
1. Introduction
Reactive transport settings in groundwater systems involve a suite of often complex geochemical reactions. A 
remarkable exemplary scenario is given by the degradation of Contaminants of Emerging Concern (CECs). In 
this context, the evolution of one compound might result in the occurrence of numerous species. These range 
from the parent molecule to many metabolites, some of which being still scarcely addressed in the literature. Most 
of these compounds are suspected to be responsible of chronic effects on natural ecosystems and human health 
(Fent et al., 2006; Im et al., 2020; Kumar et al., 2010; La Farre et al., 2008). Thus, proper understanding and quan-
tification of the fate of these types of pollutants (and transformation products) is critical from an environmental 
and (eco)toxicological perspective.

Reliable assessment of the fate of CECs in groundwater starts from identifying the different molecules that might 
arise from an individual parent. One then needs to enumerate all degradation pathways and potential processes 
that might lead to the presence of transformation products and by-products. The bio-geochemical conditions that 
might yield such degradation pathways should then be identified. A critical step of the analysis relies on (a) the 
selection of appropriate mathematical formulations of the processes involved in the system evolution and (b) the 
estimation of the values of the parameters embedded in such processes (such as, e.g., maximum degradation rates, 
yield coefficients or inhibition parameters; see, e.g., Rodríguez-Escales and Sanchez-Vila, 2016). Furthermore, it 
can be noted that the fate of CECs in groundwater generally depends on additional physico-chemical parameters, 
including, for example, lithologic (Reberski et al., 2022), textural and hydraulic characteristics of the soil (Farhat 
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et al., 2022), temperature (Greskowiak et al., 2006), redox state (Rodríguez-Escales et al., 2017), or characteris-
tics of the microbial environment (Canelles et al., 2021).

A direct consequence of the amount of processes and parameters that need to be included in the interpretation 
of laboratory- and site-based experiments is that mathematical models often tend to become over-parameterized 
(i.e., they rely on an excessive number of parameters which may lead to data over-fitting). The situation is exac-
erbated by the observation that only a limited amount of (concentration) data of chemical species involved in 
these experimental settings is typically available. Reliable model calibration and validation are then challenging. 
In this context, the selection of appropriate mathematical formulations to model the considered processes is 
affected by uncertainty. One often wonders if introducing a large number of terms (each eventually involving a 
set of uncertain parameters) in a model formulation might be justified by the need of capturing as many process 
features as possible. Otherwise, relying on simplified approaches (with a reduced number of parameters) can 
sometimes still be a valuable option to explain most of the observed data. Indeed, reducing the number of uncer-
tain model parameters (or conceptualizing them as lumped ones) would most often reduce estimation uncertainty 
as compared against the case of more convoluted models. In this sense, Global Sensitivity Analysis (GSA) can 
effectively assist to obtain a balanced trade-off between the complexity of processes description and the level of 
the associated parametric uncertainty. GSA can be also used to enhance our knowledge on model functioning. 
The latter is often a critical issue in the presence of high-dimensionality parameter spaces, as in the case of CECs 
degradation. The general framework typically considers a single conceptual model as explicative of the system 
behavior. Here, GSA allows ranking the level of influence of input parameters (or associated processes) on model 
outputs through the evaluation of given sensitivity indices/metrics (Dell’Oca et al., 2017; Sobol, 1993) (see, e.g., 
Ceriotti et al. (2018) and Elgendy and Porta (2021) for some recent applications). However, a Single-Model GSA 
(SM-GSA) does not allow incorporating the effects of model formulation uncertainty. This limitation is critical 
considering that the role of model uncertainty is increasingly recognized as key in the context of many hydroge-
ological and bio-geochemical systems, where several plausible models can be considered as potential candidates 
to interpret a given system (Chen & Ma, 2006; Hauck et al., 2008; Walker et al., 2015; X. Zhang et al., 2014). 
For this reason, the formulation of Single-Model sensitivity indices has been recently extended to a Multi-Model 
framework. The latter encompasses several plausible conceptualizations of the considered system (see, e.g., the 
variance-based model process sensitivity index proposed by Dai et al. (2017) and the Multi-Model AMAM indices 
introduced by Dell’Oca et al. (2020)).

In the broad context of modeling CECs degradation in groundwater, the present study is specifically focused on 
the non-steroidal anti-inflammatory drug diclofenac (DCF). The latter has been widely detected in various types 
of natural compartments, including groundwater (Jurado et  al., 2019; Rozman et  al., 2015; Schimmelpfennig 
et  al.,  2016). DCF can reach the groundwater compartment through various contamination routes including, 
for example, percolation from landfills and wastewater effluents from hospitals, nursing homes, and/or private 
households (Lonappan et al., 2016). Despite DCF detection is usually limited to trace concentrations (i.e., in the 
range between ng/L to fractions of μg/L), its potential adverse effects upon chronic exposure have been increas-
ingly recognized (Bouly et al., 2022; Lonappan et al., 2016; Y. Zhang et al., 2021; references therein). Predicting 
the fate of DCF in the environment and in groundwater bodies is remarkably challenging. Most of the available 
experimental works report its relative concentrations with respect to input values and conjecture its fate to be 
mainly controlled by reversible sorption (e.g., Kiecak et al., 2019; Scheytt et al., 2006) or first-order irreversi-
ble degradation (e.g., Heberer & Adam, 2004; Schimmelpfennig et al., 2016). Nevertheless, other studies (e.g., 
Chiron & Duwig, 2016) evidence that DCF degradation could be described upon considering different molecular 
mechanisms of reaction that lead to the formation of various transformation products. Furthermore, the presence 
of DCF metabolites in groundwater is typically not monitored, with the exception of very few laboratory-scale 
experiments (e.g., Barbieri et al., 2012; Nödler et al., 2012). Otherwise, different metabolites have been detected 
in wastewater treatment plants during denitrification (Osorio et al., 2016). Following these findings, Chiron and 
Duwig (2016) postulated a degradation pathway of DCF incorporating several nitrogen-derivatives metabolites. 
Among these, Nitro-DCF (NO2Dcf) is documented to be even more toxic for the environment than its parent 
compound, while the synergistic effects of all of the metabolites of DCF are recommended to be carefully assessed 
to preserve the integrity of the aquatic ecosystem (Osorio et al., 2016). Additionally, Barbieri et al. (2012) docu-
mented the transient formation of a nitrogen-derivative metabolite from DCF, as caused by the interaction between 
nitrite and an aromatic amine of DCF during denitrification. More recently, Ceresa et  al.  (2021) proposed a 
succession of processes involving DCF degradation and the formation of three transformation products that could 
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explain the behavior of the observed compounds in Barbieri et al. (2012). These authors also proposed and cali-
brated a mathematical model to describe the full reactive loop involving all compounds. As an indirect result of 
their modeling effort, Ceresa et al. (2021) document some difficulties in limiting the post-calibration uncertainty 
of some parameter estimates. This was conjectured to be possibly related to an insufficient level of information 
contained in the calibration data set, and/or to a lack of sensitivity of their model formulation to some uncertain 
parameters at times corresponding to those where data were available.

Here, we develop a comprehensive modeling strategy which is based on the implementation of a Multi-Model 
GSA (MM-GSA) in a general scenario of the kind discussed above. Such an analysis is conducive to enhance 
our knowledge on the relative impact of uncertain processes (and their parameterization) on model(s) predic-
tions and calibration performances. It also assists in outlining a direction along which the level of complexity of 
target over-parameterized models can be reduced. In this context, the mathematical model proposed by Ceresa 
et al. (2021) to describe DCF evolution represents a stark example of a highly parameterized formulation involv-
ing several processes. Its calibration in the presence of the few available data can be seen as exemplificative of 
the set of challenges stemming from the assessment of CECs degradation in groundwater. Along these lines, this 
work is geared toward presenting a strategy to develop, calibrate and compare several plausible models to inter-
pret environmentally relevant contamination scenarios plagued by uncertainty and data paucity. The key objective 
is to outline a balanced trade-off between the complexity of processes description and the associated parametric 
uncertainty. This objective is a key challenge also for the purpose of developing suitable environmental risk 
assessment tools, whose outcomes are increasingly recognized to be largely affected by model uncertainty (Chen 
& Ma, 2006; Ruggeri, 2009).

Our work is organized as follows. Section 2 describes the proposed methodology. For clarification purposes, 
our strategy is illustrated through application to the scenario involved in the DCF experiments of Barbieri 
et al. (2012), that are here reinterpreted in a MM context starting from the four-reactions loop proposed by Ceresa 
et al. (2021). Results quantifying the relative importance of model versus parameter uncertainty and the selection 
of the favored model formulation are presented in Section 3. Conclusions are then illustrated in Section 4.

2. Methods
We consider a general scenario involving the degradation of a parent compound into a number of metabolites 
under the action of a suite of bio-mediated reactions. In this framework, we identify a number NM of alternative 
models that could be used in principle (i.e., prior to model calibration against observations) to quantify system 
dynamics. Each of these models is associated with a given level of complexity and parameterization. Here, we 
denote the highest-complexity model as M1, while models Mi (i = 2, …, NM) represent its counterparts obtained 
through various levels of simplification of M1. As sketched in Figure 1, all alternative models are collected in a 
model set (identified as M). The latter is mathematically defined as:
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⎪

⎨
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⎪
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Here, each individual model (Mj) embeds specific conceptualizations of the physico-chemical processes (Pk, with 
𝐴𝐴 𝐴𝐴 = 1,… , 𝑁𝑁

(𝑗𝑗)

𝑃𝑃
 ) that govern the system evolution in model j. Accordingly, 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑘𝑘
 corresponds to the mathematical 

formulation employed in model j to describe process Pk. Note that 𝐴𝐴 𝐴𝐴
(1)

𝑃𝑃
 represents the total number of system 

processes involved in the model set and 𝐴𝐴 𝐴𝐴
(1)

𝑃𝑃
≥ 𝐴𝐴

(2)

𝑃𝑃
≥ ⋯ ≥ 𝐴𝐴

(𝐴𝐴𝑀𝑀 )
𝑃𝑃

 in our setting.

In the following, we describe the main steps of the proposed modeling approach. Our strategy aims at assessing 
the effects of various levels of simplification of the model with the highest number of parameters (i.e., M1) upon 
relying on the rigorous comparison of the performance (in a relative sense) of all plausible models in the set in 
the presence of a given set of observations. Our workflow is based on studying and ranking the levels of impact 
of involved physico-chemical processes (which are described through given mathematical formulations embed-
ding the action of uncertain parameters) on model output(s) of interest. For clarification purposes, the theoretical 
elements at the basis of the workflow (see also Figure 1) are illustrated upon considering a scenario involving 
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DCF biotransformation (which is introduced in Section 2.1). These elements are articulated through a series of 
steps including (I) MM-GSA, whose results can be used to assist (II) model calibration in a stochastic context, and 
(III) model identification. The latter allows detecting the most appropriate formulation to interpret the considered 
scenario under the available information content.

2.1. Characterization of Diclofenac Biotransformation in a Multi-Model Context

For the purpose of clearly enucleating all of the elements embedded in the overarching MM-GSA frame-
work, we start by introducing the setup that will then be employed to assess our proposed method. The refer-
ence experimental data set we consider refers to the batch experiments of Barbieri et al.  (2012) (their series 
1 μg/L). The latter document the occurrence of DCF biotransformation under denitrifying redox conditions. 
A high-complexity model (labeled as M1) is the one developed and calibrated (in a Single-Model framework) 
by Ceresa et al. (2021) and is taken here as exemplificative of a class of over-parameterized models. Its basic 
traits are illustrated in Figure 2, which embeds a summary of the involved organic compounds (DCF and three 
nitrogen-derivative metabolites) and inferred processes. The latter are represented by multi-stage chemical reac-
tions involving the parent molecule (DCF acid, HDcf), its transformation products (i.e., Nitroso-DCF, NODcf; 
Nitro-DCF, NO2Dcf; and Aminyl-DCF, NH2Dcf), and several major ions dissolved in groundwater. In addition 
to a number of well-known reactions that are modeled by means of deterministically set parameters (i.e., equi-
librium constants), this model includes four kinetic processes that are treated as stochastic (i.e., their parameters 
are conceptualized as random variables, consistent with the current level of knowledge about their molecular 
dynamics). These processes are termed Pk, k = 1, …, 4, each occurring at a given rate of reaction (denoted as 
RRk). Each rate depends on the concentrations of several solutes (i.e., the problem state variables), eventual 
deterministic constants and one or more uncertain parameters. The latter are listed and enclosed in green boxes 
in Figure 2.

The formulation of the four processes embedded in model M1 is listed below.

 • Process P1, nitrosation of the parent compound (HDcf) into a first metabolite, NODcf:

HNO2(aq) + HDcf(aq)

RR1

→ NODcf(aq) + H2O

𝑅𝑅𝑅𝑅1(𝑡𝑡) =
𝑑𝑑𝑑𝑑NODcf(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑘𝑘1𝑑𝑑HDcf(𝑡𝑡)𝑑𝑑

2

HNO2
(𝑡𝑡)

 (2)

Figure 1. Main steps of the proposed model selection strategy applicable to a general model set. This is composed of 
multiple plausible models, each one being constructed according to a process-oriented perspective.
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 • Process P2, oxidation of NODcf leading to the formation of NO2Dcf (a second metabolite):

NODcf(aq) +
1

2
MnO2(s) + 3H+

(aq)
+ 2NO2

−

(aq)

RR2

→

1

2
Mn2+

(aq)
+ ⋅NO(aq) + H2O + NO2Dcf(aq) + HNO2(aq)

𝑅𝑅𝑅𝑅2(𝑡𝑡) =
𝑑𝑑𝑑𝑑NO2Dcf(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑘𝑘2

𝑑𝑑NO−
2
(𝑡𝑡)𝑑𝑑2

H+ (𝑡𝑡)𝑑𝑑NODcf(𝑡𝑡)
√

𝑑𝑑Mn2 + (t)

 (3)

•  Process P3, reduction of the second metabolite (NO2Dcf) to a third one (NH2Dcf) sustained by organic 
matter oxidation:

CH4O(aq) +
3

4
C2H3O2

−

(aq) +
3

4
H+

(aq)
+ 2NO2Dcf(aq)

RR3

→

5

2
CO2(aq) + 2NH2Dcf(aq) +

1

2
H2O

𝑅𝑅𝑅𝑅3(𝑡𝑡) =
1

2

𝑑𝑑𝑑𝑑NH2Dcf(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚3

𝑑𝑑CORG
(𝑡𝑡)

𝑑𝑑CORG
(𝑡𝑡) +𝐾𝐾

CORG

ℎ𝑚𝑚𝑎𝑎𝑎𝑎3

⋅

𝑑𝑑NO2Dcf(𝑡𝑡)

𝑑𝑑NO2Dcf(𝑡𝑡) +𝐾𝐾
NO2Dcf

ℎ𝑚𝑚𝑎𝑎𝑎𝑎3

𝐾𝐾𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖3

𝐾𝐾𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖3 + 𝑑𝑑NO−
2
(𝑡𝑡)

𝑑𝑑BIOMASS

 (4)

 • Process P4, back-transformation reconverting NH2Dcf to the parent compound (HDcf):

NH2Dcf(aq) + H2O
RR4

→ HDcf(aq) + NH2OH(aq)

𝑅𝑅𝑅𝑅4(𝑡𝑡) =
𝑑𝑑𝑑𝑑HDcf(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑘𝑘4𝑑𝑑H+(𝑡𝑡)𝑑𝑑NH2Dcf(𝑡𝑡)

 (5)

Figure 2. Geochemical model (M1) of diclofenac bio-mediated transformations. 𝐴𝐴 𝐴𝐴
(1)

𝑘𝑘
 denotes the formulation of system 

process k in model M1, here consisting of complex (bio)geochemical reactions. RRk represents the reaction rate of process k. 
Green boxes include the stochastic parameters as representative of specific system processes.
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Here, Cm(t) denotes the aqueous concentration of species m at time t. All of these processes are driven by the 
presence of several major ions dissolved in groundwater. These include, for example, Mn 2+, H + and 𝐴𝐴 NO2

− , and 
their concentrations contribute to the evolution of system reaction rates. Among these ions, nitrite (𝐴𝐴 NO2

− ) and 
its aqueous complexation product (nitrous acid, HNO2) play a critical role, as the overall fate of the system is 
ultimately governed by the underlying denitrification cycle (Ceresa et al., 2021).

In this work we consider a total of NM = 4 models, that is, M1–M4. Each includes four processes that are modeled 
according to formulation 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑘𝑘
 (with k = 1, …, 4, and j = 1, …, 4). The latter are conceptualized as specific 

chemical reactions that are common to all candidate models. The four models feature four distinct mathematical 
formulations for process P3. Otherwise, they consider the three remaining processes (i.e., P1, P2, and P4) to be 
represented through Equations 2, 3, and 5, respectively. The rationale behind our modeling choice is based on the 
results of stochastic calibration of M1 in Ceresa et al. (2021) and on the outcome of a preliminary GSA performed 
on the uncertain parameters of M1 (see Supplementary Material A in Supporting Information S1). Note that the 
choice of employing an identical formulation for the above-described processes in all models does not constitute a 
limitation of our approach. The latter is fully compatible with the use of a different mathematical formulation for 
each of the reaction rates considered and/or with the elimination of some of the processes considered or the inclu-
sion of new processes. Further to this, we note that our approach can be readily used when considering alternative 
process formulations eventually relying on mutually exclusive hypotheses on process-driving mechanisms, which 
might yield poor interpretation of data when eventually set in the context of a stochastic model calibration effort.

According to Equations 2, 3, and 5, each of the above-considered reaction rates involves one uncertain (random) 
parameter, that is, k1, k2, and k4, respectively. Process P3 is instead described through an ensemble of models 
characterized by decreasing complexity, that is, ranging from M1 to M4. This also implies a progressive reduction 
in the number of model parameters to be estimated. The reaction rate corresponding to process P3 in model M1 
involves four random parameters, according to Equation 4. These terms correspond to an inhibition constant 
of NO2Dcf reduction (by dissolved nitrites), Kinhib3; two half-saturation constants, one for the concentration of 
organic matter, 𝐴𝐴 𝐴𝐴

CORG

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 , and a second one for the concentration of NO2Dcf, 𝐴𝐴 𝐴𝐴

NO2Dcf

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 ; and the maximum value for 

the reaction rate, rmax3. Note that biomass concentration is considered constant (CBIOMASS = 1 mM), in agreement 
with Ceresa et al. (2021).

The three additional models considered together with M1 involve successive levels of simplification to the mathe-
matical rendering of RR3 in Equation 4. Such simplifications are progressively applied according to the sequence 
described in the following (see also Supplementary Material B in Supporting Information S1):

1.  The observation that the aqueous concentrations of organic carbon in Ceresa et al. (2021) are always much 
larger than the half-saturation constant 𝐴𝐴 𝐴𝐴

CORG

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 suggests that the reaction rate RR3 could possibly be expressed 

through a zero-order formulation with respect to 𝐴𝐴 𝐴𝐴CORG
 (see also Appelo & Postma, 2004);

2.  Considering that the aqueous concentration of NO2Dcf in Ceresa et al. (2021) is initially much smaller than 
the corresponding half-saturation constant (𝐴𝐴 𝐴𝐴

NO2Dcf

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 ) and then increases to values that are comparable (in 

terms of orders of magnitude) to the latter suggests the possibility to consider a first-order dependence of RR3 
versus 𝐴𝐴 𝐴𝐴NO2Dcf  ;

3.  As the inhibition process of NO2Dcf reduction by dissolved nitrites seems only relevant across a narrow 
temporal window (see Figure A.2 in Supplementary Material A in Supporting Information S1), it might be 
worthy considering a mathematical formulation that neglects such process in our model set.

The resulting expressions of RR3 corresponding to models M2, M3, and M4 read, respectively:

𝑅𝑅𝑅𝑅3(𝑡𝑡) = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚3
𝐶𝐶NO2Dcf(𝑡𝑡)

𝐶𝐶NO2Dcf(𝑡𝑡) +𝐾𝐾
NO2Dcf

ℎ𝑚𝑚𝑎𝑎𝑎𝑎3

𝐾𝐾𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖3

𝐾𝐾𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖3 + 𝐶𝐶NO2
− (𝑡𝑡)

𝐶𝐶BIOMASS, (6)

𝑅𝑅𝑅𝑅3(𝑡𝑡) = 𝑟𝑟′
𝑚𝑚𝑚𝑚𝑚𝑚3

𝐶𝐶NO2Dcf(𝑡𝑡)
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3 + 𝐶𝐶NO2
− (𝑡𝑡)

𝐶𝐶BIOMASS, (7)

𝑅𝑅𝑅𝑅3(𝑡𝑡) = 𝑟𝑟′
𝑚𝑚𝑚𝑚𝑚𝑚3

𝐶𝐶NO2Dcf(𝑡𝑡)𝐶𝐶BIOMASS, (8)

with 𝑟𝑟′
𝑚𝑚𝑚𝑚𝑚𝑚3

= 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚3∕

(

2𝐾𝐾
NO2Dcf

ℎ𝑚𝑚𝑎𝑎𝑎𝑎3

)

. (9)
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The uncertain parameters that are used to describe the chemical processes in each model and the corre-
sponding prior parameter supports (taken from Ceresa et al. (2021), see their Table 1) are listed in Table 1. 
Otherwise, the prior support of parameter 𝐴𝐴 𝐴𝐴′

𝑚𝑚𝑚𝑚𝑚𝑚3
 , which is introduced for the first time in the current study, 

is evaluated through Equation 9, which is applied to the upper and lower boundaries of the prior support of 
parameter rmax3.

The four alternative models described above are incorporated in our model set M, according to:

� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�1

�2

�3

�4

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�
(

� (1)
1 , � (1)

2 , � (1)
3 , � (1)

4

)

�
(

� (1)
1 , � (1)

2 , � (2)
3 , � (1)

4

)

�
(

� (1)
1 , � (1)

2 , � (3)
3 , � (1)

4

)

�
(

� (1)
1 , � (1)

2 , � (4)
3 , � (1)

4

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (10)

2.2. Step I—Process-Oriented, Multi-Model GSA

We consider NM alternative models that can be employed to assess the behavior of an output quantity such as, for 
example, a problem state variable y evaluated at Ny discrete time levels (and/or locations in space). Each model 
operates through a generally non-linear function fj including 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑃𝑃𝐴𝐴𝑃𝑃
 uncertain parameters, collected in vector θ (j), 

according to (see also Figure 1):

� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�1

…

���

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= ��
(

�(�)), �(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(�)1

…

�(�)
� (�)
���

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, � = 1,… , ��, (11)

Table 1 
Uncertain Parameters in Each Model and Process and Corresponding Intervals of Variability Which Are Considered in the 
Context of (I) Multi-Model Global Sensitivity Analysis and (II) Stochastic Model Calibration, and Total 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑃𝑃𝐴𝐴𝑃𝑃
 Number of 

Uncertain Parameters Encompassed in Model j

Uncertain parameters 𝐴𝐴 𝐴𝐴
(𝑘𝑘𝑘𝑘𝑘)

𝑖𝑖

Model

Process M1 M2 M3 M4 Lower limit Upper limit Units

P1 k1 k1 k1 k1 1.2 ⋅ 10 8 1.2 ⋅ 10 10
𝐴𝐴

[

L
2

mol
2
s

]

 

P2 k2 k2 k2 k2 1.3 ⋅ 10 2 1.3 ⋅ 10 4𝐴𝐴
[

L
2.5

mol
2.5

s

]

 

P3 rmax3 rmax3 - - 5.0 ⋅ 10 −12 5.0 ⋅ 10 −10
𝐴𝐴

[

1

s

]

 

𝐴𝐴 𝐴𝐴
CORG

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 - - - 1.0 ⋅ 10 −7 1.0 ⋅ 10 −5 [M]

𝐴𝐴 𝐴𝐴
NO2Dcf

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 𝐴𝐴 𝐴𝐴

NO2Dcf

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 - - 7.0 ⋅ 10 −11 7.0 ⋅ 10 −9 [M]

Kinhib3 Kinhib3 Kinhib3 - 5.0 ⋅ 10 −7 5.0 ⋅ 10 −5 [M]

- - 𝐴𝐴 𝐴𝐴′
𝑚𝑚𝑚𝑚𝑚𝑚3

 𝐴𝐴 𝐴𝐴′
𝑚𝑚𝑚𝑚𝑚𝑚3

 3.6 ⋅ 10 −3 3.6 ⋅ 10 −1
𝐴𝐴

[

L

mol⋅s

]

 

P4 k4 k4 k4 k4 4.0 ⋅ 10 3 4.0 ⋅ 10 5𝐴𝐴
[

L

mol⋅s

]

 

Total number of uncertain model parameters

 𝐴𝐴 𝐴𝐴
(𝑗𝑗)

𝑃𝑃𝐴𝐴𝑃𝑃  7 6 5 4

Note. Parameters 𝐴𝐴 𝐴𝐴
NO2Dcf

ℎ𝑎𝑎𝑎𝑎𝑎𝑎
 , Kinhib2 and k3 in Ceresa et al. (2021) correspond to parameters 𝐴𝐴 𝐴𝐴

NO2Dcf

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 , Kinhib3 and k4 listed here, 

respectively.
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where 𝐴𝐴 𝐴𝐴
(𝑗𝑗)

𝑖𝑖
 denotes the ith random parameter of model j. As all these parameters refer to specific system processes, 

it is convenient to introduce an alternative notation, namely 𝐴𝐴 𝐴𝐴
(𝑘𝑘𝑘𝑘𝑘)

𝑖𝑖
 , which allows to uniquely identify the kth 

process to which the ith parameter pertains in model j, according to:

�(�) = �
(

�(1,�),… ,�
(

� (�)
� ,�

)

)

, �(�,�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(�,�)1

…

�(�,�)
� (�,�)
���

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, � = 1,… , � (�)
� , � = 1,… , ��. (12)

Here, 𝐴𝐴 𝐴𝐴
(𝑘𝑘𝑘𝑘𝑘)

𝑃𝑃𝐴𝐴𝑃𝑃
 denotes the total number of random parameters that are included in the mathematical formulation 

of process k in model j.

Process-oriented MM-GSA can be performed on model set M to assess the level of influence of the involved 
stochastic processes on model outputs. This is done by quantifying the sensitivity of the latter toward specific 
system processes. Our approach rests on evaluating the first-order sensitivity indices defined in Dell’Oca 
et al. (2020) for system processes. Here, we refer to index AMAE that enables one to assess the impact of varia-
bility in process Pk on the expected value 𝐴𝐴 (𝔼𝔼) of model output Δ according to:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(Δ)

𝑃𝑃𝑘𝑘
=

𝑁𝑁𝐴𝐴
∑

𝑗𝑗=1

𝑤𝑤(𝐴𝐴𝑗𝑗)

|

|

|

𝔼𝔼
[

Δ|𝐴𝐴𝑗𝑗

]

− 𝔼𝔼[Δ]
|

|

|

|𝔼𝔼[Δ]|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

model choice contribution from𝐴𝐴𝑗𝑗 :Υ(𝑗𝑗)

+

𝑁𝑁𝐴𝐴
∑

𝑗𝑗=1

⎛

⎜

⎜

⎝

𝑁𝑁
(𝑘𝑘𝑘𝑗𝑗)

𝑃𝑃𝐴𝐴𝑃𝑃
∑

𝑖𝑖=1

𝑤𝑤(𝐴𝐴𝑗𝑗)

𝔼𝔼
𝜃𝜃
(𝑘𝑘𝑘𝑗𝑗)

𝑖𝑖

|

|

|

𝔼𝔼
[

Δ|𝐴𝐴𝑗𝑗𝑘 𝜃𝜃
(𝑘𝑘𝑘𝑗𝑗)

𝑖𝑖

]

− 𝔼𝔼
[

Δ|𝐴𝐴𝑗𝑗

]

|

|

|

|𝔼𝔼[Δ]|

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

overall parameter choice contribution from𝐴𝐴𝑗𝑗 :Ξ
(𝑗𝑗)

𝑘𝑘

=

𝑁𝑁𝐴𝐴
∑

𝑗𝑗=1

(

Υ(𝑗𝑗) + Ξ
(𝑗𝑗)

𝑘𝑘

)

𝑘 𝑘𝑘 = 1𝑘… 𝑘 𝑁𝑁
(1)

𝑃𝑃
.

 (13)

Note that Equation 13 is a streamlined formulation of Equation (C2) of Dell’Oca et al. (2020) (see our Supple-
mentary Material C in Supporting Information S1 for the full derivation). Here, Δ represents the selected quan-
tity of interest; 𝐴𝐴 𝐴𝐴

(1)

𝑃𝑃
 denotes the total number of processes involved in the model set (this corresponding to 

the formulation of the high-complexity model M1, as previously discussed), and w(Mj) (with j  =  1, …, NM) 
are the prior weights, which are considered uniform for all competing models in our study (i.e., w(Mj)  =  1/
NM = 1/4), consistent with the absence of any prior indication eventually favoring any particular candidate of 
the set. 𝐴𝐴 𝔼𝔼

[

Δ|𝑀𝑀𝑗𝑗

]

 and 𝐴𝐴 𝔼𝔼[Δ] represent the unconditional expectations of Δ associated with model j and with 
the whole ensemble of possible outcomes of all models considered, respectively, while 𝐴𝐴 𝔼𝔼

[

Δ|𝑀𝑀𝑗𝑗, 𝜃𝜃
(𝑘𝑘,𝑗𝑗)

𝑖𝑖

]

 denotes 
expectation of Δ conditional on the ith parameter employed in model j to describe process k (i.e., 𝐴𝐴 𝐴𝐴

(𝑘𝑘𝑘𝑘𝑘)

𝑖𝑖
 ). Notation 

𝐴𝐴 𝔼𝔼
𝜃𝜃
(𝑘𝑘𝑘𝑘𝑘)

𝑖𝑖

 indicates that the corresponding expectation is taken across the prior support 𝐴𝐴 Γ
(𝑘𝑘𝑘𝑘𝑘)

𝑖𝑖
 of 𝐴𝐴 𝐴𝐴

(𝑘𝑘𝑘𝑘𝑘)

𝑖𝑖
 . Note that here 

we evaluate the above mentioned statistical moments upon numerical Monte Carlo sampling of the model and 
parameter space. From a practical standpoint, the prior parameter space can be (numerically) sampled through, 
for example, a quasi-Monte Carlo scheme (Sobol, 1998). Details on the numerical procedure for evaluating the 
above-defined conditional expectations are available in Supplementary Material C in Supporting Information S1.

Ranking of uncertain model processes (and associated stochastic parameters) is accomplished on the basis of 
the relative magnitude of the corresponding AMAE indices evaluated according to Equation 13. In this context, 
the larger the value attained by 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(Δ)

𝑃𝑃𝑘𝑘
 , the more sensitive 𝐴𝐴 𝔼𝔼[Δ] on the formulation of process Pk (includ-

ing  the  choice of mathematical conceptualization and the associated uncertain parameter values). Accordingly, 
our MM-GSA allows appreciating the relative weights of model formulation and parametric uncertainties (encap-
sulated in terms ϒ (j) and 𝐴𝐴 Ξ

(𝑗𝑗)

𝑘𝑘
 in Equation 13, respectively) in terms of their contribution to explain the variability 

of the expectation of model outputs. Note also that Equation 13 embeds two distinct summation terms, that is, 
over j and i, respectively. The former is associated with the observation that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(Δ)

𝑃𝑃𝑘𝑘
 includes distinct contri-

butions (each encompassing both model and parameter uncertainty) from different competing models. The latter 
enables one to account for the cumulative effect of the uncertainty of multiple parameters which are eventually 
embedded in the formulation of process k. This is, for example, the case of process P3 in our setting (in all model 
candidates except for M4), while each of the remaining processes (i.e., P1, P2, and P4) depends on a unique 
stochastic parameter (see Table 1).
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2.2.1. Quantities of Interest

In this study, we rely on two different target quantities corresponding to the quantity Δ in Equation 13. The 
approach is applied to the ensemble of models described in Section 2.1. All quantities are numerically evaluated 
by implementing the considered geochemical models in the PHREEQC environment (version 3.6.2) (Parkhurst 
& Appelo, 2013).

As a first quantity of interest, we consider the classical sum of the squared differences between corresponding 
model results (ym) and observed data 𝐴𝐴 (𝑦𝑦∗𝑚𝑚) , with m = 1, …, N* ≤ Ny, that is,:

𝜑𝜑 =

𝑁𝑁∗

∑

𝑚𝑚=1

(𝑦𝑦𝑚𝑚 − 𝑦𝑦∗𝑚𝑚)
2
. (14)

Here, N* denotes the number of available measurements in the calibration data set. Under some assumptions, mini-
mizing φ yields Maximum Likelihood (ML) estimates of parameter values, that is, considering φ is tantamount to 
minimize the Negative-Log-Likelihood criterion, NLL (j) (Carrera & Neuman, 1986; see also Section 2.3).

In our DCF biotransformation models, the data set comprises a collection of N* = 14 (normalized) concentration 
values associated with several chemical species dissolved in the aqueous phase (Ceresa et al., 2021). Note that 
among these, only N** = 5 measurements are associated with DCF, the remaining ones being related to other 
chemical species relevant to denitrification. Concentration values, hereafter denoted as 𝐴𝐴 𝐴𝐴∗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (with m = 1, …, 
14), were collected at five selected time levels (t* = [1.8; 3; 5; 10; 20] days; see Barbieri et al., 2012) and normal-
ized in Ceresa et al. (2021) against initial concentrations of target master species. The corresponding aqueous 
concentrations evaluated through the alternative models are termed Cspec,m, with m  =  1, …, 14. Normalized 
 measured and simulated concentrations form the entries of the following vectors:

����� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�����,1

…

�����,14

⎫

⎪

⎪

⎬

⎪

⎪

⎭

; �∗
���� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�∗
����,1

…

�∗
����,14

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (15)

As a second quantity of interest, we focus on the behavior of the temporal history of DCF concentration (C(t)), 
which represents the key output (y) of our geochemical models. Here, we consider Ny = 200 discrete values of 
model-based DCF concentrations collected in vector C:

� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�1

…

�200

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (16)

Note that MM-GSA for quantity C relies only on DCF concentrations that are evaluated through the considered 
geochemical models.

Focusing on these two quantities enables one to address the effects of parameter (and process) uncertainty on 
both (a) calibration-related performances and (b) intrinsic features of the models prior to calibration. The latter 
aspect is related to the diagnosis of model functioning and processes interaction, independent of data availability. 
We further note that the specific model outputs toward which targeting a Global Sensitivity Analysis is a choice 
of the modeler. Accordingly, the methods we propose can be readily tailored to fully consider problem-specific 
and goal-oriented requirements.

2.3. Step II—Maximum Likelihood Model Calibration

Upon completion of MM-GSA, one can employ the resulting information to assist model calibration/inversion 
under scarcity of data. The identification of model parameters and/or processes associated with low impact on 
model outputs can lead to exclude these from a stochastic model calibration. In this study (and without loss of 
generality) we choose to perform inverse modeling through ML (see Carrera & Neuman, 1986). To do so, we 
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rely on the PEST (Model Independent Parameters Estimation and Uncertainty Analysis) suite (Doherty, 2015a) 
coupled with the PHREEQC solver, the latter being employed to simulate the proposed DCF biotransformation 
models (Parkhurst & Appelo, 2013).

ML calibration of model j aims at minimizing NLL (j), defined as:

NLL
(𝑗𝑗)

= −2log10𝐿𝐿
(

𝜽𝜽(𝑗𝑗)
|𝒚𝒚∗

)

. (17)

Here, L(θ (j)|y*) represents the likelihood of the parameters enclosed in vector θ (j) conditional to knowledge of a 
number N* of available information collected in y* (i.e., data). Under the assumptions that (a) the variance 𝐴𝐴 𝐴𝐴2

𝑗𝑗
 

associated with prior measurement errors in model j is the same for all data; (b) such errors are mutually inde-
pendent, and (c) observations and uncertain parameters are distributed according to a multi-Gaussian probability 
density function, Equation 17 becomes:

NLL
(𝑗𝑗)

= 𝑁𝑁∗log10(2𝜋𝜋) +𝑁𝑁∗log10
(

𝜎𝜎2
𝑗𝑗

)

+
𝜑𝜑

𝜎𝜎2
𝑗𝑗

. (18)

Notice that an unbiased estimate 𝐴𝐴 𝐴𝐴𝐴2
𝑗𝑗
 of the variance of prior errors is represented by the ratio between the mini-

mized sum of squared residuals in model j(hereafter termed as φMIN) and the number of available observations, 
according to:

�̂�𝜎2
𝑗𝑗 =

𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀∗
. (19)

Available data correspond to N* = 14 (normalized) concentration values forming the entries of vector 𝐴𝐴 𝑪𝑪∗
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  , as 

defined in Equation 15.

2.4. Step III—Models Comparison and Identification

This step relies on the evaluation of posterior model probabilities resulting from the application of formal model 
identification criteria. Such an approach is largely employed to discriminate among several plausible models 
(e.g., Janetti et al., 2012; and references therein). For the purpose of our application we rely on the Kashyap 
Information Criterion, KIC (Kashyap, 1982), which is defined as:

KIC
(𝑗𝑗)

= NLL
(𝑗𝑗)

𝑀𝑀𝑀𝑀𝑀𝑀
+𝑀𝑀

(𝑗𝑗)

𝑃𝑃𝑃𝑃𝑃𝑃
ln

(

𝑀𝑀∗

2𝜋𝜋

)

− ln
(

det𝑸𝑸(𝑗𝑗)
)

. (20)

Here, 𝐴𝐴 NLL
(𝑗𝑗)

𝑀𝑀𝑀𝑀𝑀𝑀
 is the minimized Negative-Log-Likelihood of model Mj upon calibration; and Q (j) represents the 

Cramer-Rao Lower Bound of the parameter covariance matrix associated with calibrated model Mj, which is in 
turn related to the Fisher information matrix. Entries of the latter depend on the Jacobian matrix, whose elements 
correspond to the derivatives of the target state variable with respect to model parameters (see, e.g., Carrera & 
Neuman, 1986). This enables one to discriminate among various models on the basis of their quality of fit to 
data, number of parameters, and quality of the available data and parameter estimates. In this context, relying 
on det Q (j) enables KIC to balance parsimony with the expected information content and to favor the model that 
is least probable (in an average sense) of being incorrect (Janetti et al., 2012; Ye et al., 2008; Ye et al., 2010; 
references therein). An extensive discussion of these model selection criteria is presented in Ye et al. (2008), Ye 
et al. (2010), and references therein.

The KIC-based model identification criterion relies on evaluating the differences (δKIC (j)) between the KIC 
values associated with each competing model and the minimum KIC across the model set, according to:

𝛿𝛿KIC
(𝑗𝑗)

= KIC
(𝑗𝑗)

− min
𝑗𝑗=1,…,𝑁𝑁𝑀𝑀

(

KIC
(1)
,… ,KIC(

𝑁𝑁𝑀𝑀 )
)

. (21)

The posterior probability associated with each (calibrated) model can then be evaluated as:

ℙ
(𝑗𝑗) =

exp

(

−
1

2
𝛿𝛿KIC

(𝑗𝑗)
)

ℙ
(𝑗𝑗)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∑𝑁𝑁𝑀𝑀

𝑗𝑗=1

[

exp

(

−
1

2
𝛿𝛿KIC

(𝑗𝑗)
)

ℙ
(𝑗𝑗)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

] . (22)
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Note that in our setting, all model candidates are associated with identical (uniform) prior probabilities, that 
is, 𝐴𝐴 ℙ

(𝑗𝑗)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
= 1∕𝑁𝑁𝑀𝑀 = 1∕4  .

Values of posterior probabilities evaluated with KIC yield a model ranking that combines the quality of the esti-
mates with model structure and complexity.

3. Results and Discussion
3.1. Process-Oriented, Multi-Model GSA

3.1.1. GSA of Diclofenac Concentration Values

We start by analyzing the temporal segments where specific processes affect the target output of the geochemical 
models (i.e., the DCF concentration history, C(t)). Figure 3a depicts the temporal patterns of the 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
 

family of curves (one curve per each stochastic process Pk, with k = 1, …, 4), as assessed according to Equa-
tion 13. Here, the main focus is on model functioning and process interactions across the whole temporal window 
of the experiments of Barbieri et al. (2012). Nitrosation (i.e., P1) is clearly evidenced as a dominant process along 
the whole time window. Its relevance steeply increases at early times. It then attains a nearly horizontal plateau 
at intermediate times and decreases at late times. The remaining processes (i.e., P2–P4) are less relevant while 
non-negligible, in agreement with the intermediate values attained by the corresponding 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
 curves 

(with k = 2, 3, 4). To elucidate the geochemical dynamics underpinning this behavior, Figure 3b depicts the 
evolution of concentrations of the nitrous compounds involved in the denitrification cycle together with the DCF 
concentration curve obtained through calibration of model M1 in Ceresa et al. (2021).

Concentration of nitrite (𝐴𝐴 NO2
− ) is key in driving the fate of DCF in groundwater. Indeed, the concentration of 

nitrous acid (HNO2, the product of equilibrium-driven aqueous complexation of 𝐴𝐴 NO2
− ) acts as a driving term for 

process P1 (whose reaction rate is expressed through Equation 2). Accordingly, the nitrosation process is initiated 
when nitrates (𝐴𝐴 NO3

− ) evolve to nitrites, whose concentration is depicted in Figure 3b (red curve). When the 
dissolved amount of 𝐴𝐴 NO2

− displays a peak (at t ≈ 5–6 days), P1 is characterized by its highest degree of impact 
on C(t) across the temporal domain considered. The importance of P1 sharply decreases for t > 8 days. The 
remaining processes activate at t ≈ 2.5 days, these being driven by concentrations of NODcf, a reaction product 
of P1. Here, all the subsequent processes to P1 (along the reactive loop) start to become more influential to the 
fate of DCF (see Figure 3a). Index 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃2
 stabilizes to a nearly constant level at approximately 5 days. In 

this intermediate range of times (i.e., t ∈ [3; 7] days), process P3 is subject to the inhibition (in all models but M4) 
by dissolved nitrites, that are characterized by a higher priority of reduction than NO2Dcf (which is a product of 
P2 and a reactant associated with P3). When the inhibition effect on P3 relaxes (after approximately 7−8 days, i.e., 
when the concentration of 𝐴𝐴 NO2

− approaches zero), the nitrogen-derivatives of DCF are quickly reconverted to 

Figure 3. (a) Multi-model 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
 sensitivity indices associated with Diclofenac (DCF) concentrations C(t) and (b) 

temporal evolution of concentrations of DCF and nitrogen-based species that are relevant in the context of denitrification (see 
Ceresa et al., 2021).
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the parent compound (through the simultaneous occurrence of processes P1–P4) and the reversible transformation 
cycle ends. Consequently, the importance of all processes on model output starts decreasing, as shown by the 
behavior of all 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
 indices (with k = 1, …, 4) that drop to low values for t > 10 days.

Figure 4 displays the distinct contributions (i.e., due to model formulation and overall parametric uncertainty 
within each model) to the total 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
 values depicted in Figure 3a for k = 1, …, 4. In this context, we also 

highlight the temporal locations t* where experimental data from Barbieri et al. (2012) are available for DCF. 
For P1 (see Figure 4a), the magnitude of the contributions to 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃1
 ascribed to model uncertainty and to 

the uncertainty related to parameter k1 is similar across the whole time window. The four models feature distinct 
formulations for P3 and model contributions become relevant (for all processes) only when P3 activates. Other-
wise, for early times (t < 3 days) DCF concentration is sensitive only to the value assumed by parameter k1. For 
the other three processes considered (i.e., P2 to P4; see Figures 4b–4d), sensitivity toward model formulation is 
larger than that associated with uncertain parameters at times comprised between 3 and 8 days. Both model and 
parameter choice contributions to AMAE (C(t)) tend to drop for t > 8 days, consistent with the trends exhibited by 
AMAE (C(t)) (i.e., red curves in Figure 4). Specifically, model choice contributions to AMAE (C(t)) display a sharp 
decrease after 8 days for all processes, while sensitivity to their parameters appears slightly more persistent in 

Figure 4. Multi-Model 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
 sensitivity indices associated with C(t) for (a) P1, (b) P2, (c) P3, and (d) P4. Symbols 

mark the temporal distribution of samples associated with the experiments of Barbieri et al. (2012); green symbols 
correspond to time levels where 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
< 0.05 and/or the corresponding overall parameter choice contribution 

𝐴𝐴
∑

𝑗𝑗
Ξ
(𝑗𝑗)

𝑘𝑘
(𝑡𝑡) < 0.025 for each Pk.
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time. The latter feature is extremely marked for process P2, where sensitivity to k2 becomes notably dominant 
over the effect of model structure for t > 10 days. Consequently, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃2
 does not exhibit any sharp late-time 

decay, as shown in Figure 4b.

Figure 4 also allows ascertaining the results of the sensitivity analysis at the specific time levels where experi-
mental data are available. In this context, the analysis is useful to assist identification of temporal regions where 
observations can provide useful information to the purpose of model calibration (i.e., to constrain the estimation 
uncertainty associated with the stochastic parameters). We set a (minimum) threshold value thr of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃𝑘𝑘
 

below which we consider process Pk as uninfluential on the model output of interest (i.e., C(t)). Accordingly, any 

observation (i.e., DCF concentration measurement C*(t*)) collected at time levels such that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝐶𝐶(𝑡𝑡∗))
𝑃𝑃𝑘𝑘

< 𝑡𝑡𝑡𝑡𝑡  
is deemed as uninfluential for the purpose of estimating the stochastic parameters of Pk through model calibration. 

Otherwise, data associated with time levels such that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝐶𝐶(𝑡𝑡∗))
𝑃𝑃𝑘𝑘

≥ 𝑡𝑡𝑡𝑡𝑡  can be seen as informative, provided 
that the relative impact of parametric uncertainty is sufficiently significant at these times (i.e., term 𝐴𝐴

∑

𝑗𝑗
Ξ
(𝑗𝑗)

𝑘𝑘
(𝑡𝑡∗) 

in Equation 13 should at least exceed a minimum (threshold) value thr2). For the purpose of our analysis, we set 
here thr = 0.05 and thr2 = 0.025. The former roughly corresponds to 10% of the peak value for 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝐶𝐶(𝑡𝑡))

𝑃𝑃1
 (P1 

being the dominant process), while the latter is about 50% of thr. Thus, data collected outside temporal windows 
where a given process is influential to C(t) are not expected to provide useful information to constrain the process 
parameterization. In this sense, Figures 4c and 4d reveal that only one of the observations included in the data set 
of Barbieri et al. (2012) (i.e., the one collected at t* = 10 days) is enclosed in the time intervals where processes 
P3 and P4 are influential, respectively. Moreover, the impact of model structure (i.e., ∑jϒ (j) in Equation 13) is 
comparable to the one due to parametric uncertainty (i.e., 𝐴𝐴

∑

𝑗𝑗
Ξ
(𝑗𝑗)

𝑘𝑘
 in Equation 13, with k = 3, 4) at this specific 

time. These results suggest that parameters related to processes P3 and P4 scarcely influence the expected value of 
concentrations at the time levels where concentration data have been collected by Barbieri et al. (2012). There-
fore, these parameters may be difficult to estimate upon relying on the available data set. Conversely, expected 
values of DCF concentrations display a marked sensitivity to parameters k1 and k2 in the initial and final phases 
of the experiments of Barbieri et al. (2012), respectively, as shown in Figures 4a and 4b.

The type of analysis carried out in the previous paragraphs might also assist the design of future (experimental) 
sampling campaigns. Indeed, our proposed MM-GSA enables one to point out the most advantageous (time) 
regions where experimental measurements could be collected (i.e., where (a) process-based AMAE indices attain 
large values and (b) the latter are dominated by parameter choice contributions).

3.1.2. GSA of the Objective Function Associated With Model Calibration

We analyze here the impact of model and parametric uncertainties on the average value of the objective function 
employed for the purpose of model calibration (i.e., φ in Equation 14). The values of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝜑𝜑)

𝑃𝑃𝑘𝑘
 (with k = 1, …, 

4) are equal to 0.3510, 0.1356, 0.1451, and 0.1320 for processes P1, P2, P3, and P4, respectively. Here, we note 
that 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝜑𝜑)

𝑃𝑃1
 is larger than 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝜑𝜑)

𝑃𝑃𝑘𝑘
 (k = 2, 3, 4). This result suggests that nitrosation (i.e., process P1) has 

the largest influence on the expected value of the objective function. Otherwise, the remaining processes (i.e., 
P2–P4) cannot be completely disregarded, even as they appear to be less relevant than P1. Their effects remain 
still appreciable, the corresponding values of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝜑𝜑)

𝑃𝑃𝑘𝑘
 (with k = 2, 3, 4) exhibiting roughly similar values, 

consistent with results depicted in Figure 3a.

Individual contributions of model and parametric uncertainties can be assessed separately through the analysis 
of the terms appearing in Equation 13. Figure 5 displays process-specific results and highlights the contributions 
associated with the choice of each model formulation and involved uncertain parameters to AMAE (φ). Note that 
the sum of the heights of each of the vertical bars in each Figure referred to process k corresponds to the overall 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝜑𝜑)

𝑃𝑃𝑘𝑘
 value (i.e., 0.3510, 0.1356, 0.1451, 0.1320 for k = 1, 2, 3, 4, respectively, as stated above).

Models M1 and M2 exhibit virtually indistinguishable effects of model and parameter choice contributions to 
AMAE (φ) for all processes, given that the contribution of parameter 𝐴𝐴 𝐴𝐴

CORG

ℎ𝑎𝑎𝑎𝑎𝑎𝑎3
 in M1 is negligible (see also Supple-

mentary Material A in Supporting Information S1). The remaining parameters of P3 are involved in both models 
M1 and M2, where they display a very similar influence on φ. Otherwise, M3 is associated with a marked reduction 
in its overall contribution (i.e., due to model and parametric uncertainties) to 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(𝜑𝜑)

𝑃𝑃3
 as compared against 

any of the other models (i.e., 𝐴𝐴 Υ(3) + Ξ
(3)

3
< Υ(𝑗𝑗) + Ξ

(𝑗𝑗)

3
 , j = 1, 2, 4; see Figure 5c). The most simplified model 
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candidate considered (i.e., M4) is characterized by a notable increase of the weight associated with model formu-
lation uncertainty as compared against that ascribed to its overall parametric uncertainty. These two results can 
be explained upon analyzing the impact of model structure on the distribution of the values of φ obtained through 
our Monte Carlo results across each model parameter space, as shown in Figure 6.Here, we observe that the 
range of φ values decreases from M1 to M4 as a result of model simplification. Model M4 is seen to yield a much 
narrower distributions of φ values if compared with M1 and M2. Figure 6 also shows that the average value of φ 
for M3 is close to the unconditional MM average 𝐴𝐴 𝔼𝔼[𝜑𝜑] . This result is at the basis of the low value of the model 

contribution to 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝜑𝜑)

𝑃𝑃𝑘𝑘
 (k = 1, …, 4) observed when considering the results of M3 (see Figure 5).

3.2. Maximum Likelihood Model Calibration

ML model calibration is performed to estimate unknown parameters in each of the models considered. Consid-
ering the paucity of observations available in Barbieri et al. (2012), the simultaneous estimation of all stochastic 
parameters included in Table 1 is fraught with difficulties and does not yield acceptable results. In particular, 
the condition numbers associated with the parameter covariance matrix ensuing model calibration attain large 
values for all models (results not shown). Such behavior is likely due to the low information content that the 
available data set contributes toward specific system processes (i.e., P3 and P4; see also Section 3.1.1). Following 

Figure 5. Values of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝜑𝜑)

𝑃𝑃𝑘𝑘
 corresponding to each of the models analyzed in our Multi-Model context, that is, (a) k = 1, 

(b) k = 2, (c) k = 3, and (d) k = 4.
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Doherty (2015a), we then consider a manual regularization scheme. Resort-
ing to the latter stems from the impossibility of relying on expert knowl-
edge to restrict the prior parameter space, consistent with the still limited 
knowledge about geochemical scenarios associated with CECs of the type 
we consider here. In details, we adopt the strategy described in the following.

•  Parameter k4 is set to a constant value, corresponding to the mean value 
of the interval listed in Table 1. This choice is consistent with the obser-
vation that available data are associated with temporal regions where 
process P4 is non-influential (see Section 3.1.1).

•  We choose to calibrate only rmax3 (or 𝐴𝐴 𝐴𝐴′
𝑚𝑚𝑚𝑚𝑚𝑚3

 ) among the parameters associ-
ated with process P3. The remaining parameters are excluded from cali-
bration and set to constant values (in models M1, M2, M3) by virtue of 
their markedly low contributions to all AMAE indices (in both SM and 
MM contexts; see also Supplementary Material A in Supporting Infor-
mation S1 and Section 3.1). Such values correspond to the mean values 
of the intervals listed in Table 1.

In summary, we perform model calibration upon estimating three parameters 
for each competing model, that is, k1, k2 and rmax3 (or 𝐴𝐴 𝐴𝐴′

𝑚𝑚𝑚𝑚𝑚𝑚3
 ). The results of 

ML calibration of all alternative models are listed in Table 2. Consistent with 
our expectations (based on the analysis of MM-GSA results), k1 and k2 are estimated with smaller uncertainty 
than rmax3 (or its counterpart 𝐴𝐴 𝐴𝐴′

𝑚𝑚𝑚𝑚𝑚𝑚3
 ) in all models, as seen from the values attained by the associated coefficient 

of variation (CVs; see Table 2).

3.3. Models Comparison and Identification

Here, we focus on the results associated with the evaluation of posterior model probabilities based on the Kashyap 
Information Criterion (KIC), as discussed in Section 2.

The results listed in Table 3 show that the minimum value of KIC in our model set is experienced for (cali-
brated) model M3. Accordingly, M3 is assigned the highest likelihood under the considered data availability. The 
most complex model (i.e., M1) exhibits the lowest NLLMIN among the four competing models. In this sense, the 
high-complexity model is associated with the highest ability to match experimental results as compared against 
other candidates. Nevertheless, the performance of M1 is penalized (in terms of KIC) due to its higher complex-
ity in processes parameterization as compared against model M3. The latter model appears to be characterized 
by the best balance between complexity and accuracy. Models M2 and M4 are associated with low probability 
values. This result is consistent with the observation that model M2 does not yield significant improvements if 

Figure 6. Boxplot representing the distributions of the Monte Carlo samples 
of φ|Mj, conditional to each model Mj. Results are presented together with the 
conditional and unconditional (Multi-Model) averages of φ (i.e., 𝐴𝐴 𝔼𝔼

[

𝜑𝜑|𝑀𝑀𝑗𝑗

]

 and 
𝐴𝐴 𝔼𝔼[𝜑𝜑] , respectively).

Table 2 
Maximum Likelihood (ML) Results of Model Calibration in Terms of Mean (i.e., Estimated Value) and Variance of Model Parameters

log10 k1 log10 k2

ML Results M1 M2 M3 M4 M1 M2 M3 M4

Mean 9.109 9.121 9.091 9.222 2.886 2.890 2.903 2.852

Variance 0.039 0.026 0.024 0.048 0.142 0.186 0.121 0.097

CV 0.022 0.018 0.017 0.024 0.131 0.149 0.120 0.109

log10 rmax3 𝐴𝐴 log10𝑟𝑟
′

𝑚𝑚𝑚𝑚𝑚𝑚3
 

ML Results M1 M2 M3 M4 M1 M2 M3 M4

Mean −9.301 −9.390 - - - - −0.444 −2.208

Variance 10.530 0.854 - - - - 30.990 0.314

CV 0.349 0.098 - - - - 12.538 0.254

Note. Missing values correspond to specific models where processes formulation does not rely on these parameters.
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compared to model M3, while including a larger set of model parameters. 
Model M4 displays the largest value of NLLMIN among the four models, and 
is thus penalized. These conclusions are also supported by the results of the 
calibration of model M3, which can be interpreted in light of the results of 
MM-GSA on φ. Considering that three out of five uncertain parameters in M3 
(i.e., k1, k2 and k4) are more influential on model outputs as compared against 
the remaining ones (𝐴𝐴 𝐴𝐴′

𝑚𝑚𝑚𝑚𝑚𝑚3
 and Kinhib3), model M3 is favored by the joint occur-

rence of the following features: (a) its most influential parameters are satis-
factorily estimated, with the sole exception of k4; (b) the lack of success in 
obtaining a satisfactory estimate of k4 should be chiefly ascribed to the qual-

ity of the available data and not to any specific feature of M3, consistent with the observation that this limitation 
cannot be circumvented even upon relying on more complex models (see Figure 4d); (c) even as the results of the 
calibration of model M3 might appear penalized by the impossibility to reduce the estimation uncertainty of 𝐴𝐴 𝐴𝐴′

𝑚𝑚𝑚𝑚𝑚𝑚3
 

and Kinhib3, the values assigned to these parameters affect only minimally model outputs (see Figure 5c); and (d) 
the (scarce) performance of model M4 in the calibration stage suggests that neglecting the effects of inhibition in 
process P3 markedly reduces the model ability to fit the available data (thus, the performance of models that are 
more simplified than M3 tends to worsen further). Joint evaluation of all of these elements supports the conclusion 
that M3 is the best candidate model in our set (under the currently available data).

4. Conclusions
In this work, we developed a strategy to simplify and calibrate over-parameterized models, which are quite 
common to describe complex CECs degradation paths. Our modeling strategy rests on three key methodolog-
ical steps: (I) process-oriented, MM-GSA, (II) ML model calibration, and (III) model identification. Our work 
combines these three aspects within a unified framework and demonstrates the potential of their joint use in 
aquatic contamination scenarios. It then leads to the following major conclusions.

•  We assess the global methodology on a highly parameterized bio-mediated transformation model of DCF. 
The latter has been selected as a key example of a high-complexity scenario of marked relevance in modern 
applications related to Emerging Contaminants. In addition to being well established, the setup we consider 
is of particular interest because it encompasses a considerable number of uncertain parameters while being 
associated with limited data availability. Thus, it reflects a situation which is commonly faced in a vari-
ety of problems across various scientific/technical fields of application. In the specific scenario illustrated 
in our study, we consider various model processes, these being seen as individual components in a model 
formulation. Values obtained for the AMAE indices allow quantitative ranking of the contribution of each 
individual process (and ensuing uncertain parameters) to the expected value of the quantities of interest. 
Nitrosation of DCF (i.e., process P1) dominates the model response, while the remaining three considered 
processes result in smaller (yet non-negligible) impacts on the considered quantities; yet the relative impact 
of processes evolves with time. The interaction and relative importance of the different processes exhibit a 
direct link to the denitrification cycle dynamics. Our analysis allows to improve the understanding about the 
relative importance of all the processes involved in the DCF degradation cycle, with potential application to 
prototyping of new contaminant biotransformation models.

•  MM-GSA indices can quantify the relative contributions ascribed to the mathematical description of the 
involved system processes and to the embedded parameters at various time levels. We find that for the DCF 
biotransformation data set here considered, available observations provide useful information content to select 
an appropriate model formulation and to constrain parameters of two out of four considered processes (i.e., 
nitrosation -P1- and formation of Nitro-Dcf -P2-). The parameters of the remaining two processes (formation 
of Aminyl-Dcf -P3- and back-transformation -P4-) have a negligible impact on the expected value of model 
outputs (as measured in terms of AMAE) at most time levels where data are available. This suggests that the 
amount of information embedded in the data set does not allow reliable estimation of these parameters. In 
this sense, relying on our MM-GSA can be beneficial to assist future studies for the design of experimental 
campaigns, with the aim of maximizing the information content carried by observations.

•  The results of our MM-GSA can be ultimately used to drive parameter estimation and model selection. To 
this end, we estimate posterior probabilities of the competing models considered as rendered through the 
Kashyap Information Criterion. Accordingly, a simplified formulation of DCF biotransformation is revealed 

Table 3 
Minimized Negative-Log-Likelihood (NLLMIN), Kashyap Information 
Criterion (KIC), and Posterior Probability 𝐴𝐴 (ℙ)  of Each Competing Model

M1 M2 M3 M4

NLLMIN −0.9228 −0.7809 −0.8280 −0.6611

KIC −61.11 −58.56 −62.05 −56.81

𝐴𝐴 ℙ 33.31% 9.33% 53.47% 3.89%
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to be favored despite the outcome of its ML calibration seems slightly less accurate as compared against its 
high-complexity counterpart. The limited amount of information associated with the available data set favors a 
more simplified conceptualization of the system. The latter is thus considered as the best compromise between 
the level of model complexity and the resulting estimation uncertainty.

•  The choice to apply the proposed approach to a set of candidate models obtained upon progressive simplifi-
cation of a complex reference model does not constitute a limitation for the applicability of our conceptual 
framework. The latter is fully compatible with the use of model formulations eventually relying on mutually 
exclusive hypotheses on the mechanisms driving system evolution. We also remark that the selection of a 
batch scenario does not constitute a conceptual limitation of this study, whose theoretical framework is fully 
applicable to problem settings including, for example, subsurface transport processes. Computational require-
ments related to the implementation of a Monte Carlo analysis for reactive transport models should be taken 
into careful consideration. We note that the complete analysis of the scenario we consider (which is based on 
a set of 5 ⋅ 10 4 realizations for each candidate model to ensure convergence of all quantities of interest; not 
shown) requires about 140 days (overall) of computational time (approximately 1 min for each PHREEQC 
simulation) on a four system core-based machine with Intel(R) Core(TM) i7-7500U CPU and 16 GB RAM. 
When considering transport, resorting to a surrogate (or reduced complexity) model to approximate the full 
system model might alleviate the computational burden. Otherwise, it is noted that relying on an approximate 
model might introduce additional sources of uncertainties. This element needs to be carefully and rigorously 
considered to avoid shadowing some important results of the analysis. While surrogate models have been 
considered to address model parameter uncertainty (see, e.g., Dell’Oca et al., 2017), doing so in the pres-
ence of multiple models and a high number of parameters is still challenging and deserves targeted future 
investigations.

Data Availability Statement
Simulation data sets for this research are available at: https://doi.org/10.5281/zenodo.7513795 (Ceresa 
et al., 2022). Softwares for this research are publicly available at: https://www.usgs.gov/software/phreeqc-ver-
sion-3 (Parkhurst & Appelo, 2021), https://pesthomepage.org/programs (Doherty, 2015b).
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