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Markovian Properties of the Spin-Boson Model

Ameur Dhahri

Ceremade, UMR CNRS 7534, Université Paris Dauphine
Place de Lattre de Tassigny, 75775 Paris Cedex 16, France
email: dhahri@ceremade.dauphine.fr

Summary. We systematically compare the Hamiltonian and Markovian approaches
of quantum open system theory, in the case of the spin-boson model. We first give a
complete proof of the weak coupling limit and we compute the Lindblad generator of
this model. We study properties of the associated quantum master equation such as
decoherence, detailed quantum balance and return to equilibrium at inverse temper-
ature 0 < β ≤ ∞. We further study the associated quantum Langevin equation, its
associated interaction Hamiltonian. We finally give a quantum repeated interaction
model describing the spin-boson system where the associated Markovian properties
are satisfied without any assumption.

1 Introduction

In the quantum theory of irreversible evolutions two different approaches have
usually been considered by physicists as well as mathematicians: the Hamil-
tonian and the Markovian ones.

The Hamiltonian approach consists in giving a full Hamiltonian model for
the interaction of a simple quantum system with a quantum field (particle gas,
heat bath...) and to study the ergodic properties of the associated quantum
dynamical system. The usual tools are then typically: modular theory of von
Neumann algebras, KMS states...(cf [BR96], [DJP03], [JP96a], [JP96b]).

The Markovian approach consists in giving up the idea of modeling the
environment and concentrating on the effective dynamics of the small sys-
tem. This dynamics is supposed to be described by a (completely positive)
semigroup and the studies concentrate on its Lindblad generator, or on the
associated quantum Langevin equation (cf [F06], [F99], [F93], [FR06], [FR98],
[P92], [HP84], [M95]).

In this article we systematically compare the two approaches in the case of
the well-known spin-boson model. The first step in relating the Hamiltonian
and Markovian models is to derive the Lindblad generator from the Hamil-
tonian description, by means of the weak coupling limit. We indeed give a
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complete proof of the convergence of the Hamiltonian evolution to a Lindblad
semigroup in the van Hove limit. We derive an explicit form for the generator
in terms of Hamiltonian, this is treated in section 3.

In section 4, 5 and 6 we study the basic properties of the quantum master
equation associated to the Lindbladian obtained in section 3. We investigate
the quantum decoherence property. We show that the quantum detailed bal-
ance condition is satisfied with respect to the thermodynamical equilibrium
state of the spin system and we prove the convergence to equilibrium in all
cases.

In section 7 we consider the natural quantum Langevin equation associated
to the Lindblad generator of the spin-boson system. We indeed introduce a
natural unitary ampliation of the quantum master equation in terms of a
Schrödinger equation perturbed by quantum noises. Such a quantum Langevin
equation is actually a unitary evolution in the interaction picture, we compute
the associated Hamiltonian which we compare to the initial Hamiltonian.

Finally, we give a quantum repeated interaction model which allows to
prove that the Markovian properties of the spin-boson system are satisfied
without assuming any hypothesis.

2 The Model

2.1 Spin-boson System

The model we shall consider all along this article is the spin-boson model,
that is, a two level atom interacting with a reservoir modelled by a free Bose
gas at thermal equilibrium for the temperature T = 1

kβ (the case of zero
temperature, i.e., β = ∞, is also treated). Let us start by defining the spin-
boson system at positive temperature. We first introduce the isolated spin
and the free reservoir, and we describe the coupled system.

The Hilbert space of the isolated spin is K = C
2 and its Hamiltonian is

hS = σz, where

σz =
(

1 0
0 −1

)
.

The associated eigenenergies are e± = ±1 and we denote the corresponding
eigenstates by Ψ±. The algebra of observables of the spin is M2, the algebra
of all complex 2 × 2 matrix. At inverse temperature β, the equilibrium state
of the spin is the normal state defined by the Gibbs Ansatz

ωS(A) =
1
Z

Tr(exp(−βσz)A), for all A ∈ M2,

where Z = Tr(exp(−βσz)).
The dynamics of the spin is defined as

τ t
S(A) = eitσzAe−itσz , for all A ∈ M2, t ∈ R.
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The free reservoir is modelled by a free Bose gas which is described by
the symmetric Fock space Γs(L2(R3)). If we call ω(k) = |k| the energy of a
single boson with momentum k ∈ R

3, then the Hamiltonian of the reservoir
is given by the second differential quantization dΓ (ω) of ω. In terms of the
usual creation and annihilation operators a∗(k), a(k), we have

dΓ (ω) =
∫

R3
ω(k)a∗(k)a(k)dk.

The Weyl’s operator associated to an element f ∈ L2(R3) is the operator

W (f) = exp(iϕ(f)),

where ϕ(f) is the self-adjoint field operator defined by

ϕ(f) =
1√
2

∫
R3

(a(k)f̄(k) + a∗(k)f(k)) dk.

Call Dloc the space of f ∈ L2(R) with compactly supported Fourier transform.
It follows from [JP96b] that the Weyl’s algebra, Aloc = W (Dloc), the algebra
generated by the set

{
W (f), f ∈ Dloc

}
is a natural minimal set of observables

associated to the reservoir. The equilibrium state of the reservoir at inverse
temperature β is given by

ωR(W (f)) = exp
[
− ‖f‖2

4
− 1

2

∫
R3

|f(k)|2ρ(k) dk
]
,

where ρ(k) is related to ω(k) by Planck’s radiation law

ρ(k) =
1

eβω(k) − 1
.

The dynamics of the reservoir is generated by Hb = [dΓ (ω), .] and it induces
a Bogoliubov transformation

exp(itdΓ (ω))W (f) exp(−itdΓ (ω)) = W (exp(iωt)f).

The coupled system is described by the C
∗−algebra M2 ⊗ Aloc. The free

dynamics is given by

τ t
0(A) = τ t

S ⊗ τ t
R(A), for all A ∈ M2 ⊗Aloc.

2.2 Semistandard Representation

The semistandard representation of the coupled system (reservoir+spin) is the
representation which is standard on its reservoir part, but not standard on the
spin part (cf [DF06]). Now, let us introduce the Araki-Woods representation
of the couple (ωR,Aloc) which is the triple (HR, πR, ΩR), defined by
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• HR = l2(Γs(L2(R3)), the space of Hilbert-Schmidt on Γs(L2(R3)) which
is naturally identified as Γs(L2(R3)) ⊗ Γs(L2(R3)) and equipped with the
scalar product (X,Y ) = Tr(X∗Y ),

• πR(W (f)) : X �−→ W ((1 + ρ)1/2f)XW (ρ1/2f̄) for all X ∈ HR,
• ΩR = |Ω〉〈Ω|, where Ω is the vacuum vector of Γs(L2(R3)).

Moreover a straightforward computation shows that

ωR(A) = (ΩR, πR(A)ΩR),

and the relation

πR(exp(itdΓ(ω))A exp(−itdΓ (ω))) = exp(it[dΓ (ω), .])πR(A) exp(−it[dΓ (ω), .])

defines a dynamics on MR = πR(Aloc)
′′

whose generator is the operator

LR = [dΓ (ω), .].

The free semi-Liouvillean associated to the semistandard representation of the
spin-boson system is defined by

Lsemi
0 = σz ⊗ 1 + 1 ⊗ LR.

The full semi-Liouvillean is the operator

Lsemi
λ = Lsemi

0 + λσx ⊗ ϕAW (α),

where λ ∈ R, and where α ∈ L2(R3) is called the test function (or cut-off
function), ϕAW (α) is the field operator of the Araki-Woods representation
which can be identified as follows

ϕAW (α) � ϕ((1 + ρ)1/2α) ⊗ 1 + 1 ⊗ ϕ(ρ̄1/2ᾱ)

(see [JP96b], [DJ03] for more details) and

σx =
(

0 1
1 0

)
.

The following proposition follows from [JP96b].

Proposition 2.1 If (ω+ω−1)α is in L2(R3), the operator Lsemi
λ is essentially

self-adjoint on C
2 ⊗ D(dΓ (ω)) ⊗ D(dΓ (ω)) for all λ ∈ R.

An immediate consequence of the above proposition is that

τ t
λ(A) = eitLsemi

λ Ae−itLsemi
λ

defines a dynamics on M = M2 ⊗MR.
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2.3 Reservoir 1-particle Space

After taking the Araki-Woods representation of the pair (ωR, Aloc), we distin-
guish that the reservoir state is a non-Fock state (i.e., it cannot be represented
as a pure state on a Fock space) and this case is more complicated to treat.
By using the identifications given in [DJ03] and [JP96a], we see that this state
can be represented as a pure state on a Fock space. Hence we have

Γs(L2(R3)) ⊗ Γs(L2(R3))
� Γs(L2(R3)) ⊗ Γs(L2(R3)) � Γs(L2(R3) ⊕ L2(R3)),

LR � dΓ (ω ⊕−ω),
ϕAW (α) � ϕ((1 + ρ)1/2α ⊕ ρ̄1/2ᾱ),
ΩR � Ω ⊕ Ω̄.

Therefore, it is obvious that ωR is a pure state which is defined on the Fock
space Γs(L2(R3)⊕L2(R3)). Moreover we have the Bogoliubov transformation

eitdΓ (ω⊕−ω̄)ϕAW (α)e−itdΓ (ω⊕−ω̄) = ϕAW (eitωα).

This simplifies our formulation.

3 Weak Coupling Limit of the Spin-Boson System

3.1 Abstract Theory of the Weak Coupling Limit

Let Y be a Banach space and X its dual, i.e., X = Y∗. Let P be a projection on
X and eitδ0 a one parameter group of isometries on X which commutes with
P . Put E = Pδ0. It is clear that E is the generator of a one parameter group of
isometries on RanP . Consider a perturbation Q of δ0 such that D(Q) ⊃ D(δ0).

We introduce the following assumptions:

(1) P is a w∗-continuous projection on X with norm is equal to one.
(2) eitδ0 a one parameter group of w∗-continuous isometries (C∗

0 -group) on X ,
(3) For |λ| < λ0, iδλ = iδ0 + iλQ is the generator of a one parameter C∗

0 -
semigroup of contractions.
Consider now the operator

Kλ(t) = i

∫ λ−2t

0

e−is(E+λPQP )PQeis(1−P )δλ(1−P )QP ds.

For the proof of the following theorem we refer the interested reader to [DF06].

Theorem 3.1 Suppose that assumptions (1), (2) and (3) are true. Assume
that the following hypotheses are satisfied:
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(4) P is a finite range projection and PQP = 0,
(5) For all t1 > 0, there exists a constant c such that

sup
|λ|<1

sup
0≤t≤t1

‖Kλ(t)‖ ≤ c.

(6) There exists an operator K defined on RanP such that

lim
λ→0

Kλ(t) = K

for all 0 < t < ∞.
Put

K� =
∑

e∈spE

1e(E)K1e(E) = lim
T→∞

1
T

∫ T

0

eitEKe−itEdt.

Then we have
i) eitK�

is a semigroup of contractions,
ii) For all t1 > 0,

lim
λ→0

sup
0≤t≤t1

‖e−itE/λ2
Peit(δ0+λQ)/λ2

P − eitK�‖ = 0.

3.2 Application to the Spin-boson System

Recall that in the semistandard representation of the spin-boson system, the
free semi-Liouvillean is the operator

Lsemi
0 = σz ⊗ 1 + 1 ⊗ LR,

and the full semi-Liouvillean is given by

Lsemi
λ = Lsemi

0 + λσx ⊗ ϕAW (α).

Set V = σx ⊗ ϕAW (α). Put

δλ = [Lsemi
λ , .] = δ0 + λ[V, .],

with δ0 = [Lsemi
0 , .], the generator of the dynamics τ t

λ. For B ⊗ C ∈ M, we
define the projection P by

P (B ⊗ C) = ωR(C)B ⊗ 1HR
.

In particular we have

E = Pδ0 = δ0P = [σz, .]P and P [V, .]P = 0.
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Set P1 = 1 − P . Then it follows that

Kλ(t) = i

∫ λ−2t

0

e−isEP [V, .]eisP1[L
semi
λ ,.]P1 [V, .]P ds.

Note that P [V, .]P = 0, P1 commutes with [Lsemi
0 , .] and

eisP1[L
semi
0 ,.]P1 = eis[Lsemi

0 ,.]P1 + P.

Thus, if we suppose that

K = i

∫ ∞

0

e−isEP [V, .]eisP1[L
semi
0 ,.]P1 [V, .]P ds

exists, we have

K = i

∫ ∞

0

e−isEP [V, .]eis[Lsemi
0 ,.][V, .]P ds.

In the following we assume that (ω + ω−1)α ∈ L2(R3) and we propose to
show, under some conditions, that K exists and the operator Kλ converges to
K when λ → 0. Set

Uλ
t = eitP1[L

semi
λ ,.]P1 , Ut = eitP1[L

semi
0 ,.]P1 .

We thus have

Uλ
t = Ut + iλ

∫ t

0

Ut−sP1[V, .]P1U
λ
s ds.

Hence, the operator U−tU
λ
t satisfies the equation

U−tU
λ
t = 1 + iλ

∫ t

0

(U−sP1[V, .]P1Us)(U−sU
λ
s ) ds.

Therefore, we get the following series of iterated integrals

U−tU
λ
t = 1 +

∑
n≥1

(iλ)n

∫
0≤tn≤...≤t1≤t

(U−t1P1[V, .]P1Ut1)...

(U−tn
P1[V, .]P1Utn

) dtn ... dt1.

Note that the operator Utk
commutes with P1. So, if we put

Qk = U−tk
[V, .]Utk

,

then

U−tU
λ
t = 1 +

∑
n≥1

(iλ)n

∫
0≤tn≤....≤t1≤t

(P1Q1P1)...(P1QnP1) dtn ... dt1,
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and

Kλ(t) = i

∫ λ−2t

0

e−isEP [V, .]eisP1[L
semi
0 ,.]P1 [V, .]P ds

+i
∑
n≥1

(iλ)n

∫
0≤tn≤...≤t0≤λ−2t

e−it0EP [V, .]Ut0(P1Q1P1)... (1)

(P1QnP1)[V, .]P dtn ... dt0.

Put

Rn(t) =
∫

0≤tn≤...≤t0≤t

e−it0EP [V, .]Ut0(P1Q1P1)....(P1QnP1)[V, .]P dtn ... dt0.

Recall that PU−t0 = P . Hence, if we set Qn+1 = U−tn+1 [V, .]Utn+1 , with
tn+1 = 0, we get

Rn(t) =
∫

0≤tn≤...≤t0≤t

e−it0EPQ0(P1Q1P1)...(P1QnP1)Qn+1P dtn ... dt0.(2)

Lemma 3.2

Rn(t) =
∫

0≤tn≤...≤t0≤t

P [σx,0 ⊗ ϕAW (e−it0ωα), .]P1...

P1[σx,n+1 ⊗ ϕAW (e−itn+1ω), .]P dtn ... dt0,

where tn+1 = 0, σx,r = e−itrσzσxeitrσz .

Proof. Let us start by computing P1QrP1 for r ≥ 1. We have

Utr
= eitr [σz,.]eitr [LR,.]P1 + P,

and
Utr

P1 = eitr [σz,.]eitr [LR,.]P1.

Therefore, it follows that

P1U−tr
[V, .]Utr

P1 = P1e
−itr [σz,.]e−itr [LR,.][V, .]eitr [σz,.]eitr [LR,.]P1.

Furthermore we have

e−itr [σz,.]e−itr [LR,.][V, .]eitr [σz,.]eitr [LR,.](B ⊗ C)
= [σx,r ⊗ e−itrLRϕAW (α)eitrLR , .](B ⊗ C),

and
e−itrLRϕAW (α)eitrLR = ϕAW (e−itrωα).

This gives
P1QrP1 = P1[σx,r ⊗ ϕAW (e−itrωα), .]P1.
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Besides, Pe−t0[σz,.] = Pe−it0[σz,.]e−it0[LR,.] and

e−it0EPQ0P1 = Pe−it0[σz,.][V, .]eit0[σz,.]eit0[LR,.]P

= Pe−it0[σz,.]e−it0[LR,.][V, .]eit0[σz,.]eit0[LR,.]P

= P [σx,0 ⊗ ϕAW (e−it0ωα), .]P1.

Thus from relation (2), the lemma holds.

Lemma 3.3
R2n+1(t) = 0.

Proof. Note that

P [σx,0 ⊗ ϕAW (e−it0ωα), .]P1....P1[σx,2n+2 ⊗ ϕAW (e−it2n+2ωα), .]P
= P [σx,0 ⊗ ϕAW (e−it0ωα), .](1 − P )[σx,1 ⊗ ϕAW (e−it1ωα), .](1 − P )...
...(1 − P )[σx,2n+2 ⊗ ϕAW (e−it2n+2ωα), .]P. (3)

Therefore, if we expand the right-hand side of equation (3), we get a sum of
terms each of which is a product of elements of the form

P [σx,pk
⊗ ϕAW (e−itpk

ωα), .]....[σx,pm
⊗ ϕAW (e−itpm ωα), .]P,

where 0 ≤ pk ≤ ... ≤ pm ≤ ... ≤ 2n + 2. But, in each product there exists at
least an element of the form

P [σx,r1 ⊗ ϕAW (e−itr1ωα), .]....[σx,r2p+1 ⊗ ϕAW (e−itr2p+1ωα), .]P,

where 0 ≤ r1 ≤ ... ≤ r2p+1 ≤ ... ≤ r2n+2. Furthermore, it is easy to show that

[σx,r1 ⊗ ϕAW (e−itr1ωα), .]....[σx,r2p+1 ⊗ ϕAW (e−itr2p+1ωα), .]P (B ⊗ C)

is a sum of terms each of which has a second component composed by 2p + 1
number product of vector fields. But the projection P acts uniquely in the
second component and the Gibbs state ωR of the reservoir is a quasi-free state
(see [BR]). Then it follows that

P [σx,r1 ⊗ ϕAW (e−itr1ωα), .]....[σx,r2p+1 ⊗ ϕAW (e−itr2p+1ωα), .]P (B ⊗ C) = 0,

and by Lemma 3.2, R2n+1(t) = 0.

Remark 2: From the proof of Lemma 3.3 we can deduce that R2n(t) is a
sum of 2n terms each of which is a product containing only an even number
of products of commutators of the form [σx,r ⊗ϕAW (e−itrωα), .] between two
successive projections P .

Theorem 3.4 Suppose that the following assumptions hold:
(i) ‖R2n(t)‖ ≤ cntn, where the series

∑
n≥1 cntn has infinite radius of

convergence.
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(ii) There exists 0 < ε < 1 and a sequence dn ≥ 0 such that

‖R2n(t)‖ ≤ dntn−ε.

Then
lim
λ→0

∑
n≥1

(iλ)nR2n(λ−2t) = 0.

Proof. The proof of this theorem is a straightforward application of Lebesgue’s
Theorem.

Now, the aim is to introduce some conditions which ensures that assump-
tions (i) and (ii) of the above theorem are satisfied. Set

h(t) = 〈e−itLRϕAW (α)eitLRϕAW (α)ΩR, ΩR〉.

Recall that
LR = [dΓ (ω), .] � dΓ (ω ⊕−ω)

and
e−itLRϕAW (α)eitLR = ϕAW (e−itωα).

Therefore we get

h(t) = 〈ϕAW (e−itωα)ϕAW (α)ΩR, ΩR〉.

Moreover, a straightforward computation shows that

h(t − s) = 〈ϕAW (e−itωα)ϕAW (e−isωα)ΩR, ΩR〉.

Now, for any integer n we define the set Pn of pairings as the set of permuta-
tions σ of (1, ..., 2n) such that

σ(2r − 1) < σ(2r) and σ(2r − 1) < σ(2r + 1)

for all r. Put

〈ϕAW (α1)...ϕAW (αn)〉 = ωR(ϕAW (α1)...ϕAW (αn))
= 〈ΩR, ϕAW (α1)...ϕAW (αn)ΩR〉.

If n = 2 then 〈ϕAW (α1)ϕAW (α2)〉 is called the two point correlations matrix.
Besides, we have

〈ϕAW (α1)...ϕAW (α2n)〉 =
∑

σ∈Pn

n∏
r=1

〈ϕAW (ασ(2r−1))ϕAW (ασ(2r))〉, (4)

and
〈ϕAW (α1)...ϕAW (α2n+1)〉 = 0.

(see [BR96] P 40 for more details).
The proof of the following lemma is similar to the one of Lemma 3.2 in [D74].
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Lemma 3.5 If ‖h‖1 ≤ ∞, then for any permutation π of (0, 1, ..., 2n + 1) we
have

∣∣∣ ∑
σ∈P(0,1,...,2n+1)

∫
0≤t2n≤...≤t0≤t

n∏
r=0

h(tπσ(2r) − tπσ(2r+1))dt2n...dt0

∣∣∣

≤ 1
2n+1(n + 1)!

‖h‖n+1
1 tn,

with t2n+1 = 0.

We now prove the following.

Theorem 3.6 If ‖h‖1 ≤ ∞ then

‖R2n(t)‖ ≤ 22n+1‖h‖n+1
1

tn

(n + 1)!
.

Proof. Put

Φr = ϕAW (e−itrωα), ΦL
r C = ΦrC, ΦR

r C = CΦr,

σL
x,rB = σx,rB, σR

x,rB = Bσx,r,

β : a function from {0, 1, ..., 2n + 1} to {L,R},
kβ = �{r ∈ {0, 1, ..., 2n + 1} such that β(r) = R}.

In the sequel, we simplify the notation σx,r ⊗Φr into σx,rΦr. With this nota-
tions we have

[σx,rΦr, .] = σL
x,rΦ

L
r − σR

x,rΦ
R
r .

Recall that, from remark 2 and Lemma 3.2, R2n(t) is a sum of 2n terms each
of which is of the form

C2n,j(t) = (−1)j

∫
0≤t2n≤...≤t0≤t

∑
β

(−1)kβ P (σβ(0)
x,0 Φ

β(0)
0 )(σβ(1)

x,1 Φ
β(1)
1 )...

...(σβ(p1−1)
x,p1−1 Φ

β(p1−1)
p1−1 )P (σβ(p1)

x,p1
Φβ(p1)

p1
)...(σβ(pj−1)

x,pj−1 Φ
β(pj−1)
pj−1 ) ×

P (σpj
x,pj

Φβ(pj)
pj

)...(σβ(2n)
x,2n Φ

β(2n)
2n )(σβ(2n+1)

x,2n+1 Φ
β(2n+1)
2n+1 )P dt2n ... dt0,

where 0 = p0 < p1 < p2 < ... < pj < pj+1 = 2n+2, each pk is an even number
and j = N − 2, with N is the number of projections P , which appear in the
expression of C2n,j(t).
Hence we have

‖C2n,j(t)(B ⊗ C)‖

≤ ‖B ⊗ C‖
∑

β

∫
0≤t2n≤...≤t0≤t

j∏
r=0

|ωR(Φβ(pr)
pr

...Φ
β(pr+1−1)
pr+1−1 )| dt2n ... dt0,
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≤ ‖B ⊗ C‖
∑

β

∫
0≤t2n≤...≤t0≤t

j∏
r=0

|〈Φβ(pr)
pr

...Φ
β(pr+1−1)
pr+1−1 〉| dt2n ... dt0,

≤ ‖B ⊗ C‖
∑

β

∫
≤t2n≤...≤t0≤t

j∏
r=0

|〈Φπ(pr)...Φπ(pr+1−1)〉| dt2n ... dt0,

where π is a permutation which depends on β.
Thus from equation (4) and Lemma 3.5 we get

‖C2n,j(t)‖

≤
∑

β

∑
σ∈P(0,1,...,2n+1)

∫
0≤t2n≤...≤t0≤t

n∏
r=0

|〈Φπ(σ(2r))Φπ(σ(2r+1))〉|dt2n...dt0,

≤ 22n+2‖h‖n+1
1

tn

2n+1(n + 1)!
,

Therefore, C2n,j is dominated uniformly in j. Finally, this proves that

‖R2n(t)‖ ≤ 22n+1‖h‖n+1
1

tn

(n + 1)!
.

The following theorem ensures that assumption (ii) of Theorem 3.4 holds.

Theorem 3.7 If ∫ ∞

0

(1 + tε)|h(t)|dt < ∞

for some 0 < ε < 1, then there exists dn > 0 such that

‖R2n(t)‖ ≤ dntn−ε.

Proof. We have that R2n(t) is a sum of 2n terms each of which takes the form
of C2n,j which is defined previously. In order to prove this theorem we group
those terms pairwise as follows:

(−1)j

∫
0≤t2n≤...≤t0≤t

∑
β

(−1)kβ P (σβ(0)
x,0 Φ

β(0)
0 )...

(σβ(p1−1)
x,p1−1 Φ

β(p1−1)
p1−1 )P...P (σβ(pj)

x,pj
Φβ(pj)

pj
)...(σβ(2n−1)

x,2n−1 Φ
β(2n−1)
2n−1 )(σβ(2n)

x,2n Φ
β(2n)
2n )

(σβ(2n+1)
x,2n+1 Φ

β(2n+1)
2n+1 )P dt2n ... dt0

+(−1)(j+1)

∫
0≤t2n≤...≤t0≤t

∑
β

(−1)kβ P (σβ(0)
x,0 Φ

β(0)
0 )...(σβ(p1−1)

x,p1−1 Φ
β(p1−1)
p1−1 )P

...P (σβ(pj)
x,pj

Φβ(pj)
pj

)...(σβ(2n−1)
x,2n−1 Φ

β(2n−1)
2n−1 )P (σβ(2n)

x,2n Φ
β(2n)
2n )

(σβ(2n+1)
x,2n+1 Φ

β(2n+1)
2n+1 )P dt2n ... dt0
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= (−1)j

∫
0≤t2n≤...≤t0≤t

∑
β

(−1)kβ P (σβ(0)
x,0 Φ

β(0)
0 )...(σβ(p1−1)

x,p1−1 Φ
β(p1−1)
p1−1 )P...

...
{

P (σβ(pj)
x,pj

Φβ(pj)
pj

)...(σβ(2n−1)
x,2n−1 Φ

β(2n−1)
2n−1 )(σβ(2n)

x,2n Φ
β(2n)
2n )(σβ(2n+1)

x,2n+1 Φ
β(2n+1)
2n+1 )P

−P (σβ(pj)
x,pj

Φβ(pj)
pj

)...(σβ(2n−1)
x,2n−1 Φ

β(2n−1)
2n−1 )P (σβ(2n)

x,2n Φ
β(2n)
2n )

(σβ(2n+1)
x,2n+1 Φ

β(2n+1)
2n+1 )P

}
dt2n ... dt0.

Therefore, the right-hand side of the above equation is dominated by

∑
β

∫
0≤t2n≤...≤t0≤t

j−1∏
k=0

∣∣〈Φβ(pk)
pk

Φ
β(pk+1)
pk+1 ...Φ

β(pk+1−1)
pk+1−1 〉

∣∣

×
∣∣∣{〈Φβ(pj)

pj
...Φ

β(2n)
2n Φ

β(2n+1)
2n+1 〉 (5)

−〈Φβ(pj)
pj

...Φ
β(2n−1)
2n−1 〉〈Φβ(2n)

2n Φ
β(2n+1)
2n+1 〉

}∣∣∣ dt2n ... dt0.

Note that in the between bracket terms, there is no product of two point
correlation matrix where 2n is paired with (2n + 1). Moreover this term is
equal to ∑

σ∈P(pj,...,2n+1)

n∏
r= 1

2 pj

〈Φσ(π(2r))Φσ(π(2r+1))〉,

where 2n is not paired with (2n + 1) and π is a permutation which depends
on β.
Thus the term in equation (5) is dominated by

∑
σ

∫
0≤t2n≤...≤t0≤t

n∏
r=0

|〈Φσ(2r)Φσ(2r+1)〉|dt2n...dt0,

where
∑

σ indicates the sum over all pairings of {0, 1..., 2n + 1} such that 2n
is not paired with (2n + 1), (t2n+1 = 0).
But we have ∫

0≤t2n≤...≤t0≤t

n∏
r=0

∣∣〈Φσ(2r)Φσ(2r+1)〉
∣∣dt2n...dt0

=
∫

0≤t2n≤...≤t0≤t

n∏
r=0

|h(tσ(2r) − tσ(2r+1))|dt2n...dt0

≤ cst ‖h‖n
1 tk
∫ t

0

|h(s)|sn−kds

≤ cst ‖h‖n
1 tn−ε

∫ t

0

|h(s)|sεds,

with 0 ≤ k ≤ n − 1. This ends the proof of the above theorem.
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All together applying relation (1), Lemma 3.3, Theorem 3.4 to 3.7, we
have proved the following.

Theorem 3.8 Suppose that the following assumptions are satisfied:
(1) (ω + ω−1)α ∈ L2(R3),
(2)
∫∞
0

(1 + tε)|h(t)|dt < ∞, for some 0 < ε < 1,
then

lim
λ→0

Kλ(t) = K(t),

for all t. Moreover

K� = i

∫ ∞

0

∑
e∈sp([σz,.])

e−iseP1e([σz, .])[V, .]eis[Lsemi
0 ,.][V, .]1e([σz, .])P ds.

3.3 Lindbladian of the Spin-boson System

Let
L = iK�.

The aim of this subsection is to give an explicit formula of L. Moreover, we
prove that this operator has the form of a Lindblad generator (or Lindbladian).
Let us introduce the well known formula of distribution theory

∫ ∞

0

e±itω dt =
±i

ω ± i0
= πδ(ω) ± iVp(

1
ω

), (6)

where

1
x + i0

= lim
ε→0

1
x + iε

,

∫
f(x)δ(x) dx = f(0),

∫
f(x)Vp(

1
x

) dx = lim
ε→0

∫
|x|≥ε

f(x)
x

dx = PP

∫
f(x)

x
dx,

∫
f(x)

1
x + i0

dx = lim
ε→0

∫
f(x)

1
x + iε

dx,

for all f , such that R � x �→ f(x) is a continuous function and provided the
integrals on the right are well defined and the limits exist.
Note that the eigenvalues of [σz, .] are 2, -2 and 0 where 2, -2 are non degen-
erate and 0 has multiplicity two. Besides, the corresponding eigenvectors are
respectively given by |Ψ+〉〈Ψ−|, |Ψ−〉〈Ψ+| and |Ψ+〉〈Ψ+|, |Ψ−〉〈Ψ−|.

Put
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n+ =
(

1 0
0 0

)
, n− =

(
0 0
0 1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
,

nL
+X = n+X, nR

+X = Xn+, nL
−X = n−X, nR

−X = Xn−,

N(ω) =
1

eβω(k) − 1
.

It is easy to check that

12([σz, .]) = nL
+nR

−,

1−2([σz, .]) = nL
−nR

+,

10([σz, .]) = nL
+nR

+ + nL
−nR

−.

The explicit formula of the Lindbladian associated to the spin-boson system
is given as follows.

Theorem 3.9 If the following assumptions are met:
i)
∫∞
0

|h(t)| dt < ∞,
ii) α is a C1 function in a neighborhood of the sphere B(0, 2) = {k ∈ R

3, |k| =
2},

iii) (1 + ω)α ∈ L∞(R3),
then for all X ∈ M2,

L(X) = i
(
Im(α, α)−+ − Im(α, α)+−

)
[n+,X]

+i
(
Im(α, α)−− − Im(α, α)++

)
[n−,X]

+Re(α, α)+−
(
2σ+Xσ− − {n+,X}

)

+Re(α, α, )−−
(
2σ−Xσ+ − {n−,X}

)
,

where

Im(α, α)++ =
∫

R3

N(ω) + 1
ω + 2

|α(k)|2 dk,

Im(α, α)−− = PP

∫
N(ω)
ω − 2

|α(k)|2 dk,

Im(α, α)+− = PP

∫
N(ω) + 1

ω − 2
|α(k)|2 dk,

Im(α, α)−+ =
∫

R3

N(ω)
ω + 2

|α(k)|2 dk,

Re(α, α)+− = π
e2β

e2β − 1

∫
R3

|α(k)|2δ(ω − 2) dk,

Re(α, α)−− =
π

e2β − 1

∫
R3

|α(k)|2δ(ω − 2) dk.
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Proof. A straightforward computation shows that for all X ∈ M2,

12([σz, .])[V, .]eis[Lsemi
0 ,.][V, .]12([σz, .])PX

=
[
ϕAW (α)ϕAW (eisωα) + ϕAW (eisωα)ϕAW (α)

]
n+Xn−,

1−2([σz, .])[V, .]eis[Lsemi
0 ,.][V, .]1−2([σz, .])PX

=
[
ϕAW (α)ϕAW (eisωα) + ϕAW (eisωα)ϕAW (α)

]
n−Xn+,

10([σz, .])[V, .]eis[Lsemi
0 ,.][V, .]10([σz, .])PX

=
[
e−2isϕAW (α)ϕAW (eisωα) + e2isϕAW (eisωα)ϕAW (α)

]
n+Xn+

+
[
e2isϕAW (α)ϕAW (eisωα) + e−2isϕAW (eisωα)ϕAW (α)

]
n−Xn−

−
[
e−2isϕAW (α)ϕAW (eisωα) + e2isϕAW (eisωα)ϕAW (α)

]
σ+Xσ−

−
[
e2isϕAW (α)ϕAW (eisωα) + e−2isϕAW (eisωα)ϕAW (α)

]
σ−Xσ+.

Hence, for all X ∈ M2, we have
∑

e∈sp([σz,.])

e−iseP1e([σz, .])[V, .]eis[Lsemi
0 ,.][V, .]1e([σz, .])(X)

=
[
e−2is〈ϕAW (α)ϕAW (eisωα)〉 + e−2is〈ϕAW (eisωα)ϕAW (α)〉

]
n+Xn−

+
[
e2is〈ϕAW (α)ϕAW (eisωα)〉 + e2is〈ϕAW (eisωα)ϕAW (α)〉

]
n−Xn+

−2Re
(
e2is〈ϕAW (eisωα)ϕAW (α)〉

) [
σ+Xσ− − n+Xn+

]

−2Re
(
e−2is〈ϕAW (eisωα)ϕAW (α)〉

) [
σ−Xσ+ − n−Xn−

]
.

It follows that

L(X) = −
[ ∫ ∞

0

e−2is
(
〈ϕAW (α)ϕAW (eisωα)〉 + 〈ϕAW (eisωα)ϕAW (α)〉

)
ds
]

n+Xn−

−
[ ∫ ∞

0

e2is
(
〈ϕAW (α)ϕAW (eisωα)〉 + 〈ϕAW (eisωα)ϕAW (α)〉

)
ds
]

n−Xn+

+2Re
(∫ ∞

0

e2is〈ϕAW (eisωα)ϕAW (α)〉 ds
) [

σ+Xσ− − n+Xn+

]

+2Re
(∫ ∞

0

e−2is〈ϕAW (eisωα)ϕAW (α)〉 ds
) [

σ−Xσ+ − n−Xn−
]
.
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But we have

〈ϕAW (α)ϕAW (eisωα)〉

=
∫

R3
eisω(N(ω) + 1)|α(k)|2 dk +

∫
R3

e−isωN(ω)|α(k)|2 dk

= 〈ϕAW (eisωα)ϕAW (α)〉.

Now, by assumptions i), ii) and iii) of the above theorem, we apply formula
(6) to get
∫ ∞

0

e−2is〈ϕAW (α)ϕAW (eisωα)〉 ds = Re(α, α)+− + iIm(α, α)+− − iIm(α, α)−+,

∫ ∞

0

e−2is〈ϕAW (eisωα)ϕAW (α)〉 ds = Re(α, α)−− + iIm(α, α, )−− − iIm(α, α)++,

∫ ∞

0

e2is〈ϕAW (eisωα)ϕAW (α)〉 ds = Re(α, α)+− − iIm(α, α)+− + iIm(α, α)−+,

∫ ∞

0

e2is〈ϕAW (α)ϕAW (eisωα)〉 ds = Re(α, α)−− + iIm(α, α)++ − iIm(α, α)−−.

Therefore we obtain

L(X) =
{
− Re(α, α)+− − Re(α, α)−− + i

(
Im(α)−+ − Im(α, α)+−

)

−i
(
Im(α, α)−− − Im(α, α+

+)
)}

n+Xn− +
{
− Re(α, α)+− − Re(α, α)−−

−i
(
Im(α, α)−+ − Im(α, α)+−

)
+ i
(
Im(α, α)−− − Im(α, α)++

)}
n−Xn+

+2Re(α, α)+−
[
σ+Xσ− − n+Xn+

]
+ 2Re(α, α)−−

[
σ−Xσ+ − n−Xn−

]
.

Hence, we get the following

L(X) = i
(
Im(α, α)−+ − Im(α, α)+−

)[
n+Xn− − n−Xn+

]

+i
(
Im(α, α)−− − Im(α, α)++

)[
n−Xn+ − n+Xn−

]

+Re(α, α)+−
[
2σ+Xσ− − 2n+Xn+ −

(
n+Xn− + n−Xn+

)]

+Re(α, α)−−
[
2σ−Xσ+ − 2n−Xn− −

(
n+Xn− + n−Xn+

)]
.

Note that we have

n+Xn− + n−Xn+ = {n+,X} − 2n+Xn+ = {n−,X} − 2n−Xn−,

n+Xn− − n−Xn+ = [n+,X],
n−Xn+ − n+Xn− = [n−,X].

This proves the theorem.
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4 Properties of the Quantum Master Equation

In this section we state some properties of the quantum master equation asso-
ciated to the spin-boson system, such as quantum decoherence and quantum
detailed balance condition. Note that the log-Sobolev inequality with explicit
computation of optimal constants are known in this context. We refer the
interested reader to [C04].

4.1 Quantum Master Equation

Let ρ ∈ M2 be a density matrix. Then the quantum master equation of the
spin-boson system is given by

dρ(t)
dt

= i
(
Im(α, α)+− − Im(α, α)−+

)
[n+, ρ(t)]

+i
(
Im(α, α)++ − Im(α, α)−−

)
[n−, ρ(t)]

+Re(α, α)+−
(
2σ−ρ(t)σ+ − {n+, ρ(t)}

)

+Re(α, α)−−
(
2σ+ρ(t)σ− − {n−, ρ(t)}

)
.

Put
ρ(t) = ρ11(t)n+ + ρ12(t)σ+ + ρ21(t)σ− + ρ22(t)n−.

Therefore, the above master equation is equivalent to the following system of
ordinary differential equations

d

dt
ρ11(t) = 2Re(α, α)−− ρ22(t) − 2Re(α, α)+− ρ11(t)

d

dt
ρ12(t) =

[
− i
(
Im(α, α)++ − Im(α, α)−−

)
+ i
(
Im(α, α)+− − Im(α, α)−+

)

−Re(α, α)−− − Re(α, α)+−
]
ρ12(t)

d

dt
ρ21(t) =

[
− i
(
Im(α, α)+− − Im(α, α−

+)
)

+ i
(
Im(α, α)++ − Im(α, α)−−

)

−Re(α, α)+− − Re(α, α)−−
]
ρ21(t)

d

dt
ρ22(t) = 2Re(α, α)+− ρ11(t) − 2Re(α, α)−− ρ22(t).

Hence, it is straightforward to show that the thermodynamical equilibrium
state ρβ of the spin system is the only solution of the above equation.

4.2 Quantum Decoherence of the Spin System

Definition 1 We say that the dynamical evolution of a quantum system de-
scribes decoherence , if there exists an orthonormal basis of Hs such that the
off-diagonal elements of its time evolved density matrix in this basis vanish as
t → ∞.
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From the system of ordinary differential equations introduced in the previous
subsection, we have

ρ12(t) = ρ12(0) exp
(
− i(Im(α, α)−+ + Im(α, α)++ − Im(α, α)−− − Im(α, α)+−)t

)

× exp
(
− (Re(α, α)−− + Re(α, α)−+)t

)

= ρ12(0) exp
(
− i(Im(α, α)−+ + Im(α, α)++ − Im(α, α)−− − Im(α, α)+−)t

)

× exp
(
− π(

e2β + 1
e2β − 1

∫
R3

|α(k)|2δ(ω − 2)dk)t
)
,

ρ21(t) = ρ21(0) exp
(
− i(Im(α, α)+− + Im(α, α)−− − Im(α, α)−+ − Im(α, α)++)t

)

× exp
(
− (π

e2β + 1
e2β − 1

∫
R3

|α(k)|2δ(ω − 2)dk)t
)
.

Therefore, the spin system describes quantum decoherence if and only if
∫

R3
|α(k)|2δ(ω − 2)dk �= 0.

Thus, the decoherence of the spin system is controlled by the cut-off
function α.

4.3 Quantum Detailed Balance Condition

The following definition is taken from [AL87].

Definition 2 Let Θ be a generator of a quantum dynamical semigroup
written as

Θ = i [H, .] + Θ0,

where H is a self-adjoint operator. We say that Θ satisfies a quantum detailed
balance condition with respect to a stationary state ρ if
i) [H, ρ] = 0,
ii) 〈Θ0(A), B〉ρ = 〈A, Θ0(B)〉ρ, for all A, B ∈ D(Θ0),

with 〈A, B〉ρ = Tr(ρA∗B).

Actually, we prove the following.

Theorem 4.1 The generator L of the quantum dynamical semigroup Tt =
eitK�

satisfies a quantum detailed balance condition with respect to the thermo-
dynamical equilibrium state of the spin system

ρβ =
e−βσz

Tr(e−βσz )
.
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Proof. Note that
L(A) = i [H, A ] + LD(A),

with

H =
(
Im(α, α)−+ − Im(α, α)+−

)
n+ +
(
Im(α, α)−− − Im(α, α)++

)
n−,

and

LD(ρ) = Re(α, α)+−
(
2σ+ρ σ− −{n+, ρ}

)
+ Re(α, α)−−

(
2σ−ρ σ+ −{n−, ρ}

)
.

Therefore, it is clear that H is a self-adjoint operator and [H, ρβ ] = 0. More-
over it is straightforward to show that LD is self-adjoint for the 〈 , 〉ρβ

scalar
product.

5 Return to Equilibrium for the Spin-boson System

5.1 Hamiltonian Case

In this subsection we recall the results of return to equilibrium for the spin-
boson system proved in [JP96b].

For f ∈ L2(R3) we define f̃ on R × S2 by

f̃(s, k̂) =
{
−|s|1/2f̄(|s|k̂), s < 0,

s1/2f(sk̂), s ≥ 0.

Put

C(δ) =
{

z ∈ C s.t |Imz| < δ
}

,

H2(δ, η) =
{

f : C(δ) → η s.t ‖f‖H2(δ,η) = sup
|a|<δ

∫ +∞

−∞
‖f(x + ia)‖2

ηdx < ∞
}

,

where η is a Hilbert space.

Definition 3 Let M be a W ∗−algebra, τ a dynamics on M and ω a faithful
normal state on M. We say that the triple (M, τ, ω) has the property of return
to equilibrium if for all A ∈ M and all normal state μ, we have

lim
t→∞

μ(τ t(A)) = ω(A).

Then, in the Hamiltonian approach of the spin-boson system, the following is
proved in [JP96b].

Theorem 5.1 Assume that the following assumptions are satisfied:
(i) (ω + ω−1)α ∈ L2(R3),
(ii)
∫

S2 |α(2k̂)|2 dσ(k̂) > 0, where dσ is the surface measure on S2,
(iii) There exists 0 < δ < 2π

β such that α̃ ∈ H2(δ, L2(S2)).
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Then, for all β > 0 there exists a constant Λ(β) > 0 which depends only on
the cut-off function α, such that the spin-boson system has the property of
return to equilibrium for all 0 < |λ| < Λ(β).

Remark: In the above theorem the authors show that for any fixed tem-
perature β ∈ ]0,+∞[, the spectrum of the full-Liouvillean Lλ associated to
the spin-boson system is absolutely continuous uniformly on λ ∈ ]0, Λ(β)[ and
in particular for λ very small (weak coupling). Moreover they used the theory
of perturbation of KMS-states for constructing the eigenvector of Lλ associ-
ated to the eigenvalue 0. Therefore, for any fixed β ∈ ]0,+∞[, the spin-boson
system weakly coupled has the property of return to equilibrium.

5.2 Markovian Case

We shall compare the above conditions for the return to equilibrium to the one
we obtain in the Markovian approach. Let (Tt)t≥0 be a quantum dynamical
semigroup on B(η) such that its generator has the form

L(X) = G∗X + XG +
∑
k≥1

L∗
kXLk,

where G = − 1
2

∑
k≥1 L∗

kLk − iH.
Put

A(T ) =
{

X ∈ B(η) s.t Tt(X) = X, for all t ≥ 0
}

,

N (T ) =
{

X ∈ B(η) s.t Tt(X∗X) = Tt(X∗)Tt(X) and

Tt(XX∗) = Tt(X)Tt(X∗), for all t ≥ 0
}

.

The following result is useful for the study of approach to equilibrium in the
Markovian case.

Theorem 5.2 (Frigerio-Verri)
If T has a faithful stationary state ρ and N (T ) = A(T ), then

w∗ − lim
t→∞

Tt(X) = T∞(X),∀X ∈ B(η),

where X → T∞(X) is a conditional expectation. In particular the quantum
dynamical semigroup T has the property of return to equilibrium.

We state without proof the following result which is a special case of a
theorem proved in [FR98].

Theorem 5.3 Suppose that (Tt)t is a norm continuous quantum dynamical
semigroup which has a faithful normal stationary state and H is a self-adjoint
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operator which has a pure point spectrum. Then (Tt)t has the property of
return to equilibrium if and only if

{
Lk, L∗

k, H, k ≥ 1
}′

=
{

Lk, L∗
k, k ≥ 1

}′
.

Applying the above result, we now prove the following.

Theorem 5.4 Suppose that the following assumptions are satisfied:
i) Im(α, α)±± are given by real numbers,
ii)
∫

S2 |α(2k)|2 dk > 0.
Then the quantum dynamical semigroup of the spin-boson system at positive
temperature has the property of return to equilibrium.

Proof. Set

H =
(
Im(α, α)−+ − Im(α, α)+−

)
n+ +
(
Im(α, α)−− − Im(α, α)++

)
n−,

L1 =
(
2Re(α, α)+−

)1/2

σ−,

L2 =
(
2Re(α, α)−−

)1/2

σ+, (7)

G = −1
2

2∑
k=1

L∗
kLk − iH.

Then the Lindbladian of the spin-boson system takes the form

L(X) = G∗X + XG +
2∑

k=1

L∗
kXLk,

for all X ∈ M2.
Note that the quantum dynamical semigroup T of the spin-boson system

has the thermodynamical equilibrium state ρβ of the spin system as a faithful
normal stationary state. Moreover H is a self-adjoint bounded operator which
has a pure point spectrum and it is clear that

{
Lk, L∗

k, H, k = 1, 2
}′

=
{

Lk, L∗
k, k = 1, 2

}′
= CI.

Thus from the previous theorem, the quantum dynamical semigroup of the
spin-boson system has the property of return to equilibrium.

Note that compared to the Hamiltonian approach, we have in Theorem
5.4 a simplification of conditions for return to equilibrium of the spin-boson
system. So in this theorem we need only that assumptions i) and ii) are sat-
isfied. Hypothesis i) ensures that Im(α, α)±± exist and are finite, while if ii)
holds, then Re(α, α)±− are not vanishing.
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5.3 Spin-boson System at Zero Temperature

In the Hamiltonian case, if a quantum dynamical system which its Liouvil-
lean L has a purely absolutely continuous spectrum, except for the simple
eigenvalue 0, then this system has the property of return to equilibrium (cf
[JP96b]). At inverse temperature β (0 < β < ∞), by using the perturbation
theory of KMS-states (cf [DJP03]), we can give an explicit formula of the
eigenstate of L associated to the eigenvalue 0. But it is not the case for zero
temperature (β = ∞). On the other hand, the ground state of the spin system
is not faithful and by Theorem 5.3 we cannot conclude. Let us describe the
spin-boson system at zero temperature.

At zero temperature, the Hilbert space of the spin-boson system is

H = C
2 ⊗ Γs(L2(R3)).

The free Hamiltonian is defined as

h0 = σz ⊗ 1 + 1 ⊗ dΓ (ω),

and its full Hamiltonian with interaction is the operator

hλ = h0 + λσx ⊗ ϕ(α),

where α ∈ L2(R3) is a test function.
The zero temperature equilibrium state of the spin system is the vector state
corresponding to the ground state of σz and it has a density matrix

ρ∞ = |Ψ−〉〈Ψ−|.
The weak coupling limit of the spin-boson system at zero temperature can be
proved in the same way as for positive temperature. The associated Lindbla-
dian can be deduced from the one at positive temperature by taking β = ∞
and it has the form

L∞(X) = −iν1[n+,X] − iν2[n−,X] + ν3

(
2σ+Xσ− − {n+,X}

)
,

where

ν1 =
∫

R3

1
ω + 2

|α(k)|2 dk,

ν2 = PP

∫
1

ω − 2
|α(k)|2 dk,

ν3 = π

∫
R3

|α(k)|2δ(ω − 2) dk.

Hence, for all density matrix ρ ∈ M2, the associated quantum master equation
is given by

dρ(t)
dt

= iν1[n+, ρ(t)]+iν2[n−, ρ(t)]+ν3

(
2σ−ρ(t)σ+−{n+, ρ(t)}

)
= L∗

∞(ρ(t)).

Now, in order to conclude the property of return to equilibrium for the
quantum dynamical semigroup associated to the spin-boson system at zero
temperature, we have to show it by direct computation.
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Theorem 5.5 Assume that:

i) ν2 is given by a real number,
ii)
∫

S2 |α(2k)|2 dk > 0.

Then the spin-boson system at zero temperature has the property of return to
equilibrium. Moreover we have

lim
t→∞

Tr(etL∗
∞ρA) = Tr(ρ∞A),

for all A ∈ M2 and all ρ be a given density matrix.

Proof. Consider the orthonormal basis of M2 given by{
|Ψ+〉〈Ψ+|, |Ψ+〉〈Ψ−|, |Ψ−〉〈Ψ+|, |Ψ−〉〈Ψ−|

}
.

Then in this basis we have

etL∗
∞ =

⎛
⎜⎜⎝

e−2tν3 0 0 0
0 e−tν3eit(ν1−ν2) 0 0
0 0 e−tν3e−it(ν1−ν2) 0

−e−2tν3 + 1 0 0 1

⎞
⎟⎟⎠ .

Therefore we get
lim

t→∞
etL∗

∞ = Π∗
∞,

where

Π∗
∞ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠ .

A direct computation gives

Π∗
∞(A) = σ−Aσ+ + n−An−, ∀A ∈ M2.

Consider a density matrix ρ of the form

ρ =
(

α β
β̄ 1 − α

)
,

with α ∈ [0, 1], β ∈ C. We have

Π∗
∞(ρ) =

(
0 0
0 1

)
= |Ψ−〉〈Ψ−| = ρ∞.

Therefore, it follows that

lim
t→∞

Tr(etL∗
∞ρA) = Tr(Π∗

∞(ρ)A) = Tr(ρ∞A),

∀A ∈ M2. This proves our theorem.
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6 Quantum Langevin Equation and Associated
Hamiltonian

It is shown in [HP84] that any quantum master equation of a simple quantum
system HS can be dilated into a unitary quantum Langevin equation (quan-
tum stochastic differential equation) on a larger space HS ⊗ Γ where Γ is
a Fock space in which are naturally living quantum noises. Note that in the
literature it is shown that natural quantum stochastic differential equations
can be obtained by the stochastic limit of the full Hamiltonian system which
is developed in [ALV02].

Now, let us introduce some notations that need in the sequel.

6.1 Basic Notations

Let Z be a Hilbert space for which we fix an orthonormal basis {zk, k ∈ J}.
We denote by Γs(R+), the symmetric Fock space constructed over the Hilbert
space Z ⊗ L2(R+). Therefore, from the following identification

Z ⊗ L2(R+) � L2(R+,Z) � L2(R+ × J),

we get
Γs(R+) = Γsym(L2(R+ × J)).

The space Z is called the multiplicity space and dimZ is called the multiplic-
ity. The set J is equal to {1, ..., N} in the case of finite multiplicity N and is
equal to N in the case of infinite multiplicity.

Let us introduce another Hilbert space H called initial or system space
and we identify the tensor product

K(R+) = H⊗ Γs(R+) = H⊗
∞⊕

n=0

L2(R+ × J)⊗n =
∞⊕

n=0

H⊗ L2(R+ × J)⊗n

with the direct sum
∞⊕

n=0

H⊗ L2
sym((R+ × J)n) �

∞⊕
n=0

L2
sym((R+ × J)n,H),

consisting of the vectors Ψ = (Ψn)n≥0 such that Ψn ∈ L2
sym((R+ × J)n,H)

and
‖Ψ‖2

K(R+) =
∑
n≥0

1
n!
‖Ψn‖2

L2sym((R+×J)n,H) < ∞.

Note that for f ∈ L2(R+ × J), we define its associated exponential vector by

ε(f) =
∑
n≥0

f⊗n

√
n!

.
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6.2 Hudson-Parthasarathy Equation

Let H, Rk and Skl, k, l ≥ 1 be bounded operators on H such that

H = H∗,
∑

j

S∗
jkSjl =

∑
j

SkjS
∗
lj = δkl, (8)

and the sum
∑

k R∗
kRk are assumed to be strongly convergent to a bounded

operator. Through H, Rk and Skl we define the following operators

S ∈ U(H⊗Z), R ∈ B(H,H⊗Z), G ∈ B(H),

by

Ru =
∑

k

(Rku) ⊗ zk, ∀u ∈ H,

S =
∑
kl

Skl ⊗ |zk〉〈zl|,

G = −iH − 1
2

∑
k

R∗
kRk = −iH − 1

2
R∗R.

The basic quantum noises are the processes

Ai(t) = A(1(0,t) ⊗ zi),

A+
i (t) = A+(1(0,t) ⊗ zi),

Λij(t) = Λ(π(0,t) ⊗ |zi〉〈zj |),

where i, j ∈ J, 1(0,t) is the indicator function over (0, t), while π(0,t) is the
multiplication operator by 1(0,t) in L2(R+).
The Hudson-Parthasarathy equation is defined as follows

(HP )

⎧⎨
⎩

dU(t) =
{∑

k RkdA+
k (t) +

∑
kl(Skl − δkl)dΛkl(t)

−
∑

kl R
∗
kSkldAl(t) + Gdt

}
U(t)

U(0) = 1.

Note that in order to have a unitary solution U of (HP), we need some con-
ditions on the system operators. Actually the following theorem holds.

Theorem 6.1 Suppose that the system operators H, Rk, Skl satisfies (8).
Then there exists a unique strongly continuous unitary adapted process U(t)
which satisfies equation (HP).

Proof. For the proof of this theorem we refer the reader to [P92].

Now, in order to associate a group V to the solution U of (HP), we first
introduce the one-parameter strongly continuous unitary group θ in L2(R,Z)
and its associated second quantization Θ in Γ (R), defined by
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θtf(r) = f(r + t), ∀f ∈ L2(R,Z),
Θte(f) = e(θtf), ∀f ∈ L2(R,Z). (9)

Note that Θ and U(t) can be extended to act on the space

K(R) = H⊗ Γs(R+) ⊗ Γs(R−) = K(R+) ⊗ Γs(R−) = H⊗ Γs(R),

by

Θt = 1 ⊗ Θt in H⊗ Γs(R),
U(t) = U(t) ⊗ 1 in K(R+) ⊗ Γs(R−).

Theorem 6.2 Let Θ be the one-parameter strongly continuous group defined
by (9) and U the solution of the EDSQ (HP) with system operators satisfy-
ing (8). Then

U(t + s) = Θ∗
sU(t)ΘsU(s), ∀s, t ≥ 0,

and the family V = {Vt}t∈R such that

Vt =
{

ΘtU(t), t ≥ 0
U∗(|t|)Θt, t ≤ 0,

defines a one-parameter strongly continuous unitary group. Furthermore, the
family of two-parameter unitary operators

U(t, s) = Θ∗
t Vt−sΘs = Θ∗

sU(t − s)Θs, ∀s ≤ t,

is strongly continuous in t and in s and satisfies the composition law

U(t, s)U(t, r) = U(t, r), ∀r ≤ s ≤ t.

Proof. See [B06] for the proof of this theorem.

The group V defined as above, describes the reversible evolution of the small
system plus the reservoir which is modelled by the free Bose gas. The free
evolution of the reservoir is represented by the group Θ whose generator is
formally given by

E0 = dΓ (i
∂

∂x
).

Note that U(t) = U(t, 0) = Θ∗
t Vt is the evolution operator giving the

dynamics state from time 0 to time t of the whole system in the interaction
picture. Moreover by the Stone theorem

dΘt = −iE0Θtdt,

dVt = −iKVtdt.
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The operators H, E0 represent respectively the energy associated to the small
system and the reservoir. The operator K represents the total energy of the
combined system in the interaction picture and the system operators Rj , Sij

control this interaction. Besides, if we take Rj = 0, Sij = δij , then we get

U(t) = eitH , Vt = e−itE0e−itH ,

and K = E0 + H which is self-adjoint operator defined on H⊗ D(E0).
In [G01], Gregoratti give an essentially self-adjoint restriction of the Hamil-

tonian K which appears as a singular perturbation of E0 + H.

6.3 Hamiltonian Associated to the Hudson-Parthasarathy
Equation

Recall that the generators ε0 and E0 of the groups θ in L2(R,Z) and Θ in
K are self-adjoint unbounded operators. In order to explicit their domains we
introduce the Sobolev space

H
∑

((R × J)n,H)

=
{

u ∈ L2((R × J)n,H) such that
n∑

k=1

∂ku ∈ L2((R × J)n,H)
}

,

where all the derivatives of u are in the sense of distributions in (R × J)n

(n≥ 1) and
H
∑

((R × J)0,H) = H.

Furthermore H
∑

((R × J)n,H) is a Hilbert space with respect to the scalar
product

〈u, v〉H∑ ((R×J)n,H) = 〈u, v〉L2((R×J)n,H) + 〈
n∑

k=1

∂ku,

n∑
k=1

∂kv〉L2((R×J)n,H).

Set

H
∑
sym((R × J)n,H) = H

∑
((R × J)n,H) ∩ L2

sym((R × J)n,H).

We have

D(ε0) = H1(R,Z), and ε0u = iu′,

Besides, the domain of E0 is given by

D(E0) =
{

Φ ∈ K s.t Φn ∈ H
∑
sym((R × J)n,H), ∀n and

∑
n≥1

1
n!
‖

n∑
k=1

∂kΦn‖2 < ∞
}

,
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and this operator acts on its domain by (E0Φ)n = i
∑n

k=1 ∂kΦn.
Set R∗ = R \ {0}. Let us introduce the dense subspaces in K defined by

W =
{

Φ ∈ K s.t Φn ∈ H
∑
sym((R∗ × J)n,H), ∀n and

∑
n≥1

1
n!
‖

∞∑
k=1

∂kΦn‖2
L2(R×J)n,H < ∞

}
,

νs =
{

Φ ∈ W s.t
∑
n≥0

1
n!
‖Φn+1|{rn+1=s}‖2

Z⊗L2((R×J)n,H) < ∞
}
,

ν0± = ν0− ∩ ν0+ ,

where Φn+1|{rn+1=s} is the trace (restriction) of the function Φn+1 on the
hyperplane {rn+1 = s}, for all s ∈ R∗ ∪ {0−, 0+}. Clearly

ν0± ⊆ W.

Define the trace operator a(s) : νs → Z ⊗K such that

(a(s)Φ)n = Φn+1|{rn+1=s}.

Note that ε(H1(R∗,Z)) ⊂ νs and

a(s)Ψ(u) ⊗ h = u(s) ⊗ Ψ(u) ⊗ h, ∀u ∈ H1(R∗,Z), h ∈ H,

where
Ψ(u) = (1, u, u⊗2, ..., u⊗n, ...).

Moreover W ⊃ D(E0) and E0 can be extended to a non-symmetric unbounded
operator in W by

(EΦ)n = i

n∑
k=1

∂kΦn.

The following theorem gives an essentially self-adjoint restriction of the
Hamiltonian operator associated to (HP) and it is proved in [G01].

Theorem 6.3 Let K be the Hamiltonian operator associated to the equation
(HP) such that the system operators satisfying (8). Then
(1) D(K) ∩ ν0± =

{
Φ ∈ ν0± s.t a(0−)Φ = Sa(0+)Φ + RΦ

}
,

(2) KΦ =
(
H + E − iR∗a(0−) + i

2R∗R
)
Φ, ∀Φ ∈ D(K) ∩ ν0± ,

(3) K|D(K)∩ν0±
is a essentially self-adjoint operator.

6.4 Hamiltonian Associated to the Stochastic Evolution
of the Spin-boson System

Recall that the quantum Langevin equation of the spin-boson system is defined
on C

2 ⊗ Γs(L2(R+, C2)) by
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{
dU(t) =

{
Gdt +
∑2

k=1 LkdA+
k (t) −

∑2
k=1 L∗

kdAk(t)
}

U(t)
U(0) = I,

where G, Lk, k ∈ {0, 1} are given by the relation (7).
Note that this equation satisfies the class of Hudson-Parthasarathy equation
with Sij = δij . Moreover we have

S = I,

Ru =
(
2Re(α, α)+−

)1/2
σ−u ⊗ Ψ+ +

(
2Re(α, α)−−

)1/2
σ+u ⊗ Ψ−, ∀u ∈ C

2,

R∗u ⊗ ϕ = 〈Ψ+, ϕ〉
(
2Re(α, α)+−

)1/2
σ+u + 〈Ψ−, ϕ〉

(
2Re(α, α)−−

)1/2
σ−u,

∀u, ϕ ∈ C
2,

R∗R = 2Re(α, α)+−n+ + 2Re(α, α)−−n−.

Therefore we get

ν0± ∩ D(K) =
{

Φ ∈ ν0± s.t a(0−)Φ = a(0+)Φ + RΦ
}
,

and

KΦ =
(
H + E − iR∗a(0−) + i

(
Re(α, α)+−n+ + Re(α, α)−−n−

))
Φ,

for every Φ ∈ ν0± ∩ D(K).
Recall that the associated energy of the reservoir is given by E = dΓ (i ∂

∂x ).
Therefore, by using the spectral theorem, i ∂

∂x is a multiplication operator by
a variable ω in R. Thus we get

E = dΓ (ω),

and E is the same as the usual Hamiltonian. On the other hand, the operator

H =
(
Im(α/α)−+ − Im(α/α)+−

)
n+ +
(
Im(α/α)−− − Im(α/α)++

)
n−,

describes the energy of the spin. Note that the constants Im(α/α)±± have
an important physical interpretation. In some sense they contain all physical
information on the original Hamiltonian of the spin. The free evolution of
the combined system is described by Hf = H + E and the Hamiltonian K
appears as a singular perturbation of Hf , where the operator R defined as
above controls the interaction between the spin and the reservoir.

7 Repeated Quantum Interaction Model

In this section, we start by describing the repeated quantum interaction model
(cf [AP06]). We prove that the quantum Langevin equation of the spin-boson
system at zero temperature can be obtained as the continuous limit of an
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Hamiltonian repeated interaction model. Moreover we compare the Lindbla-
dian of the spin-boson system at positive temperature to the one obtained by
using the method introduced in [AJ07].

Consider a small system H0 coupled with a piece of environment H. The
interaction between the two systems is described by the Hamiltonian H which
is defined on H0 ⊗ H. The associated unitary evolution during the interval
[0, h] of times is

L = e−ihH .

After the first interaction, we repeat this time coupling the same H0 with a
new copy of H. Therefore, the sequence of the repeated interactions is de-
scribed by the space

H0 ⊗
⊗
N∗

H.

The unitary evolution of the small system in interaction picture with the n−th
copy of H, denoted by Hn, is the operator Ln which acts as L on H0 ⊗ Hn

and acts as the identity on the copies of H other than Hn. The associated
evolution equation of this model is defined on H0 ⊗

⊗
N∗ H by

{
un+1 = Ln+1un

u0 = I
(10)

Let {Xi}i∈Λ∪{0} be an orthonormal basis of H with X0 = Ω and let us
consider the coefficients (Li

j)i,j∈Λ∪{0} which are operators on H0 of the matrix
representation of L in the basis {Xi}i∈Λ∪{0}.

Theorem 7.1 If

L
0
0 = I − h(iH +

1
2

∑
k

L∗
kLk) + hω0

0 ,

L
0
j =

√
hLj +

√
hω0

j ,

L
i
0 = −

√
h
∑

k

L∗
kSk

i +
√

hωi
0,

L
i
j = Si

j + hωi
j ,

where H is a self-adjoint bounded operator, (Si
j)i,j is a family of unitary oper-

ator, (Li)i are operators on H0 and the terms ωi
j converge to 0 when h tends

to 0, then the solution (un)n∈N of (10) is made of invertible operators which
are locally uniformly bounded in norm. Moreover u[t/h] converges weakly to
the solution U(t) of the equation

{
dU(t) =

∑
i,j Li

jU(t)dai
j(t)

U(0) = I
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where

L0
0 = −
(
iH +

1
2

∑
k

L∗
kLk

)
,

L0
j = Lj ,

Li
0 = −
∑

k

L∗
kSk

i ,

Li
j = Si

j − δijI.

Proof. See [AP06] for the proof of this theorem.

Now, let us put H0 = H = C
2 and consider the dipole interaction Hamil-

tonian defined on C
2 ⊗ C

2 as

H = σz ⊗ I + I ⊗ HR +
1√
h

(
σ− ⊗ a∗ + σ+ ⊗ a

)
,

where

HR =
(

0 0
0 2

)
, is the Hamiltonian of the piece of the reservoir,

V = σ−,

a =
(

0 1
0 0

)
and a∗ is the adjoint of a.

Fix an orthonormal basis {Ω,X} of C
2 such that

Ω =
(

1
0

)
, X =
(

0
1

)
.

The unitary evolution during the interval [0, h] of time is L = e−ihH such that

L
0
0 = 〈Ω, LΩ〉 = I − ih σz −

1
2
hσ+σ− + o(h),

L
1
0 = 〈Ω, LX〉 = −i

√
hσ+ + o(

√
h),

L
0
1 = 〈X, LΩ〉 = −i

√
h σ− + o(

√
h),

L
1
1 = 〈X, LX〉 = I − ihσz − ihI − 1

2
hσ−σ+ + o(h).

Therefore we obtain

L
0
0 − I

h

h→0−−−→ G0 = −iσz −
1
2
σ+σ−,

L
1
0√
h

h→0−−−→ −L∗ = −iσ+,

L
0
1√
h

h→0−−−→ L = −iσ−.
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Thus by Theorem 7.1, the solution (un)n∈N of the equation
{

un+1 = Ln+1 un

u0 = I

is made of invertible operators which are locally uniformly bounded in norm
and in particular u[t/h] converges weakly to the solution U(t) of the equation

{
dU(t) =

{
G0 dt + LdA+(t) − L∗ dA−(t)

}
U(t)

U(0) = I.

Theorem 7.2 The quantum dynamical semigroup of the repeated quantum
interaction model associated to the spin-boson system at zero temperature con-
verges towards to equilibrium.

Proof. The associated Lindbladian of the above equation is of the form

L(X) = i[σz, X] + 2σ+Xσ− − {n+, X},

and the proof is similar as the one of Theorem 5.5.

Now, at inverse temperature β, we suppose that the piece of the reservoir
is described by the state

ρ =
1

1 + e−β
e−βHR =

(
β0 0
0 β1

)
.

The GNS representation of (C2, ρ) is the triple (π, H̃, ΩR), such that

•ΩR = I,
• H̃ = M2, the algebra of all complex 2× 2 matrix which equipped by the
scalar product

〈A,B〉 = Tr(ρA∗B),

•π : M2 → B(H̃), such that π(M)A = MA, ∀M, A ∈ M2.

Set

X1 =
1√
β1

(
0 1
0 0

)
, X2 =

1√
β0

(
0 0
1 0

)
, X3 =

1√
β0β1

(
β1 0
0 −β0

)
.

It is easy to show that (ΩR,X1,X2,X3) is an orthonormal basis of M2. Now,
if we put L̃ = π(L) which is defined on C

2 ⊗ M2, then a straightforward
computation shows that the coefficients (L̃i

j)i,j , which are operators on C
2, of

the matrix representation of L̃, are given by
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L̃
0
0 = I − ihσz − ih β1I − 1

2
hβ0σ+σ− − 1

2
hβ1σ−σ+ + o(h2),

L̃
0
1 = −i
√

β1

√
hσ+ + o(h3/2),

L̃
0
2 = −i
√

β0

√
hσ− + o(h3/2),

L̃
0
3 = o(h),

L̃
1
0 = −i
√

β1

√
hσ− + o(h3/2),

L̃
2
0 = −i
√

β0

√
hσ+ + o(h3/2),

L̃
3
0 = o(h),

L̃
1
1 = I + o(h),

L̃
2
2 = I + o(h),

L̃
3
3 = I + o(h),

L̃
2
1 = L̃

1
2 = L̃

3
1 = L̃

1
3 = L̃

3
2 = L̃

2
3 = 0.

Hence we get

L̃
0
0 − I

h

h→0−−−→ L0
0 = −iσz − iβ1I − 1

2
β0 σ+ σ− − 1

2
β1 σ−σ+,

L̃
0
1√
h

h→0−−−→ L0
1 = −i
√

β1 σ+,

L̃
0
2√
h

h→0−−−→ L0
2 = −i
√

β0 σ−,

L̃
1
0√
h

h→0−−−→ L1
0 = −i
√

β1σ−,

L̃
2
0√
h

h→0−−−→ L2
0 =
√

β0 σ+,

and the other terms converges to 0 when h tends to 0. Thus the solution
(ũn)n∈N of the equation {

ũn+1 = L̃n+1ũn

ũ0 = I

is made of invertible operators which are locally uniformly bounded in norm
and in particular ũ[t/h] converges weakly to the solution Ũ(t) of the equation⎧⎪⎪⎨
⎪⎪⎩

dŨ(t) =
{
−
(
iσz + iβ1I + 1

2β0 σ+σ− + 1
2β1 σ−σ+

)
dt

−iσ−
(√

β1 da1
0(t) +

√
β0da0

2(t)
)
− iσ+

(√
β1 da0

1(t) +
√

β0 da2
0(t)
)}

Ũ(t)

Ũ(0) = I.

Theorem 7.3 The quantum dynamical semigroup of the repeated quantum
interaction model associated to the spin-boson system converges towards the
equilibrium.
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Proof. It suffices to observe that the associated Lindbladian of the above
equation has the form

L(X) = i[σz, X] +
1
2

β0

[
2σ−Xσ+ − {n−, X}

]

+
1
2

β1

[
2σ+Xσ− − {n+, X}

]
.

Remark: Note that by using the repeated quantum interaction model we
can prove that the Markovian properties of the spin-boson system are satisfied
without using any assumption.
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