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DACTIM-MIS, SP2MI, Boulevard Marie et Pierre Curie, Téléport 2, F-86962 Chasseneuil
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Abstract: Our aim in this paper is to study a mathematical model for brain cancers with chemotherapy
and antiangiogenic therapy effects. We prove the existence and uniqueness of biologically relevant
(nonnegative) solutions. We then address the important question of optimal treatment. More precisely,
we study the problem of finding the controls that provide the optimal cytotoxic and antiangiogenic
effects to treat the cancer.

Keywords: brain cancer; chemiotherapy; antiangiogenic therapy; well-posedness; optimal control
Mathematics Subject Classification: 35B50, 35D30, 35Q92, 92C50

1. Introduction

There has been recently a strong interest in the development, mathematical study and numerical
analysis of phase-field models for tumor growth. Such models describe the evolution of a tumor
surrounded by healthy tissues and take into account mechanisms such as proliferation of cells via
nutrient consumption, therapies, clustering effects in brain tumors, etc. We refer the interested reader
to, e.g., [1, 3–5, 8–12, 18, 21–23] for more details.

In this paper we address a phase-field model of tumor growth driven by a vital nutrient and subject
to medical treatment. The model takes into account both the effects of a cytotoxic drug inhibiting
the tumor proliferation rate, and those of an antiangiogenic therapy which reduces the nutrient supply.
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Indeed, since one of the hallmarks of cancer is microvascularization and it is more pronounced in
certain tumors (such as gliomas), chemotherapy is often supported by an attendant antiangiogenic drug
(usually bevacizumab, see e.g. [7]). This interesting approach has been introduced in the mathematical
literature only recently by Colli et al. in [3, 4] in the context of prostatic cancer.

Therein, the authors propose a model of PCa growth and chemotherapy based on [26], and then
perform a complete mathematical analysis of the resulting system. This is based on three parabolic
equations, each ruling the evolution of a characteristic variable. The first is a phase-field variable u that
identifies the spatial location and geometry of the tumor. In particular, the healthy tissue corresponds
to tumor absence, that is u = 0, while u = 1 in the tumoral case. The second variable in play is the
concentration of a vital nutrient denoted by σ, while the third variable p identifies the prostate-specific
antigen released by cancerous prostatic cells. In the present paper, aiming to model different tumors,
we will not consider the last equation. Instead, we will focus on the equation for σ and we will modify
it in a form that seems more suitable to describe the evolution of oxygen - one of the main nutrients for
brain cancers like glioma (see [13]).

Here is a description of the model. We assume that the evolution of u is governed by a nonconserved
phase-field equation, as justified by Xu, Vilanova and Gomez in [26] by using the concept of tumor
free energy and gradient dynamics. It reads as follows

∂tu − λ∆u = −
∂Ψ

∂u
, (1.1)

where λ is the diffusion coefficient of tumor cells, and Ψ = Ψ(u, σ, c) is a double-well potential having
local minima at u = 0 and u = 1. Note that the so-called chemical free energy Ψ here also depends
on the administered cytotoxic drug c. We will detail later the choice of the functional Ψ, explaining in
particular how nutrient and chemotherapy influence tumor proliferation rate.

Concerning the nutrient dynamics, the starting point is the reaction diffusion equation proposed
in [3, 4]

∂tσ − ∆σ = S h(1 − u) + (S c − s)u − (γh(1 − u) + γcu)σ,

where γc and γh are the nutrient uptake rate in cancerous and healthy tissue, respectively. Analogously
S c is the nutrient supply rate in the cancerous tissue, while S h refers to nutrient supply in the healthy
tissue. Besides, the model incorporates the action of an antiangiogenic treatment, via the control
function s providing a reduction of the intratumoral nutrient supply rate.

Indeed, since in this paper we take oxygen as nutrient, we modify the equation by considering a
nonlinear term of the form

g(σ) =
σ

1 + σ

that accounts for the oxygen uptake by cells, assuming Michaelis–Menten kinetics (and setting some
biological constants equal to 1), see e.g. [13].

Accordingly, we propose the following equation for the nutrient dynamics

∂tσ − ∆σ = S h(1 − u) + (S c − s)u − (γh(1 − u) + γcu)g(σ),

i.e.,

∂tσ − ∆σ + γhg(σ) + γchg(σ)u = S h(1 − u) + (S c − s)u,
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having set γch = γc − γh.
We stress that the nonlinear term g(σ) in the equation of the nutrient is in particular relevant in

brain cancers and, more precisely, in gliomas (see [13]). Note that another important nutrient for brain
cancers development is lactate (see [2, 17]; see also [19, 20]); in that case, one also has Michaelis–
Menten kinetics, leading to a similar equation for lactate. We will address this model in a forthcoming
paper.

Our aim in this work is twofold.

• First task: Well posedness of the model. Assuming that the controls (c, s) are given functions
as above, in the first part of the paper we shall provide an existence and uniqueness result for the
proposed model, see (1.2) below, after setting the proper mathematical framework.
This will be addressed in Sections 2-4; Section 1 is devoted to the precise mathematical setting.
• Second task: Optimal control. We study the problem of finding the controls (c, s) that provide

the optimal cytotoxic and antiangiogenic effects to treat a certain glioma described by (1.2).

From the mathematical viewpoint, the problem consists in

minimizing a certain cost function J(c, s) subject to system (1.2), in a prescribed class of admissible
controls (c, s) ∈ Uad.

This will be accomplished in Sections 5-6, exploiting classical tools of control theory suitably
formulated in Appendix 7.

1.1. The mathematical model

Let Ω be a bounded and regular domain of RN with N = 1, 2, 3 being the spatial dimension. Let
T > 0 be a finite time. By defining the space/time sets QT := Ω × (0,T ) and ΣT = ∂Ω × (0,T ) the
model can be formulated as

∂tu − ∆u = −F′(u) + [m(σ) − c]h′(u) in QT ,

∂tσ − ∆σ + γhg(σ) + γchg(σ)u = S h(1 − u) + (S c − s)u in QT ,

∂nu = ∂nσ = 0 on ΣT ,

u(0) = u0, σ(0) = σ0 in Ω,

(1.2)

where u0 and σ0 are sufficiently smooth given functions defined in Ω. We recall that γh, S h, S c are
positive constants related with the biological mechanisms in the glioma, while γch = γc − γ. Besides,

g(σ) =
σ

1 + σ
.

The given functions (c, s) correspond respectively to a cytotoxic drug administered as chemotherapy
and to an antiangiogenic therapy; they are supposed to be positive and bounded. We further suppose
that

S c ≥ s.

Let us now detail the choice of the nonlinearities F,m, h appearing in the first equation.
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1.2. The chemical potential Ψ

As derived in [26], the phenomenological equation for tumor phase-field relies on the choice of the
tumor chemical free energy functional. This is defined as

Ψ(u, σ) = F(u) − m(σ)h(u),

where F(u) = u2(1 − u)2 is the prototype double-well potential, the wells being u = 0 and u = 1. It is
perturbed by the term m(σ)h(u), where

h(u) = u2(3 − 2u)

is an interpolation function with the property h(0) = 0, h(1) = 1 and h′(0) = h′(1) = 0, while the tilting
function m accounts for the effects of hypoxia. Indeed, a possible choice of m is

m(σ) =
2

π3.01
arctan

(
σ − σh−v

)
,

where σh−v is the threshold oxygen concentration for hypoxia. According to [26], one should assume
that |m(σ)| < 1/3 so that the perturbation does not destroy the double-well structure of F. As a
consequence, the free energy functional Ψ has a local maximum in (0, 1) and preserves two local
minima in u = 0 and u = 1 for any oxygen concentration σ > 0.

To understand how hypoxia influences proliferation, observe that, when σ is below the threshold
σh−v, the function m(σ) is negative. Thus, since Ψ(0, σ) = 0 < Ψ(1, σ) = −m(σ), the preferable
energy level corresponds to healthy tissue. In turn, without hypoxia, σ > σh−v, we have Ψ(0, σ) = 0 >
Ψ(1, σ) = −m(σ), so the phase-field equation will favor tumor growth.

At this point, aiming at incorporating in the equation the tumor-inhibiting effect of a cytotoxic drug
c, we define

Ψ(u, σ, c) = F(u) − [m(σ) − c]h(u).

Accordingly, the phase-field equation (1.1) reads

∂tu − λ∆u = −F′(u) + [m(σ) − c]h′(u),

that can also be written as

∂tu − λ∆u − 4u2(1 − u) = 2u(1 − u)[3(m(σ) − c) − 1].

We refer the reader to [6, 13] for alternative models of hypoxia effects on tumor growth.

Remark 1.1. For further use, we observe that, when σ ≥ 0, the Michaelis-Menten nonlinearity g
satisfies 0 ≤ g(σ) < 1 and 0 < g′(σ) < 1. Besides,

F, h ∈ C∞(R).

Furthermore, as tilting term m we consider any function satisfying

m ∈ C∞(R) : m,m′ Lipschitz continuous with m,m′,m′′ ∈ L∞(R). (1.3)

Without loss of generality, we set λ = 1.
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1.3. The cost functional

In view of the optimal control problem, we consider a cost function that is based on prescribed
target functions for the tumor volume and the oxygen, respectively, on QT and on Ω at the final time
T of the pharmacological treatment. Accordingly, for assigned uQ, σQ ∈ L2(QT ), uΩ, σΩ ∈ L2(Ω), we
define

J(c, s) =
k1

2

∫
QT

[u(x, t) − uQ]2dxdt +
k2

2

∫
Ω

[u(x,T ) − uΩ]2dx + k3

∫
Ω

u(x,T )dx

+
k4

2

∫
QT

[σ(x, t) − σQ]2dxdt +
k5

2

∫
Ω

[σ(x,T ) − σΩ]2dx

+
k6

2

∫
QT

c2(x, t)dxdt +
k7

2

∫
QT

s2(x, t)dxdt,

where (u, σ) is the (unique) solution to (1.2) originated by any observed initial state (u0, σ0) of the
system. Besides, the set of admissible controls will be

Uad = {(c, s) ∈ L2(QT ) × L2(QT ) : 0 ≤ c ≤ Umax, 0 ≤ s ≤ S max a.e. in QT },

where the given quantities Umax > 0 and 0 < S max ≤ S c are two threshold positive values. We shall
prove the existence of an optimal control and we shall provide a necessary condition for a control to
be optimal that, in particular, allows its identification via numerical simulations.

1.4. Functional framework

We will use the classical Lebesgue spaces Lp(Ω) (p ≥ 1), denoting their norms by ‖ · ‖Lp , and the
Sobolev spaces Hk(Ω) of functions in L2(Ω) with distributional derivative of order less than or equal
to k in L2(Ω). As customary, we set H = L2(Ω) with inner product denoted by (·, ·) and corresponding
norm ‖ · ‖. We also set V = H1(Ω) equipped with the norm

‖ f ‖2V = ‖∇ f ‖2 + ‖ f ‖2,

and by V ′ its dual space, the symbol 〈·, ·〉 standing for the corresponding duality pairing. Finally, we
set

W � H2
N(Ω) = {u ∈ H2(Ω) : ∂nu = 0 on ∂Ω} ⊂ V.

We will also make use of spaces of functions that depend on time with values in a Banach space.
Hence, given a generic Banach space B with norm ‖ · ‖B and an interval I ⊆ [0,∞), Lp(I; B) is the set
of measurable functions f : I → B such that t 7→ ‖ f (t)‖B belongs to Lp(I). Recall that L2(I; H) is
isomorphic to L2(Ω × I). With the symbol W1,p(I; B) we will denote functions f : I → B such that
both f and its (weak) derivative ∂t f belong to Lp(I; B). The family of continuous functions f : I → B
is denoted by C(I, B).

Throughout the paper, by C > 0 we shall denote a constant that may change from line to line,
depending on the problem parameters, the final time T , the norms of the initial data, and possibly on
the norms of c and s.
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2. Well-posedness: statement of the results

For a fixed T > 0, we set QT = Ω × (0,T ) and we introduce the phase space

X � W1,2(0,T ; V ′) ∩ L2(0,T ; V) ∩ C([0,T ],H).

Definition 2.1. Let c ∈ L∞(QT ), s ∈ L∞(QT ) be given and take (u0, σ0) ∈ H × H. A (weak) solution
on [0,T ] to the initial value problem (1.2) endowed with Neumann boundary conditions is a pair (u, σ)
with

u ∈ X and σ ∈ X

satisfying

〈∂tu(t), v〉 + (∇u(t),∇v) = 〈−F′(u) + [m(σ) − c]h′(u), v〉, ∀v ∈ V,

〈∂tσ(t),w〉 + (∇σ,∇w) + γh(g(σ),w) + γch〈g(σ)u,w〉
= S h(1 − u,w) + (S c − s)(u,w), ∀w ∈ V,

for almost every t ∈ (0,T ). Moreover, ∂nu = ∂nσ = 0 almost everywhere on ΣT and (u(0), σ(0)) =

(u0, σ0) almost everywhere in Ω.

Remark 2.2. By a classical result (see, e.g., [24]), the regularity f ∈ L2(0,T ; V), ∂t f ∈ L2(0,T ; V ′)
ensures that f ∈ C([0,T ],H). Besides, t 7→ ‖u(t)‖2 is absolutely continuous and d

dt‖ f ‖
2 = 〈∂t f , f 〉.

Theorem 2.3. Let c ∈ L∞(QT ), s ∈ L∞(QT ) with s ≤ S c be given, and (u0, σ0) ∈ H × H be such that

0 ≤ u0 ≤ 1 and σ0 ≥ 0 a.e. in Ω.

Then, system (1.2) has a unique weak solution (u, σ) ∈ X × X such that

0 ≤ u ≤ 1 and σ ≥ 0 a.e. (x, t) in QT .

Besides, the following uniform estimate holds:

‖u‖2X + ‖σ‖2X ≤ C(‖u0‖
2 + ‖σ0‖

2 + 1).

Furthermore, if σ0 ∈ L∞(Ω), then σ ∈ L∞(QT ) and

‖σ‖L∞ ≤ C(‖σ0‖L∞ + 1). (2.1)

In particular, our theorem tells that the biologically relevant region

S = {(u, σ) ∈ H × H : 0 ≤ u ≤ 1, σ ≥ 0},

is invariant for the differential system (1.2), namely: if we consider any biologically meaningful initial
datum z0 = (u0, σ0) ∈ S, then any weak solution of (1.2) departing from z0 remains in S for every time.

The next Section 3 and Section 4 are devoted to the proof of Theorem 2.3 via a number of steps.
The first consists in the introduction of an auxiliary problem where we suitably modify some of the
nonlinearities involved in system (1.2).
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3. An auxiliary problem

In this and the next section, according to the assumptions of Theorem 2.3, we assume (c, s) ∈
L∞(QT ) × L∞(QT ), with s ≤ S c, fixed. We introduce the cut–off function

k(r) =

−2r(1 − r) r ∈ [0, 1],
0 r < [0, 1].

Note that k is globally bounded and Lipschitz on R. Then, defining

f̃ (σ, c) = [1 − 3(m(σ) − c)],

we consider the auxiliary system

∂tu − ∆u − 4u2(1 − u) = f̃ (σ, c)k(u) in QT ,

∂tσ − ∆σ + γh
σ

1 + |σ|
+ γch

σu
1 + |σ|

= S h(1 − u) + (S c − s)u in QT ,

∂nu = ∂nσ = 0 on ΣT ,

u(0) = u0, σ(0) = σ0 in Ω.

(3.1)

Due to the special form of the nonlinearities, it is easy to show that any solution of system (3.1)
originated from an initial data (u0, σ0) ∈ S belongs to S a.e. in QT . This is done in the sext section.

3.1. Maximum principles

Let (u(t), σ(t)) ∈ H × H be any weak solution on [0,T ] to the auxiliary Cauchy problem (3.1).

Lemma 3.1. If 0 ≤ u0 ≤ 1 a.e. in Ω, then 0 ≤ u(t) ≤ 1 a.e. in QT .

Proof. Testing the first equation of (3.1) by −u− ∈ V , where u− = max(0,−u), we obtain

1
2

d
dt
‖u−‖2 + ‖∇u−‖2 + 4‖u−‖4L4 + 4‖u−‖3L3 = −

∫
Ω

f̃ (σ, c)k(u)u−.

Indeed, the rhs is identically zero since k(u) = 0 whenever u ≤ 0. As a result,

d
dt
‖u−‖2 ≤ 0,

and the Gronwall lemma yields
‖u−(t)‖2 ≤ ‖u−(0)‖2 = 0.

This means that u ≥ 0 a.e. in QT . Now we consider w = u − 1. Note that w solves the equation

∂tw − ∆w + 4u2w = f̃ (σ, c)k(u),

hence, testing by w+ we get

1
2

d
dt
‖w+‖2 + ‖∇w+‖2 + 4

∫
Ω

u2(w+)2 =

∫
Ω

f̃ (σ, c)k(u)w+.
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Again the rhs is identically zero since by construction k(u) = 0 whenever u ≥ 1, namely, on the support
of w+. Reasoning as above, we reach the conclusion

‖w+(t)‖2 ≤ ‖w+(0)‖2.

Since w(0) = u0 − 1 ≤ 0, then w+(0) = 0: as a consequence w+(t) = 0 in Ω× [0,T ], meaning that u ≤ 1
a.e., as claimed. �

Lemma 3.2. If 0 ≤ u0 ≤ 1 and σ0 ≥ 0 a.e. in Ω, then σ(t) ≥ 0 a.e. in QT .

Proof. Testing the second equation of (3.1) by −σ− ∈ V , and taking into account that 0 ≤ u ≤ 1 a.e.,
we get

1
2

d
dt
‖σ−‖2 + ‖∇σ−‖2 + γh

∫
Ω

|σ−|2

1 + |σ−|

= −γch

∫
Ω

u|σ−|2

1 + |σ−|
− S h

∫
Ω

(1 − u)σ− −
∫

Ω

(S c − s)uσ−

≤ |γch|

∫
Ω

|σ−|2.

Integrating over [0, t] the final differential inequality d
dt‖σ

−‖2 ≤ 2|γch|‖σ
−‖2, we obtain

‖σ−(t)‖2 ≤ e2|γch |t‖σ−(0)‖2

for all times. Since by assumption σ0 ≥ 0, it turns out that σ−(0) = 0, yielding the thesis. �

3.2. Local in time existence

Let (u0, σ0) ∈ H × H be arbitrarily given. In this section we prove that the Cauchy problem (3.1)
admits (at least) a local solution, which is defined in a maximal time interval [0, τ), for some τ > 0.

3.2.1. Galerkin approximation

Let {e j}
∞
j=1 be a smooth orthonormal basis in H which is also orthogonal in V . Then define Vn =

Span{e1, . . . , en} and denote by Pn the corresponding projection. Now, for any fixed n ∈ N, we consider
the following finite dimensional problem: Find tn > 0 and functions a j, b j ∈ C

1([0, tn)) such that

un(t) =

n∑
j=1

a j(t)e j and σn(t) =

n∑
j=1

b j(t)e j ∈ C
1([0, tn),Vn)

satisfy, for almost every t ∈ (0, tn),

〈∂tun(t), v〉 + (∇un,∇v) = (4u2
n(1 − un) + f̃ (σn, c)k(un), v),

and

〈∂tσn(t),w〉 + (∇σn,∇w) =

(
−γh

σn

1 + |σn|
− γch

σnun

1 + |σn|
+ S h(1 − un) + (S c − s)un,w

)
,
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for every test function v ∈ Vn and w ∈ Vn, along with the initial conditions

un(0) = Pnu0, σn(0) = Pnσ0, a.e. in Ω.

Indeed, choosing v = w = e j for any j ∈ {1, . . . , n}, everything boils down to a system of 2n nonlinear
ordinary differential equations with locally Lipschitz nonlinearities. Hence, by classical results in
ODE’s theory, the local existence (and uniqueness) of a solution (un, σn) is guaranteed on a certain
maximal interval [0, tn). Besides, the solution satisfies

un, σn ∈ C
1([0, tn),V).

We now wish to find estimates that are independent of n.

3.2.2. Energy estimates

Along the proof, C > 0 will stand for a generic constant independent of n. Test the first equation by
un and the second one by σn to find

1
2

d
dt

(‖un‖
2 + ‖σn‖

2) + ‖∇un‖
2 + ‖∇σn‖

2 + 4‖un‖
4
L4 + γh

∫
Ω

σ2
n

1 + |σn|

= 4‖un‖
3
L3 +

∫
Ω

f̃ (σn, c)k(un)un − γch

∫
Ω

unσ
2
n

1 + |σn|

+ S h

∫
Ω

(1 − un)σn +

∫
Ω

(S c − s)unσn.

We now estimate the rhs. Recalling that |k(r)| ≤ c(1 + r2) and that ‖ f̃ (σn, c)‖L∞ ≤ C by construction,
we have ∫

Ω

f̃ (σn, c)k(un)un ≤ C(1 + ‖un‖
3
L3).

Besides, we easily obtain

−γch

∫
Ω

unσ
2
n

1 + |σn|
≤ |γch|

∫
Ω

|un||σn| ≤ C(‖un‖
2 + ‖σn‖

2)

and

S h

∫
Ω

(1 − un)σn +

∫
Ω

(S c − s)unσn ≤ C(‖un‖
2 + ‖σn‖

2) + C.

It is then apparent that we end up with the inequality

1
2

d
dt

(‖un‖
2 + ‖σn‖

2) + 4‖un‖
4
L4 + ‖∇un‖

2 + ‖∇σn‖
2

≤ C‖un‖
3
L3 + C(‖un‖

2 + ‖σn‖
2) + C.

There we can control the L3-norm of un via the Young inequality with exponents 4
3 , 4 as follows

C‖un‖
3
L3 ≤ C‖un‖

3
L4 ≤ 3‖un‖

4
L4 + C.
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Thus we arrive at
d
dt

Λ + ‖un‖
4
L4 + ‖∇un‖

2 + ‖∇σn‖
2 ≤ CΛ + C (3.2)

having set
Λ(t) = ‖un(t)‖2 + ‖σn(t)‖2.

Therefore, by Gronwall’s lemma,
Λ(t) ≤ C ∀t ∈ [0, tn],

so that there exists τ > 0 independent on n such that

‖(un(t), σn(t))‖ ≤ C, ∀t ∈ [0, τ].

Since there exists C > 0 such that

‖un‖
4
L4 + ‖∇un‖

2 ≥
1
2
‖un‖

4
L4 + ‖un‖

2
V −C

then, going back to (3.2) and integrating in time over [0, τ], we further learn that

‖(un(t), σn(t))‖[L2(0,τ;V)]2 ≤ C,

and
‖un‖L4(Qτ) ≤ C.

Hence, by comparison,
‖(∂tun, ∂tσn)‖[L2(0,τ;V′)]2 ≤ C.

3.2.3. Passage to the limit

Due to uniform bounds above, there exists (u, σ) such that

un → u weak star in L∞(0, τ; H) and weakly in L2(0, τ; V) ∩ L4(Qτ),
σn → σ weak star in L∞(0, τ; H) and weakly in L2(0, τ; V).

By the uniform control on ∂tun and ∂tσn, we also learn that

un → u and σn → σ strongly in L2(0, τ; H),

so, in particular,
(un, σn)→ (u, σ) a.e. (x, t) ∈ Qτ.

This allows to pass to the limit in the weak formulation to prove that (u, σ) is a weak solution of (3.1)
on [0, τ]. All the convergences are straightforward but those involving the nonlinear terms. We start by
proving that for any w ∈ V , for any ϕ ∈ C∞0 (0, t) with t ≤ τ,∫ t

0
〈u3

n − u3,w〉ϕ(y)dy→ 0.
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This is easily seen by noticing that fn = u3
n − u3 → 0 a.e. in Qτ and ‖ fn‖L4/3(Qτ) ≤ C, hence fn → 0

weakly in L4/3(Qτ) (Lebesgue convergence, weak form). Let us now prove that∫ t

0
〈[ f̃ (σn, c)k(un) − f̃ (σ, c)k(u)],w〉ϕ(y)dy→ 0.

To this end, observe that, since f̃ is globally Lipschitz and k is a bounded function,∫ t

0
〈[ f̃ (σn, c) − f̃ (σ, c)]k(un),w〉ϕ(y)dy ≤ C‖ϕ‖∞

∫ t

0

∫
Ω

|σn − σ||w|dy

≤ C‖ϕ‖∞

∫ t

0
‖σn(y) − σ(y)‖‖w‖dy→ 0

by the strong convergence σn → σ in L2(0, τ; H). Analogously, exploting the fact that f̃ is bounded
and k globally Lipschitz∫ t

0
〈 f̃ (σ, c)[k(un) − k(u)],w〉ϕ(y)dy ≤ C‖ϕ‖∞

∫ t

0
‖un(y) − u(y)‖‖w‖dy→ 0

by the strong convergence un → u in L2(0, τ; H).

In the second equation, we have to show that∫ t

0
〈

unσn

1 + |σn|
−

uσ
1 + |σ|

,w〉ϕ(y)dy→ 0 as n→ +∞.

Indeed, we rewrite the difference as
unσn

1 + |σn|
−

uσ
1 + |σ|

= (un − u)
σn

1 + |σn|
+ u

[
σn

1 + |σn|
−

σ

1 + |σ|

]
and, noticing that |s|

1+|s| ≤ 1, we obtain∫ t

0
〈(un − u)

σn

1 + |σn|
,w〉ϕ(y)dy ≤ C‖ϕ‖∞‖w‖V

∫ t

0
‖un − u‖dy

where ∫ t

0
‖un − u‖dy ≤

√
τ

(∫ t

0
‖un − u‖2dy

)1/2

→ 0.

On account of the Lipschitz continuity of s
1+|s| , we find∣∣∣∣∣ σn

1 + |σn|
−

σ

1 + |σ|

∣∣∣∣∣ ≤ |σn − σ|.

Hence, the last term in the second equation can be handled as∫ t

0
〈

(
σn

1 + |σn|
−

σ

1 + |σ|

)
,w〉ϕ(y)dy

≤ ‖ϕ‖∞

∫ t

0

∥∥∥∥∥ σn

1 + |σn|
−

σ

1 + |σ|

∥∥∥∥∥ ‖w‖dy

≤ ‖ϕ‖∞‖w‖V

∫ t

0
‖σn − σ‖dy

≤
√
τ‖ϕ‖∞‖w‖V

(∫ t

0
‖σn − σ‖

2dy
)1/2

→ 0.

AIMS Mathematics Volume 7, Issue 1, 1536–1561.



1547

3.3. Global existence

In this section we show that any solution to the auxiliary initial value problem (3.1) originated from
(u0, σ0) ∈ S is defined for all positive times.

Theorem 3.3. Let T > 0 be given and z0 = (u0, σ0) ∈ S. Then, any weak solution (u, σ) to (3.1)
departing from z0 is global in time on [0,T ].

Proof. Let us define

t = sup{t ≥ 0 : there exists a weak solution in S on [0, t) departing from z0}.

We know by the previous section that there exists a solution (u, σ) ∈ S defined on [0, τ], hence t ≥ τ > 0
and

‖u(t)‖2 ≤ |Ω| ∀ t ∈ [0, t).

Besides, inequality (3.2) holds for (u, σ) in place of (un, σn) since all the involved constants are
independent of n. Then Gronwall’s lemma yields

‖σ(t)‖2 ≤ cect, ∀ t ∈ [0, t), (3.3)

for some c > 0 independent of t. This implies that t = T : indeed, the uniform bounds of the H-norms
tell that limt→t u(t) and limt→t σ(t) exist in H (at least for a subsequence). Now we can consider a
solution to the Cauchy problem with initial datum (u(t), σ(t)), which is defined on an interval [t, t + δ]),
for some δ > 0 (see also the extension theorem [14, Lemma 3.1, p. 13]). In this way we contradict the
definition of t. �

4. Well-posedness: proof of Theorem 2.3

Let T > 0 and take an initial datum (u0, σ0) ∈ S. In light of the above analysis, let (u, σ) be any
global weak solution to the auxiliary system (3.1) originated by (u0, σ0). We actually proved in Section
3.1 that (u, σ) ∈ S a.e. on QT , implying that

k(u) = −2u(1 − u) and
σ

1 + |σ|
=

σ

1 + σ
= g(σ).

It turns out that the pair (u, σ) actually solves the original problem (1.2) on [0,T ]. This proves the first
part of Theorem 2.3, namely the global existence of solutions to the original model and the invariance
of the set S. Let us now prove uniform energy estimates and a continuous dependence result, where
we highlight the role of the controls for further use.

Theorem 4.1. Let (u, σ) be a solution to (1.2) originated from (u0, σ0) ∈ S. Then, the following
uniform estimate holds

‖u‖2X + ‖σ‖2X ≤ C(‖u0‖
2 + ‖σ0‖

2 + ‖c‖2L2(0,T ;H) + ‖s‖2L2(0,T ;H) + 1).

Proof. Along the line of Section 3.2.2, we multiply the first equation of (1.2) by u and the second one
by σ to find

1
2

d
dt

(‖u‖2 + ‖σ‖2) + ‖∇u‖2 + ‖∇σ‖2 + 4‖u‖4L4 + γh

∫
Ω

σ2

1 + σ
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= 4‖u‖3L3 +

∫
Ω

f̃ (σ, c)k(u)u − γch

∫
Ω

uσ2

1 + σ

+ S h

∫
Ω

(1 − u)σ +

∫
Ω

(S c − s)uσ.

At this point we estimate the rhs, recalling that 0 ≤ u ≤ 1, but now paying attention to the role of c and
s. Since

f̃ (σ, c) = [1 − 3(m(σ) − c)]

and m is bounded, we have ∫
Ω

f̃ (σ, c)k(u)u ≤ C(‖c‖2 + 1).

Besides, we easily get

−γch

∫
Ω

uσ2

1 + σ
≤ |γch|

∫
Ω

|u||σ| ≤ C(‖u‖2 + ‖σ‖2),

and
S h

∫
Ω

(1 − u)σ +

∫
Ω

(S c − s)uσ ≤ C(‖σ‖2 + ‖s‖2 + 1).

Hence, calling
Λ(t) = ‖u(t)‖2 + ‖σ(t)‖2,

we obtain the differential inequality

d
dt

Λ + ω(‖u‖4L4 + ‖u‖2V + ‖∇σ‖2) ≤ CΛ + C(‖c‖2 + ‖s‖2 + 1),

for some ω > 0. An application of the Gronwall lemma on [0,T ] yields

Λ(t) ≤ Λ(0)eC + CeC
∫ T

0
(‖c(y)‖2 + ‖s(y)‖2 + 1)dy,

for every t ∈ [0,T ], saying that

‖u(t)‖2 + ‖σ(t)‖2 ≤ C(‖u0‖
2 + ‖σ0‖

2 + ‖c‖2L2(0,T ;H) + ‖s‖2L2(0,T ;H) + 1),

for every t. Going back to the differential inequality and integrating in time over [0,T ], we obtain the
desired control for u and σ in L2(0,T ; V) and ‖u‖L4(Qτ). Finally, by comparison in the system we get an
analogous estimate for ‖(∂tu, ∂tσ)‖[L2(0,τ;V′)]2 ≤ C, completing the proof. �

Theorem 4.2. Let (ui, σi) be two solutions to to (1.2) corresponding to controls (ci, si) ∈ L∞(QT ) ×
L∞(QT ), with si ≤ S c, and initial data zi = (u0,i, σ0,i) ∈ S, i = 1, 2. Then, the following continuous
dependence estimate holds:

‖u1(t) − u2(t)‖2 + ‖σ1(t) − σ2(t)‖2 + ‖u1 − u2‖
2
L2(0,T ;V) + ‖σ1 − σ2‖

2
L2(0,T ;V)

≤ C(‖z1 − z2‖
2 + ‖c1 − c2‖

2
L2(0,T ;H) + ‖s1 − s2‖

2
L2(0,T ;H))

for all t ∈ [0,T ].
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Proof. Observe that, by Section 3, we know that 0 ≤ ui ≤ 1 and σi ≥ 0 a.e. in QT , for i = 1, 2. Let us
denote by (u, σ) = (u1 − u2, σ1 − σ2) and (c, s) = (c1 − c2, s1 − s2). Then

∂tu − ∆u + 4u(u2
1 + u1u2 + u2

2) = 4u(u1 + u2) + f̃ (σ1, c1)k(u1) − f̃ (σ2, c2)k(u2),

∂tσ − ∆σ + γh[g(σ1) − g(σ2)] + γch[g(σ1)u1 − g(σ2)u2] = (S c − S h)u − s1u1 + s2u2.

Recalling that f̃ (σ, c) = [1 − 3(m(σ) − c)], we rewrite

f̃ (σ1, c1)k(u1) − f̃ (σ2, c2)k(u2) = [ f̃ (σ1, c1) − f̃ (σ2, c2)]k(u1) + f̃ (σ2, c2)[k(u1) − k(u2)]
= 3[m(σ2) − m(σ1) + c]k(u1) − f̃ (σ2, c2)[k(u2) − k(u1)].

Then, multiplying the first equation by u, taking into account that u1 + u2 ≤ 2, we get

1
2

d
dt
‖u‖2 + ‖∇u‖2 ≤ 8‖u‖2 + 3

∫
Ω

[m(σ2) − m(σ1) + c]k(u1)u

−

∫
Ω

f̃ (σ2, c2)[k(u2) − k(u1)]u.

Since m is a globally Lipschitz function and k(u) is bounded, we immediately get

3
∫

Ω

[m(σ2) − m(σ1) + c]k(u1)u ≤ C
∫

Ω

|u|(|σ| + |c|) ≤ c‖u‖(‖σ‖ + ‖c‖).

Besides, exploiting the global Lipschitz continuity of k and the boundedness of f̃ ,

−

∫
Ω

f̃ (σ2, c2)[k(u2) − k(u1)]u ≤ C‖u‖2.

We thus end up with

1
2

d
dt
‖u‖2 + ‖∇u‖2 ≤ C(‖u‖2 + ‖σ‖2 + ‖c‖2).

As a second step we consider the second equation in the differential system solved by (u, σ). We
observe that

g(σ1)u1 − g(σ2)u2 = [g(σ1) − g(σ2)]u1 + g(σ2)u,

hence a multiplication by σ yields

1
2

d
dt
‖σ‖2 + ‖∇σ‖2 = −

∫
Ω

(γh + γchu1)[g(σ1) − g(σ2)]σ

− γch

∫
Ω

g(σ2)uσ +

∫
Ω

(S c − S h − s2)uσ −
∫

Ω

su1σ.

Since |g(σ1) − g(σ2)| ≤ |σ| and 0 ≤ u1 ≤ 1, the first term on the rhs is easily estimated as

−

∫
Ω

(γh + γchu1)[g(σ1) − g(σ2)]σ ≤ C‖σ‖2.
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We proceed noticing that, since 0 ≤ g(σ) < 1,

−γch

∫
Ω

g(σ2)uσ ≤ C
∫

Ω

|σ||u| ≤ C‖u‖‖σ‖.

Finally, ∫
Ω

(S c − S h − s2)uσ −
∫

Ω

su1σ ≤ C(‖u‖ + ‖s‖)‖σ‖.

Collecting everything, we end up with the differential inequality

d
dt

(
‖u‖2 + ‖σ‖2

)
+ ω(‖u‖2V + ‖σ‖2V) ≤ C(‖u‖2 + ‖σ‖2) + C(‖c‖2 + ‖s‖2),

for some ω > 0. Let now T > 0 be fixed. An application of the Gronwall lemma on [0,T ] yields

‖u(t)‖2 + ‖σ(t)‖2 ≤ eC(‖u(0)‖2 + ‖σ(0)‖2) + CeC
∫ T

0
(‖c(y)‖2 + ‖s(y)‖2)dy,

where u(0) = u0,1−u0,2 andσ(0) = σ0,1−σ0,2, proving the claimed continuous dependence estimate. �

As an immediate consequence of Theorem 4.1, we see that the (global) weak solution to (1.2)
departing from any (u0, σ0) ∈ S is unique. Indeed, let us denote by (ui, σi), i = 1, 2 two solutions,
corresponding to a fixed pair of controls (c, s) ∈ L∞(QT ) × L∞(QT ) with s ≤ S c, departing from the
same initial datum z0 = (u0, σ0) ∈ S. Then, setting c1 = c2 = c, s1 = s2 = s and z1 = z2 = z0 in the
continuous dependence estimate, we get

‖u(t)‖2 + ‖σ(t)‖2 ≤ 0, ∀t ∈ [0,T ],

saying that (u, σ) ≡ (0, 0) hence (u1, σ1) ≡ (u2, σ2) in [0,T ].

As a last step, we are left to prove that, if the initial datum σ0 is bounded, then the solution remains
bounded for all times. To this aim, we rewrite the equation for σ as

∂tσ − ∆σ = −γh
σ

1 + σ
− γch

σu
1 + σ

+ S h(1 − u) + (S c − s)u,

noticing that the right-hand side belongs to L∞(0,T ; H). If we considerσ0 ∈ L∞(Ω), then, by a classical
result in the theory of linear parabolic PDEs (see e.g. Theorem 7.1 in [16]), we immediately find the
desired conclusion σ ∈ L∞(QT ), together with the uniform estimate (2.1). The proof of Theorem 2.3 is
now completed.

5. The control-to-state mapping

From now on, let
(u0, σ0) ∈ S with σ0 ∈ L∞(Ω)

be fixed. In light of the existence result Theorem 2.3, we can define the control-to-state mapping as

G : U = {(c, s) ∈ L∞(QT ) × L∞(QT ) : s ≤ S c} → H ×H
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(c, s) 7→ (u, σ),

where (u, σ) is the unique weak solution to (1.2) corresponding to (c, s) with initial datum (u0, σ0) as
above. Here we set

H = C([0,T ],H) ∩ L2(0,T ; V).

Besides, by Theorem 2.3 we also know that

0 ≤ u ≤ 1, σ ≥ 0 a.e. QT and ‖σ‖L∞(QT ) ≤ C. (5.1)

Observe that the mapping G is Lipschitz continuous (having endowed L∞(QT ) with the L2-
topology); indeed, owing to Theorem 4.2 we have

‖u1 − u2‖
2
H

+ ‖σ1 − σ2‖
2
H
≤ C(‖c1 − c2‖

2
L2(QT ) + ‖s1 − s2‖

2
L2(QT )), (5.2)

for all (ci, si) ∈ U and associated states (ui, σi) = G(ci, si).

Let us now show that G possesses certain directional derivatives at any point inU. To this aim, let
(c∗, s∗) ∈ U be fixed and denote by (u∗, σ∗) = G(c∗, s∗) the corresponding state. Then, for (c, s) ∈ U,
we introduce the linearized system at (u∗, σ∗), defined as

Yt − ∆Y + AY − BZ = −c h′(u∗) in QT ,

Zt − ∆Z + CZ + DY = −s u∗ in QT ,

∂nY = ∂nZ = 0 on ΣT ,

Y(0) = Z(0) = 0 in Ω,

(5.3)

where the coefficients are defined as follows

A = F′′(u∗) − m(σ∗)h′′(u∗) + c∗h′′(u∗),
B = m′(σ∗)h′(u∗),
C = (γh + γchu∗)g′(σ∗),
D = s∗ − S ch + γchg(σ∗),

and S ch = S c − S h. Notice that the four coefficients, as well as the source terms −ch′(u∗) and −su∗,
are in L∞(QT ), due to the assumptions on the nonlinearities and the fact that 0 ≤ u∗ ≤ 1 and σ∗ ≥ 0
a.e. in QT . By the theory of linear parabolic equations (see the subsequent Theorem 7.1), there exists
a unique strong solution to (5.3) with

‖Y‖2
C([0,T ],V)∩L2(0,T ;W) + ‖Z‖2

C([0,T ],V)∩L2(0,T ;W) ≤ C(‖c‖2L2(0,T ;H) + ‖s‖2L2(0,T ;H)). (5.4)

At this point, we consider any (c̄, s̄) ∈ U and notice that

(cµ, sµ) = (c∗ + µ(c̄ − c∗), s∗ + µ(s̄ − s∗)) ∈ U

for any µ ∈ (0, 1). Therefore, we can consider the corresponding state (uµ, σµ) = G(cµ, sµ) satisfying
all the results proven in the previous sections. Note that, letting µ → 0, by construction cµ → c∗ and
sµ → s∗ in L2(QT ) As a consequence, since G is Lipschitz continuous by (5.2), we have

uµ → u∗ and σµ → σ∗ in H . (5.5)
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Lemma 5.1. In the limit µ→ 0+ we have(
uµ − u∗

µ
,
σµ − σ∗

µ

)
→ (Y,Z) in H ×H ,

where (Y,Z) is the solution to the linearized system (5.3) with (c, s) = (c̄ − c∗, s̄ − s∗).

Proof. We set

Yµ =
uµ − u∗

µ
− Y, Zµ =

σµ − σ∗

µ
− Z.

Accordingly, we have to prove that Yµ → 0 and Zµ → 0 in H . The first step consists in writing in
a suitable form a differential system for (Yµ,Zµ). After some computations, it is not difficult to check
that the following holds:Yµ

t − ∆Yµ + A1Yµ + A2Y + A3Zµ + A4Z = −c [h′(uµ) − h′(u∗)],
Zµ

t − ∆Zµ + B1Yµ + B2Y + B3Zµ + B4Z = −s [uµ − u∗],
(5.6)

having defined

A1 = F′′(xµ) + [m(σ∗) − c∗]h′′(xµ),
A2 = [F′′(xµ) − F′′(u∗)] − [m(σ∗) − c∗][h′′(xµ) − h′′(u∗)],
A3 = −m′(sµ)h′(uµ),
A4 = m′(σ∗)h′(u∗) − m′(sµ)h′(uµ),

and

B1 = γchg(σµ) − S ch + s∗,

B2 = γch[g(σµ) − g(σ∗)],
B3 = γhg′(sµ) + γchu∗g′(sµ),
B4 = γh[g′(sµ) − g′(σ∗)] + γchu∗[g′(sµ) − g′(σ∗)].

Here, xµ, xµ and sµ, sµ are measurable functions arising from the application of an extension of
Lagrange Theorem (see [4, Appendix]) as follows:

F′(uµ) − F′(u∗) = (uµ − u∗)F′′(xµ),
h′(uµ) − h′(u∗) = (uµ − u∗)h′′(xµ),
m(σµ) − m(σ∗) = (σµ − σ∗)m′(sµ),
g(σµ) − g(σ∗) = (σµ − σ∗)g′(sµ).

We recall that xµ and xµ attain intermediate values between the ones of uµ and u∗, while sµ and sµ are
in between σµ and σ∗.
As a second step, we test system (5.6) with the pair (Yµ,Zµ), so obtaining the differential equality

1
2

d
dt

(‖Yµ‖2 + ‖Zµ‖2) + ‖∇Yµ‖2 + ‖∇Zµ‖2
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= −

∫
Ω

A1|Yµ|2 −

∫
Ω

B3|Zµ|2 −

∫
Ω

(A3 + B1)YµZµ

−

∫
Ω

(A2YYµ + A4ZYµ + B2YZµ + B4ZZµ)

−

∫
Ω

c [h′(uµ) − h′(u∗)]Yµ −

∫
Ω

s [uµ − u∗]Zµ.

We proceed by estimating the rhs. Since Ai, B j ∈ L∞(QT ) in light of (5.1) and thanks to the regularity
of the involved nonlinearities, the first three terms in the rhs are easily controlled by

C(‖Yµ‖2 + ‖Zµ‖2).

Besides, the last two terms can be estimated exploiting the Lipschitz continuity of h′ as

C‖uµ − u∗‖2 + C(‖Yµ‖2 + ‖Zµ‖2).

Finally, exploiting the fact that Y,Z ∈ L∞(0,T ; V) by (5.4),

−

∫
Ω

(A2YYµ + A4ZYµ + B2YZµ + B4ZZµ)

≤ C(‖A2‖ + ‖A4‖)‖Yµ‖V + C(‖B2‖ + ‖B4‖)‖Zµ‖V

≤
1
2

(‖∇Yµ‖2 + ‖∇Zµ‖2) + C(‖Yµ‖2 + ‖Zµ‖2)

+ C(‖A2‖
2 + ‖A4‖

2 + ‖B2‖
2 + ‖B4‖

2).

Integrating on [0, t], observing that ‖Yµ(0)‖2 + ‖Zµ(0)‖2 = 0, we get

‖Yµ(t)‖2 + ‖Zµ(t)‖2 +

∫ t

0
(‖∇Yµ‖2 + ‖∇Zµ‖2)dy ≤ C

∫ t

0
(‖Yµ‖2 + ‖Zµ‖2)dy + Rµ

having set

Rµ = C(‖A2‖
2
L2(QT ) + ‖A4‖

2
L2(QT ) + ‖B2‖

2
L2(QT ) + ‖B4‖

2
L2(QT )) + C‖uµ − u∗‖2L2(QT ).

We claim that
lim
µ→0

Rµ = 0.

Indeed, we have the convergences (5.5), implying in turn that

xµ, xµ → u∗ and sµ, sµ → σ∗ in C([0,T ],H).

Now the conclusion follows by invoking the Lipschitz continuity of F′′, h′, h′′ and of m′, g, g′. As a
final step we apply the Gronwall lemma on [0,T ] that yields

‖Yµ(t)‖2 + ‖Zµ(t)‖2 +

∫ t

0
(‖∇Yµ‖2 + ‖∇Zµ‖2)dy ≤ Rµ, ∀t ∈ [0,T ].

Letting µ→ 0 the proof is done. �
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6. Optimal control problem

Our optimal control problem consists in finding the control functions c∗ and s∗ (if any) that provide
the optimal cytotoxic and antiangiogenic effects to treat a certain glioma whose evolution is modeled
by (1.2).

In order to state the problem, we first fix the desired targets for the tumor phase and for the oxygen
in QT and in Ω at the final time T , respectively given by

uQ, σQ ∈ L2(QT ) and uΩ, σΩ ∈ L2(Ω). (6.1)

Then, for any (u, σ) ∈ [C([0,T ],H)]2 and any (c, s) ∈ [L2(0,T ; H)]2, we introduce the functional

J(u, σ, c, s) =
k1

2

∫
QT

[u(x, t) − uQ]2dxdt +
k2

2

∫
Ω

[u(x,T ) − uΩ]2dx + k3

∫
Ω

u(x,T )dx

+
k4

2

∫
QT

[σ(x, t) − σQ]2dxdt +
k5

2

∫
Ω

[σ(x,T ) − σΩ]2dx

+
k6

2

∫
QT

c2(x, t)dxdt +
k7

2

∫
QT

s2(x, t)dxdt,

where ki are given nonnegative constants, with at least one strictly positive.

Next, we define the set of all the admissible controls (c, s). Given two positive thresholds Umax > 0
and 0 < S max ≤ S c, we define

K1 = {c ∈ L2(QT ) : 0 ≤ c ≤ Umax a.e. in QT },

K2 = {s ∈ L2(QT ) : 0 ≤ s ≤ S max a.e. in QT },

and we set
Uad = {(c, s) ∈ L2(QT ) × L2(QT ) : c ∈ K1, s ∈ K2}.

Finally, given the initial state
(u0, σ0) ∈ S with σ0 ∈ L∞(Ω),

we consider the control-to-state map defined in Section 5. Accordingly, for any pair (c, s) ∈ Uad we
set (u, σ) = G(c, s) as the weak solution to (1.2) corresponding to (c, s) with initial datum (u0, σ0), and
we define the (reduced) cost functional

J(c, s) = J(G(c, s), c, s).

Our control problem can be stated as follows: find, if possible, an optimal control (c∗, s∗) ∈ Uad such
that

J(c∗, s∗) = min
(c,s)∈Uad

J(c, s). (6.2)

We start the analysis by proving an existence result.
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6.1. Existence of the optimal control

Theorem 6.1. Under assumption (6.1), for any fixed (u0, σ0) ∈ S with σ0 ∈ L∞(Ω) there exists at least
a solution (c∗, s∗) ∈ Uad to (6.2) with corresponding optimal state (u∗, σ∗).

Proof. Indeed, since J ≥ 0, it is immediate to see that inf(c,s)∈Uad J(c, s) = δ ≥ 0. We can consider then
a minimizing sequence (cn, sn) ∈ Uad such that

δ ≤ J(cn, sn) ≤ δ +
1
n
, ∀n ∈ N,

and, according to Theorem 2.3, the corresponding state (un, σn): this, in particular is uniformly
bounded in X × X with 0 ≤ un ≤ 1 a.e. in QT and σn ≥ 0 a.e. in QT satisfies (2.1). By the boundedness
ofUad and Theorem 4.1, we can select subsequences (that we still denote as) (cn, sn) and (un, σn) such
that

(cn, σn)→ (c∗, s∗) weak star in L∞(QT ),
(un, σn)→ (u∗, σ∗) weakly in H1(0,T ; V ′) ∩ L2(0,T ; V) and weak star in L∞(QT ).

It is worth noticing that so far no relation connects (c∗, s∗) and (u∗, σ∗). Our aim will be to prove that
(u∗, σ∗) = G(c∗, s∗), namely, that (u∗, σ∗) is the state corresponding to the control, and that J(c∗, s∗) = δ.
First of all, by compactness,

(un, σn)→ (u∗, σ∗) strongly in L2(0,T ; H), (6.3)

and, owing to the Ascoli-Arzelá Theorem,

(un(t), σn(t))→ (u∗(t), σ∗(t)) strongly in V ′ × V ′, uniformly in t ∈ [0,T ]. (6.4)

Therefore, it follows that (u∗(0), σ∗(0)) = (u0, σ0). Besides, (u∗, σ∗) ∈ S and σ∗ satisfies (2.1).
Furthermore, due to the boundedness and Lipschitz continuity of all the involved nonlinear functions,
these convergences allow to pass to the limit in the problem solved by (un, σn), proving that (u∗, σ∗)
solves the initial boundary value problem correspondig to (c∗, s∗), that is, (u∗, σ∗) = G(c∗, s∗).

To accomplish our second task, we decompose the functional J in three parts, namely,

J = J1 + J2 + J3,

where

J1(c, s) =
k1

2

∫
QT

[u(x, t) − uQ]2dxdt +
k4

2

∫
QT

[σ(x, t) − σQ]2dxdt,

J2(c, s) = k3

∫
Ω

u(x,T )dx,

J3(c, s) =
k2

2

∫
Ω

[u(x,T ) − uΩ]2dx +
k5

2

∫
Ω

[σ(x,T ) − σΩ]2dx

+
k6

2

∫
QT

c2(x, t)dxdt +
k7

2

∫
QT

s2(x, t)dxdt.
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Now, convergence (6.3) immediately gives

lim
n→∞

J1(cn, sn) = J1(c∗, s∗).

By the uniform boundedness of ‖un(T )‖ following from Theorem 4.1, we infer that, up to a
subsequence,

un(T )→ u∗(T ) weakly in H × H

so that
lim
n→∞

J2(cn, sn) = J2(c∗, s∗).

The last functional J3 is weakly lower semicontinuous thus

J3(c∗, s∗) ≤ lim inf
n→∞

J3(cn, sn).

Collecting all our computations, we conclude

δ ≤ J(c∗, s∗) ≤ lim inf
n→∞

J(cn, sn) = δ,

showing that indeed J realizes its minimum value at (c∗, s∗). �

Once the existence of an optimal control is established, the next goal is devising a necessary
condition for a control to be optimal that, in particular, allows its identification by numerical
simulations.

6.2. Optimality conditions

Let (c∗, s∗) ∈ Uad be an optimal control and denote by (u∗, σ∗) the corresponding optimal state.
Then, for any (c̄, s̄) ∈ Uad, we notice that

(cµ, sµ) = (c∗ + µ(c̄ − c∗), s∗ + µ(s̄ − s∗)) ∈ Uad

for any µ ∈ (0, 1). Therefore, we can consider the corresponding state (uµ, σµ) and observe that

J(cµ, sµ) − J(c∗, s∗)
µ

≥ 0, ∀µ ∈ (0, 1). (6.5)

Now, owing to Lemma 5.1, we can pass to the limit as µ → 0+ in (6.5), saying that the derivative of J
at (c∗, s∗) in the direction of (c̄ − c∗, s̄ − s∗) is nonnegative. Invoking Lemma 5.1 once again, we easily
obtain {

k1

∫
QT

(u∗ − uQ)Ydxdt + k2

∫
Ω

(u∗(T ) − uΩ)Y(T )dx + k3

∫
Ω

Y(x,T )dx

+ k4

∫
QT

(σ∗(x, t) − σQ)Zdxdt + k5

∫
Ω

[σ∗(T ) − σΩ]Z(T )dx
}

(6.6)

+ k6

∫
QT

c∗(c̄ − c∗)dxdt + k7

∫
QT

s∗(s̄ − s∗)dxdt ≥ 0,
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where (Y,Z) solves the linearized problem (5.3). The above inequality is the so-called first order
optimality condition, although from its expression it is really difficult to identify the optimal control
even by numerical simulations.

Therefore, as it is done in the classical control theory (see the subsequent Theorem 7.1), we
introduce the so-called adjoint problem, here defined as

−wt − ∆w + Aw + Dz = k1(u∗ − uQ) in QT ,

−zt − ∆z + Cz − Bw = k4(σ∗ − σQ) in QT ,

∂nw = ∂nz = 0 on ΣT ,

w(T ) = k2[u∗(T ) − uΩ] + k3, z(T ) = k5[σ∗(T ) − σΩ] in Ω,

(6.7)

where ki, i = 1, . . . , 5, and uQ, σQ, uΩ, σΩ are exactly the constants and the target functions appearing
in the cost functional.

By Theorem 7.1, we learn that there exists a unique weak solution (w, z) ∈ X × X to (6.7) and that
the analogous of (7.1) holds true, namely,

k1

∫
QT

(u∗ − uQ)Ydxdt + k2

∫
Ω

(u∗(T ) − uΩ)Y(T )dx + k3

∫
Ω

Y(x,T )dx

+ k4

∫
QT

(σ∗(x, t) − σQ)Zdxdt + k5

∫
Ω

[σ∗(T ) − σΩ]Z(T )dx

=

∫
QT

[−(c̄ − c∗)h′(u∗)w − (s̄ − s∗)u∗z]dxdt.

As a consequence, inequality (6.6) turns into the much simpler form∫
QT

[−(c̄ − c∗)h′(u∗)w − (s̄ − s∗)u∗z]dxdt

+ k6

∫
QT

c∗(c̄ − c∗)dxdt + k7

∫
QT

s∗(s̄ − s∗)dxdt ≥ 0,

that we write as

(h′(u∗)w − k6c∗, c∗ − c̄)L2(QT ) + (u∗z − k7s∗, s∗ − s̄)L2(QT ) ≥ 0, ∀(c̄, s̄) ∈ Uad,

Notice that this is equivalent to

(h′(u∗)w − k6c∗, c∗ − c̄)L2(QT ) ≥ 0, ∀c̄ ∈ K1,

(u∗z − k7s∗, s∗ − s̄)L2(QT ) ≥ 0, ∀s̄ ∈ K2.

The geometric meaning of these inequalities is clear: indeed, leaning on the elementary theory of
projections in Hilbert spaces (see e.g. Remark 4.6 in [4]), we have obtained the first order optimality
conditions

Theorem 6.2 (First order optimality conditions). Let (c∗, s∗) ∈ Uad be an optimal control, with
corresponding state (u∗, σ∗). Then

c∗ = ProjK1

(
1
k6

h′(u∗)w
)

and s∗ = ProjK2

(
1
k7

u∗z
)
, (6.8)

where (w, z) ∈ X × X is the solution to the adjoint system (6.7).
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Let us conclude our analysis by expressing the optimal control in the easiest possible form, recalling
that the projection of v ∈ L2(QT ) into

K = {x ∈ L2(QT ) : 0 ≤ x ≤ b a.e. in QT }

is

ProjK(v) =


0 if v < 0,
v if 0 ≤ v ≤ b,

b if v > b.

As a result, the optimal control is characterized by the following two formulas

c∗ =


0 if h′(u∗)w < 0,
1
k6

h′(u∗)w if 0 ≤
1
k6

h′(u∗)w ≤ Umax,

Umax if
1
k6

h′(u∗)w > Umax,

and

s∗ =


0 if u∗z < 0,
1
k7

u∗z if 0 ≤ 1
k7

u∗z ≤ S max,

S max if
1
k7

u∗z > S max.

7. Appendix. A useful result for distributed controls

In classical control theory (see e.g. [25]), the more feasible expression of the first order optimality
condition relies on the solutions to a suitable linear problem and its adjoint. We briefly describe the
main tools in a suitable form to treat the model under study in this paper. We consider the two linear
systems

(L)


yt − ∆y + c0y = bv,

∂ny = 0,
y(0) = 0,

(L∗)


−pt − ∆p + cT

0 p = aQ,

∂n p = 0,
p(T ) = aΩ,

where the unknowns are the vectors y = (Y,Z)T and p = (w, z)T so that, in particular, ∆y = (∆Y,∆Z)T .
Besides, c0 is a 2 × 2 matrix whose transpose is cT

0 , while all the other given quantities b, v, aQ, aΩ are
vector functions. The second system (L∗) is called the adjoint to system (L). The link between the two
systems, that turns out to be quite useful in order to identify the optimal control, is expressed by (7.1)
in the next result.

Theorem 7.1. Provided that the entries of the matrix c0 and of the vectors b and v belong to L∞(QT ),
if aQ ∈ [L2(QT )]2 and aΩ ∈ H × H, then there exists a unique strong solution y ∈ [C([0,T ],V) ∩
L2(0,T ; W)]2 to problem (L) such that

‖y‖[C([0,T ],V)∩L2(0,T ;W)]2 ≤ C(‖v‖[L2(QT )]2 + 1).
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Moreover, there exists a unique weak solution p ∈ X × X to the adjoint problem (L∗) such that

‖p‖X×X ≤ C.

Finally, the following equality holds true

〈aΩ, y(T )〉 +
∫ T

0
〈aQ, y〉dt =

∫ T

0
〈bv, p〉dt. (7.1)

Proof. First of all, we see that problem (L) is well posed: indeed, under our assumptions, the
coefficients belong to L∞(QT ), the source terms to L2(QT ) and the null initial data are in particular
in V × V , hence by classical results on parabolic systems (see, e.g., [15, Theorem 1.1]), there exists a
unique strong solution y ∈ [C([0,T ],V) ∩ L2(0,T ; W)]2 satisfying (7.1). Reversing time by the change
of variable t 7→ T−t, problem (L∗) turns into a forward system with L∞(QT ) coefficients, L2(QT ) source
terms and initial data in H × H. Thus, the aforementioned theorem on linear parabolic system applies,
yielding the existence of a unique weak solution p ∈ X × X to (L∗) satisfying (7.1). Since y is a strong
solution to problem (L) then it is also a weak solution and, by definition,∫ T

0
〈yt, φ〉dt +

∫ T

0
〈−∆y + c0y, φ〉dt =

∫ T

0
〈bv, φ〉dt

for every φ ∈ X × X. Choosing φ = p as weak solution to problem (L∗) and integrating by parts, we
obtain ∫ T

0
〈yt, p〉dt = 〈y(T ), p(T )〉 +

∫ T

0
〈−pt, y〉dt.

Besides,
〈−∆y + c0y, p〉 = 〈−∆p + cT

0 p, y〉.

We thus find

〈y(T ), p(T )〉 +
∫ T

0
〈−pt, y〉dt +

∫ T

0
〈−∆p + cT

0 p, y〉 =

∫ T

0
〈bv, p〉dt.

Collecting our computations, we obtain (7.1). �
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