are equivalent to tiling systems, thus they are strictly more powerful than 4-way
automata [12].

An interesting aspect of this new model is the possibility to introduce quite naturally
the notion of determinism, yielding class Scan-DREC, which is closed under comple-
ment and rotation. Determinism is a crucial concept in language theory, whereas in
two dimensions it is far from being well understood. Tiling systems are implicitly non-
deterministic: REC is not closed under complement, and the membership problem is
NP-complete [15].

In the literature several notions of determinism for recognizable languages and
automata have been proposed. For 4-way automata the definition of determinism is
straightforward [14]. Online tessellation acceptors have a diagonal-based kind of de-
terminism [13] and this notion is extended in [1], with the definition of a deterministic
class we denote by Diag-DREC (the original name was DREC). In [16] we introduced
the class Snake-DREC which is based on a boustrophedonic scanning strategy, and
proved that Snake-DREC properly extends Diag-DREC.

Here we prove that Scan-DREC properly extends Snake-DREC (and hence class
Diag-DREC) and is closed under complement and rotation. Several questions concern-
ing the relationship among these classes remain open and are proposed in the conclu-
sions.

We cite also an interesting and radically different notion of determinism, proposed
in [4], which is not based on prefixed scanning strategies. Such notion is built upon a
definition of language recognized by a tiling system which is different from the usual
one, e.g. of [12], so it is hard to compare it with other approaches. For instance, while
it is decidable to check if a tiling system is deterministic in one of the senses presented
before, at present we do not know anything about decidability for [4].

The paper is organized as follows. In Section 2 we recall some basic definitions
and properties on two-dimensional languages, tiling systems, Wang systems, and deter-
minism. In Section 3 we introduce polite scanning strategies and compare them with
scanning strategies already studied in the literature. In Section 4 we present our model
of Wang automaton and prove the main theorem characterizing REC as the class of pic-
ture languages recognized by Wang automata directed by polite scanning strategies. In
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Section 5 we introduce the concept of determinism natural in this framework, and com-
pare the corresponding class with Diag-DREC and Snake-DREC. In the last section we
propose some open questions concerning determinism in 2D.

2 Preliminaries

The following definitions are taken and adapted from [12].
Let Σ be a finite alphabet. A two-dimensional array of elements of Σ is a picture

over Σ. The set of all pictures over Σ is Σ++. A picture language is a subset of Σ++. If C
denotes some kind of picture-accepting device, then L(C) denotes the class of picture
languages recognized by such devices.

For n,m ≥ 1, Σn,m denotes the set of pictures of size (n,m); # < Σ is used when
needed as a boundary symbol; p̂ refers to the bordered version of picture p. That is, for
p ∈ Σn,m, it is

p =

p(1, 1) . . . p(1,m)
...

. . .
...

p(n, 1) . . . p(n,m)

p̂ =

# # . . . # #
# p(1, 1) . . . p(1,m) #
...

...
. . .

...
...

# p(n, 1) . . . p(n,m) #
# # . . . # #

.

A pixel is an element p(i, j) of p. We call (i, j) the position in p of the pixel. We will
sometimes use position (i, j) with i or j equal to 0, or n + 1, or m + 1 for referring to
borders. We use the term picture domain (or domain for short) to refer to the set of
possible positions in a generic picture of size (n,m), not considering borders, i.e. the
set n × m = {1, 2, . . . , n} × {1, 2, . . . ,m}. Each position has four edges, and an edge is
identified by a pair of (vertically or horizontally) adjacent positions.

We will sometimes consider the 90o clockwise rotation of a picture p. E.g. if p =

a b
c d

, then
c a
d b

is its rotation. Naturally, the same operation can be applied to lan-

guages, and classes of languages, too.

2.1 Tiling systems

We call tile a square picture of size (2,2). We denote by T (p) the set of all tiles contained
in a picture p.

Let Σ be a finite alphabet. A (two-dimensional) language L ⊆ Σ++ is local if there
exists a finite setΘ of tiles over the alphabet Σ∪{#} such that L = {p ∈ Σ++ | T (p̂) ⊆ Θ}.
We will refer to such language as L(Θ).

Let π : Γ → Σ be a mapping between two alphabets. Given a picture p ∈ Γ++,
the projection of p by π is the picture π(p) ∈ Σ++ such that π(p) (i, j) = π(p(i, j)) for
every position (i, j). Analogously, the projection of a language L ⊆ Γ++ by π is the set
π(L) = {π(p) | p ∈ Γ++} ⊆ Σ++.

A tiling system (TS) is a 4-tuple τ = 〈Σ, Γ, Θ, π〉 where Σ and Γ are two finite
alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {#} and π : Γ → Σ is a
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projection. A picture language L ⊆ Σ++ is tiling recognizable if there exists a tiling
system 〈Σ, Γ, Θ, π〉 such that L = π(L(Θ)). We say that τ generates L and denote by
REC the class of picture languages that are tiling recognizable, i.e, REC = L(TS).
Notice in particular that any local language is tiling recognizable.

Example 1. Consider the language Lhalf of pictures of size (n, 2n) with the first row like
x · x̄, where x̄ is the reverse of x. We show that Lhalf is recognized by a tiling system.
Let Γ be the set of letters of the form σρ, with σ, ρ ∈ Σ. For each picture p in Lhalf,
consider the picture p′ ∈ Γ++ where subscripts are used to connect each letter in x to
the corresponding letter in x̄, along nested paths following a t-like form. Below there
is an example of such pair of pictures p and p′ (the colors in p′ are used in the figure
only to emphasize the t-like form of the resulting paths):

p =

a b c c b a

b b a c b a

c a a b a a

, p′ =

aa bb cc cc′ bb aa

ba bb ab cb bb aa

ca aa aa ba aa aa

.

One can show that the language of pictures p′ is local, and hence Lhalf is in REC.

2.2 Wang systems

In [10] a model equivalent to tiling systems but based on a variant of Wang tiles was
introduced. A Wang tile is a unitary square with colored edges. Color represents com-
patibility: two tiles may be adjacent only if the color of the touching edges is the same.
A labeled Wang tile is a Wang tile bearing also a label; a set of such tiles is called Wang
system.

More formally, given a finite alphabet Colrs of colors, and a finite alphabet Σ of
labels, a labeled Wang tile is a quintuple (n, s, e,w, x), with n, s, e,w ∈ Colrs ∪ {#}
(where, as usual, # is a color representing borders), and x ∈ Σ. Intuitively, n, s, e,w
represent the colors respectively at the top, bottom, right, and left of the tile. For better

readability, we represent the labeled Wang tile (n, s, e,w, x) as
n

w x e
s

.

Given Φ ⊆ Colrs4 × Σ, a Wang-tiled picture over Φ is any picture in Φ++ such that
adjacent pixels are compatible, also considering borders, as in the following example:

#
# a 4

1

#
4 b #

3
1

# b 2
#

3
2 a #

#

∈ Φ2,2.

The label of a Wang-tiled picture P over Φ is the picture over Σ having for pixels the

labels of pixels of P. For instance, the label of the example above is
a b
b a

.
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A Wang system ω is a triple (Colrs, Σ, Φ). The language generated by ω is the
language over Σ of all labels of Wang-tiled pictures over Φ.

Example 2. A Wang system recognizing Lhalf can be defined using the same idea pre-
sented in Example 1. The resulting Wang-tiled pictures have the form

P =

#
# a ·

a

#
· b ·

b

#
· c c
·

#
c c ·
·

#
· b ·

b

#
· a #

a
a

# b ·
a

b
· b b
·

·

b a b
·

·

b c b
·

b
b b ·
·

a
· a #

a
a

# c a
#

·

a a a
#

·

a a a
#

·

a b a
#

·

a a a
#

a
a a #

#

. (1)

As before, colors are used only to emphasize the t-form of the paths.

2.3 Diagonal- and snake-deterministic tiling systems

Tiling systems are implicitly nondeterministic: REC is not closed under complement,
and the membership problem is NP-complete [15]. Moreover, any notion of determin-
istic tiling systems seems to require some pre-established “scanning strategy” to read
the picture, an important issue we deal with in the following section. Here we recall
two notions of determinism recently introduced in the literature. They are both defined
using the notation of tiling systems, but it is quite natural translate them from tiling
systems to Wang systems.

Diagonal determinism [1] is inspired by the deterministic version of online tes-
sellation acceptors [13], which are directed according to a corner-to-corner direction
(namely, from top-left to bottom-right, or tl2br). Consider a scanning strategy that fol-
lows the tl2br direction: any position (x, y) is read only if all the positions that are above
and to the left of (x, y) have already been read. An example of such scanning strat-
egy is depicted in Figure 1(a). Roughly speaking, tl2br determinism means that, given
a picture p ∈ Σ++, its preimage p′ ∈ L(Θ) ⊆ Γ++ can be build deterministically when
scanning p with any such strategy: tl2br-deterministic tiling systems guarantee this con-
dition (the formal definition can be found in [1]). They are proved to be equivalent to
deterministic online tessellation acceptors.

Snake-determinism [16] is based on boustrophedonic scanning strategies. Given a
tiling system τ = 〈Σ, Γ, Θ, π〉 and a picture p ∈ Σ++, imagine to build one preimage
p′ ∈ L(Θ), π(p′) = p, by scanning p as follows: start from the top-left corner, scan
the first row of p rightwards, then scan the second row leftwards, and so on, as in
Figure 1(b). This means that we scan odd rows rightwards and even row leftwards,
assigning a symbol in Γ to each position. A tiling system is snake-deterministic if this
choice is guaranteed unique (the formal definition can be found in [16]).

Diag-DREC (resp. Snake-DREC) is the family of languages such that one of their
rotations is recognized by a tl2br-deterministic (resp. snake-deterministic) tiling sys-
tem. Diag-DREC ⊂ Snake-DREC ⊂ REC with all proper inclusions.
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3 Two-dimensional scanning strategies

The notions of determinism in [1,16] are all based on some fixed and pre-established
kinds of scanning strategy. This approach can be limiting, so we plan to define and
consider here a wider range of possible strategies. We will start by introducing the
central concept of scanning strategy, and then discussing the two related approaches of
[2] and [6].

Definition 1. A scanning strategy is a family

µ = {µn×m : {1, 2, . . .} → n × m}n,m

and µm×n is called the scanning function over domain n×m. A scanning strategy is said
to be continuous if µn×m(i + 1) is adjacent to µn×m(i) for every n,m, i; it is said to be
one-pass if each scanning function µn×m restricted to {1, 2, . . . , nm} is a bijection.

Intuitively, a scanning strategy provides a method to visit positions in any picture do-
main: µn×m(i) is the position visited in domain n × m at time i. One-pass strategies are
those that visit each position in each domain exactly once.

Some one-pass scanning strategies are illustrated in Figure 1. Actually they are not
fully defined: only the function µ3×4 is depicted whereas the other functions should be
defined analogously; each position c of domain 3 × 4 contains the number i such that
c = µ3×4(i). The strategy (a) is not continuous and visits one row after the other, from
left to right and from top to bottom; the other strategies are all continuous.

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

8 7 6 5

9 10 11 12

1 2 3 4

10 11 12 5

9 8 7 6

1 12 9 8

2 11 10 7

3 4 5 6

1 2 11 10

4 3 12 9

5 6 7 8

(a) (b) (c) (d) (e)

Fig. 1. Some one-pass scanning strategies: the number in each pixel denotes its scanning order. (a)
is not continuous (b) has a boustrophedonic behavior, (c) has a spiral behavior, (d) draws nested
t-like paths, (e) combines the behavior of (b) in the first half of the picture and a counterclockwise
variant of (c) in the second one.

In the literature on 2D languages, two recent works considered the problem of defin-
ing scanning strategies for pictures, namely [2] and [6].

In [2] an automata model called tiling automaton is introduced, with the aim to de-
fine a general computational model for recognizable languages. This approach is cen-
tered upon the concept of scanning strategy itself, which directly depends on the size of
the picture to be scanned. This definition is very general, and may exploit the size of the
picture to perform “jumps”, thus allowing complex behaviors. This freedom, together
with the potential knowledge of the picture size, may be exploited to exceed REC (in
practice, scanning strategies presented and used in [2] are simpler, and do not exhibit
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this issue). Consider e.g. the 1D non-regular language x · x̄, with x ∈ {a, b}+ and x̄ equal
to the reverse of x: if we are able to jump back and forth, starting from the first charac-
ter, and then going to the last, then considering the second, the last-but-one and so on,
we can easily define an accepting automaton.

The very recent work [6] is also based on the concept of scanning strategy. In it, the
considered strategies are “continuous” (hence called “snakes”, not to be confused with
the homonym we used before), in the sense that the next considered position is adjacent
to the current one. The actual definition of such strategies is not formally presented,
as the authors preferred more qualitative considerations. This aspect could be source
of some problems, since may admit different strategies depending on the picture size
or shape (e.g. Peano-Hilbert curves are suitable only for square pictures). For exam-
ple, if we consider unary languages, having different strategies which depends on the
shape/size of the figure itself may be exploited to exceed REC also in this case.

In our opinion all these issues could be addressed by introducing a qualitative con-
cept, that we will call of blindness of the strategy. We consider blind a strategy which
proceeds locally, by scanning adjacent positions, and cannot “see” neither the picture
content, nor its size: it can only “feel” a border and an already considered position, when
it reaches it. Considering the strategies presented in Figure 1, (a) is not blind, since it
uses the knowledge of picture’s width, after reaching the end of a row, to “jump” back
to the beginning of the next row. Analogously, (e) is not blind, since it exploits the
knowledge of the width of picture, to change direction when reaching its half. We ac-
cept all the other presented strategies, as they only depend on local information: already
considered positions, and borders.

In the following we try to capture this idea of blindness, by adding some constraints
to the scanning strategies we consider. To this aim, we shall need some notations.

Given a position y, we use edges(y) to denote the set of 4 edges adjacent to y. Dirs
is the set of directions {r, l, t, b}. For every position y, and d ∈ Dirs, the edge of y in
direction d is denoted by y|d, and the position adjacent to y in direction d is denoted by
y � d.

A next-position function is a partial function η : 2Dirs × Dirs → Dirs such that
η(D, d) =⊥ if d < D. Informally, the meaning of η is that, for a given position, we have
a set of already considered edges, given by the set D of directions, and d, the “last-
considered” one. η is used to choose where to go next, i.e. the direction towards the
position to visit next.

Now fix any next-position function η, any starting corner cs ∈ Corners = {tl, tr, br, bl}
and any starting direction ds ∈ Dirs. Then, for every picture domain n×m, consider the
following scanning function µn×m over n × m.

– The starting position is

µn×m(1) =


(1, 1) if cs = tl
(1,m) if cs = tr
(n, 1) if cs = bl
(n,m) if cs = br

moreover we define E1 as the set of outer edges (i.e. those adjacent to borders) of
the picture domain n × m, and we set d1 = ds.
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– The inductive definition3 of µn×m(i + 1) for i ≥ 1 is given by:

Di = {d ∈ Dirs : µn×m(i)|d ∈ Ei} Ei+1 = Ei ∪ edges(µn×m(i))

di+1 = η(Di, di) µn×m(i + 1) = µn×m(i) � di+1

Notice that µn×m(1)|d1 must be in E1 for η(D1, d1) to be defined.

We say that µ = {µn×m}n,m is the scanning strategy induced by the triple 〈η, cs, ds〉.

Definition 2. A scanning strategy is blind if it is induced by a triple 〈η, cs, ds〉, where η
is a next-position function, cs a starting corner, and ds a starting direction.

Notice that, in general, a blind scanning strategy is not one-pass. However, it is con-
tinuous and satisfies the other requirements we need. First, all scanning functions are
defined by the same triple 〈η, cs, ds〉 for every picture domain; second, the next position
to visit always depends only on this information: which neighboring positions have al-
ready been visited, and which direction we are moving from. This yields the following
definition.

Definition 3. A scanning strategy is called polite if it is blind and one-pass.

4 Wang automata

We are now able to formally introduce Wang automata and to show that they are equiv-
alent to tiling systems.

Let Colrs be a set of colors. If the edges adjacent to a position are (partially or fully)
colored, a coloring will be used to summarize their colors. Formally, we call coloring
any partial function γ : Dirs → Colrs. The set of directions where γ is defined is
denoted by ∆γ. If ∆γ = Dirs, then γ is called a full coloring. Given γ1, γ2 ∈ Colrs, we
say that γ2 extends γ1 if γ2(d) = γ1(d) for every d ∈ ∆γ1 .

Definition 4. A µ-directed Wang automaton (µ-WA) is a tuple 〈Σ,Colrs, δ, µ, F〉 where:

– Σ is a finite input alphabet,
– Colrs is a finite set of colors, and C is the set of colorings over Colrs,
– F is a set of full colorings over Colrs,
– δ : Σ × C × Dirs → 2C is a partial function such that each coloring in δ(σ, γ, d) is

full and extends γ,
– µ is a blind scanning strategy induced by some 〈η, cs, ds〉 such that δ(σ, γ, d) , ∅

implies η(∆γ, d) ,⊥.

3 In the definition, also di,Di, and Ei depend on n and m. For better readability, this dependence
is not explicit.
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A Wang automaton can be seen as having a head that visits a picture, by moving from
a position to an adjacent one, and coloring at each step the edges of the position it is
visiting (in a sense, the element of C × Dirs are the states of the automaton). For each
accepting computation, the automaton produces a Wang-tiled picture whose label is
equal to the input picture. The movements of the head are lead by the scanning strategy
µ, whereas the coloring operations the automaton performs are determined by a finite
control formalized by function δ. Since the scanning strategy µ is blind, the automaton
visits the picture positions independently of the input symbols, and only the choice of
colors to assign to edges is nondeterministic.

More precisely, the behavior of a µ-directed Wang automaton over an input picture
p can be described as follows. At the beginning, the head of the automaton points at the
position in the starting corner cs and the current direction is set to ds. When the current
direction is d, the head is pointing at position y, the pixel of p at position y is σ, and the
colors of borders of y are summarized by γ, then let d′ = η(∆γ, d) and γ′ ∈ δ(σ, γ, d).
Hence the automaton may execute this move: apply γ′ to the borders of y, set the current
direction to d′, and move to the position y � d′. If no move is possible, the automaton
halts. The input picture p is accepted if there is a computation such that the coloring of
the final position is in F.

As illustrated in the following theorem, for nondeterministic Wang automata the
choice of the scanning strategy (as long as it is polite) is not relevant from the point of
view of the recognizing power of the device. In the next section we will show that this
is no longer true when determinism is concerned.

Theorem 1. For every polite scanning strategy µ, we have L(µ-WA) = REC.

Proof. REC being generated by Wang systems [10], the result is proved if we show
that, for every polite µ, µ-directed Wang automata are equivalent to Wang systems.

First let A = 〈Σ,Colrs, δ, µ, F〉 be a µ-WA recognizing a language L. Then, define
the Wang system ω = (Colrs × Dirs, Σ, Φ) by setting, for every γ′ ∈ δ(σ, γ, d) and
d′ = η(∆γ, d),

(γ′(t), a(t))
(γ′(l), a(l)) σ (γ′(r), a(r))

(γ′(b), a(b))
∈ Φ,

where a(x) may represent current direction d or next direction d′, i.e.

a(x) =


d′ if x = d′

d if x = −d
⊥ otherwise,

where − b = t,−t = b,−l = r,−r = l.

Together with their labels, these labeled Wang tiles carry two pieces of information: the
colors assigned by the automaton and the path followed by the head of the automaton,
corresponding to the scanning strategy µ. One can verify that each Wang-tiled picture
over Φ corresponds to an accepting computation of the automaton. Hence, the language
generated by ω is L.

Vice versa, letω = (Colrs×Dirs, Σ, Φ) be a Wang system recognizing a language L.
Then, take any polite scanning strategy µ, and define the µ-WA A = 〈Σ,Colrs, δ, µ, F〉
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where F is the set of all full colorings over Colrs, and δ is defined only for those triples
(σ, γ, d) such that η(∆γ, d) ,⊥, and there exists some labeled Wang tile

c(t)
c(l) σ c(r)

c(b)
∈ Φ with γ(x) = c(x) if γ(x) ,⊥ .

In this case, also set δ(σ, γ, d) = γ′ where γ′(x) = c(x) for every direction x. One can
prove that the language generated by A is L and this concludes the proof. ut

5 Determinism in Wang automata

In the framework of Wang automata, it is quite natural to introduce the concept of
determinism:

Definition 5. A µ-WA 〈Σ,Colrs, δ, µ, F〉 is deterministic if δ(σ, γ, d) has at most one
element for every symbol σ ∈ Σ, coloring γ over Colrs, and direction d. Determinis-
tic µ-WA are denoted by µ-DWA. The union of classes L(µ-DWA) over all polite µ is
denoted by Scan-DREC.

Example 3. Consider the language Lhalf presented in Example 1 and let t be the scan-
ning strategy that drawst-like paths, represented in Figure 1(d). Starting from the Wang
system sketched in Example 2, one can define an equivalent t-DWA. Indeed, the Wang-
tiled picture P in Equation (1) can be build deterministically from p by scanning it
according to t.

Proposition 1. For any polite µ, L(µ-DWA) is a boolean sub-class of REC.

Proof (sketch). Given two µ-DWAs A1 and A2 recognizing two languages L1 and L2
respectively, one can reason as in [12, Theorem 7.4] to build a µ-DWA recognizing the
intersection L1 ∩ L2 (the set of colors will be the set of pairs (k1, k2) where each ki is a
color used by Ai).

The closure under complement is quite easy, too. Let A = 〈Σ,Colrs, δ, µ, F〉 be a
µ-DWA recognizing L. We show how to build a deterministic Wang automaton recog-
nizing the complement of L. First of all, modify δ so that any computation of A scans
the whole input picture. For example, one can use a special color k to complete the
computations that halt prematurely: for any coloring γ, let γk be the full coloring that
extends γ with color k; then, whenever δ(σ, γ, d) is empty but η(∆γ, d) ,⊥, then set
δ′(σ, γ, d) = {γk}; also set δ′(σ, γ, d) = {γk} if γ already assigns k to some edge. Finally,
let γ be in F′ if and only of it is not in F. One can verify that 〈Σ,Colrs ∪ {k}, δ′, µ, F′〉
is a µ-DWA accepting the complement of L.

The closure under union is a consequence of the previous properties. ut

Corollary 1. Scan-DREC is closed under complement and rotation.

Proof (sketch). The closure under complement is a straightforward consequence of the
previous proposition. The closure under rotation is quite obvious, since one could easily
define the rotation of a scanning strategy (and consequently the rotation of a µ-WA) and
this operation preserves determinism. ut
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In particular, if a is the spiral scanning strategy represented in Figure 1(c), one can
prove the following lemma.

Lemma 1. L(a-DWA) is closed under rotation.

Proof (sketch). Leta′ be the scanning strategy obtained as the 90o clockwise rotation of
a. Then anya′-DWA can be simulated by aa-DWA as follows: propagate the symbols
in the first row downwards and check them in the second spiral round; the rest of the
computation is as before. ut

Proposition 2. Snake-DREC ⊂ Scan-DREC ⊂ REC.

Proof (sketch). Let τ be a snake-deterministic tiling system. First, one can slightly mod-
ify the construction in [10, Proposition 12] in order to build a Wang system equivalent to
τ preserving its snake-determinism. Then, one can apply the construction of Theorem 1
(second part) to build an equivalent µ-WA, where µ is the boustrophedonic scanning
strategy represented in Figure 1(b). Such automaton can be proved to be µ-DWA, hence
by applying rotations one gets Snake-DREC ⊆ Scan-DREC.

To prove that the inclusion is proper, consider the language L of square pictures
of even size with the first row like x · x̄, where x̄ is the reverse of x, and let LR be its
intersection with all its rotations. Then, one can prove L is in Snake-DREC; however, by
counting reasons it is possible to prove that LR is not in Snake-DREC. On the contrary,
improving the reasoning of Example 3, one can prove thatL(a-DWA) contains L, hence
it contains also LR by Lemma 1.

The last inclusion is a consequence of the previous proposition, since REC is not
closed under complement. ut

6 Conclusion and open problems

In this paper we have introduced a new model of 2D automata that recognize class REC
and hence are strictly more powerful than traditional 4-way automata. The deterministic
version of such a model is very natural and satisfies some interesting properties: it de-
fines a class of picture languages which is closed under complement and extends some
relevant subclasses of REC already studied in the literature. We conclude by stating
some open problems concerning determinism in 2D.

Is Scan-DREC closed under union or intersection? Notice that the argument in proof of
Theorem 1 cannot be applied when we have to intersect languages that are recognized
by DWAs directed according to different scanning strategies.

Which is the relation among Snake-DREC,L(a-DWA) andL(t-DWA)? We have some
examples that distinguish these classes: for instance the language LR used to prove
Proposition 2 is in L(a-DWA) but not in Snake-DREC. However we do not know
whether these classes are included one in another.
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Which is the relation between Scan-DREC and the class of languages recognized by
deterministic 4-way automata? We know that the latter class is incomparable to both
Diag-DREC and Snake-DREC. But the language that separates them and is not in
Snake-DREC is again the one used to prove Proposition 2, which is in Scan-DREC.
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