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Abstract: 
A novel nonlinear collaborative modeling method for remaining useful life (RUL) prediction is proposed. This 
method uses a kernel-based Wiener process (KWP) model, which formulates a nonlinear drift function with the 
weighted combination of kernel functions. Compared with the existing Wiener process models, this kind of 
modeling allows characterizing the nonlinearity of degradation more accurately and flexibly. To address the 
problem of error accumulation and lack of data in long-term prediction, a transfer learning scheme, based on the 
KWP models, is developed by leveraging multiple historical degradation trends from different units to 
collaboratively describe the degradation process of interest, even with limited data. The positive transfer learning 
is realized by introducing cross-correlations into the drift functions for obtaining more robust and accurate results 
than those obtained by constructing multiple individual models, one for each unit. The unknown model parameters 
are estimated by a spare estimation algorithm. Then, based on the KWP model, a close-form expression of the 
RUL distribution is derived for uncertainty quantification. An online framework is also proposed to iteratively 
predict the RUL. Finally, the proposed method is verified on lithium-ion battery datasets and compared to existing 
methods. The outcomes demonstrate the effectiveness and superiority of the proposed method for RUL prediction. 
 
Keywords: Degradation modeling, nonlinearity, transfer learning, remaining useful life (RUL). 
 

1. Introduction 
Prognostics and health management (PHM) 
contributes to satisfy the reliability, safety and 
economical requirements of industrial 
components and systems. The prediction of the 
remaining useful life (RUL) of a component or 
system, i.e., the residual time for losing its 
intended function, is a most challenging task of 
PHM (Cheng et al. 2022). Accurate RUL 
predictions can help making effective and 
economical maintenance decisions.  

Due to differing operating environments, unit-
to-unit variability and imperfect inspection, most 

degradation processes show stochastic dynamics 
characteristics (Chen et al. 2020). Hence, 
stochastic process models are widely used in 
degradation modeling and RUL prediction (Ye et 
al. 2015). Wiener process, Gamma process, 
inverse Gaussian process, Lévy process and 
Cauchy process are the common stochastic 
processes in degradation analysis (Ye et al. 
2015, Tseng et al. 2009, Wang and Xu 2010, Liu 
et al. 2017, Duan et al. 2021, Hong et al. 2022). 
Since the Wiener process is more suitable used 
to describe non-monotonous degradation paths 
than the other processes, it has attracted more 
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attention and been used for various systems (Si 
2015, Chen et al. 2021).  

In addition to stochasticity, nonlinearity is 
another key property of the degradation 
processes of components and systems. To model 
the nonlinearity, The state transformations 
(Gebraeel et al. 2005) or time-scale 
transformations (Chen et al. 2021) can be 
applied to the drift function of Wiener process to 
linearize the nonlinear degradation paths. 
Among the types of nonlinear Wiener process 
models, the power-law and exponential-law 
models have gained popularity (Son et al. 2013, 
Deng et al. 2016). However, these two models 
struggle to capture complicated nonlinear 
behaviours. Zhang et al. (2017) used a linear 
combination of simple functions to construct the 
drift rate as a general representation of non-
linearity, which depended heavily on prior 
knowledge of the processes. Zhai and Ye (2017) 
developed a new adaptive Wiener process model 
that utilized a Brownian motion to describe the 
time-varying drift rate for RUL prediction. Li et 
al. (2017) proposed a generalized Wiener 
process degradation model with measurement 
errors to represent the nonlinear degradation 
paths. Wang et al. (2019) developed an improved 
Wiener process model with adaptive drift and 
diffusion for online RUL prediction. Zhang et al. 
(2021) combined a nonlinear Wiener process 
model with a relevance vector machine to depict 
the nonlinearity of degradation without priors. 
Zhang et al. (2022) studied a nonlinear Wiener 
process model with a random time-varying 
covariate for degradation modeling and RUL 
prediction. But these methods ignored some 
relationships in the degradation data that can 
significantly affect the modeling accuracy. 

Specifically, temporal dependency and cross-
correlation are the two typical relationships in 
the monitoring data (Zhang et al. 2019). The 
former indicates that the early degradation of a 
specific system can affect its advanced stages 
(Chen et al. 2019). The latter describes the 
statistical relationships between two systems 
which show some common features (Ding et al. 
2022). Due to unrevealed failure mechanism and 
lack of degradation data, it is difficult to obtain 
accurate results by a single model constructed on 
the limited degradation data of a target sample. 
Chehade and Hussein (2020) used a multi-output 
Gaussian process to collaboratively cross-

correlate degradation trends of different units for 
long-term prediction with limited data. However, 
they did not derive the distribution of the RUL to 
account for the uncertainty in the prediction. 

This paper proposes a transfer learning (TL) -
based collaborative model with kernel-based 
Wiener process model for the RUL prediction. 
The main contributions are as follows: 
� Considering both stochasticity and non-

linearity, an improved Wiener process 
model, whose drift function is formulated by 
kernel functions, is used to obtain flexible 
and accurate degradation modeling. 

� As an extension to the independent models, 
a collaborative modeling framework with 
TL-based KWP models is developed for 
RUL prediction by leveraging historical data. 

� Both the temporal dependency and the 
cross-correlations in the degradation data are 
captured to address the problem of lack of 
data at early stages and error accumulation 
for long-term prediction. 

� The distribution of the real-time RUL is 
predicted, for the uncertainty quantification. 

The remainder of this paper is organized as 

follows. Section 2 develops the Kernel-based 

Wiener process model. In Section 3, we propose 

a collaborative modeling method for RUL 

prediction. In Section 4, a numerical example is 

presented. Conclusions are made in Section 5. 

2. Theoretical Background 
The degradation paths of industrial components 
or systems are assumed to follow the Wiener 
process (WP) model, i.e., 

� � � � � �0 ; Bx t x η t σ B t� � �ω ,          (1) 

where � �;η t ω  is the drift function, σB is the 
diffusion parameter, and B(t) is the standard 
Brownian motion. The initial value x0 is assumed 
to be 0. Let 1Δ j j jx x x �� � , where xj is the 
degradation observation at time tj; the drift 
increment � � � � � �1Λ ; ; ;j j jt η t η t �� �ω ωω , t0 = 
0.  

To describe the time-varying dynamics of the 
stochastic degradation process, η (t; ω) is usually 
assumed to be nonlinear time-dependent. The 
commonly used formulations for η (t; ω) are the 
power-law or the exponential-law form. Though 
they can describe most of the typical nonlinear 
degradation trajectories, it might be difficult to 
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deal with some complex cases in time-varying 
nonlinearity. To improve the generality of the 
degradation modeling without prior, an 
alternative idea of introducing the kernel 
function into the drift increment is proposed as  

� � � � � � 0
1

Λ Λ ; ,
m

j j i i j
i

t ω κ t t ω
�

� � ��ω ω ,     (2) 

where iω  is the weight of the kernel function 

� �,i jκ t t , 0ω  is the bias, m is the sample size and      

	 
T
0 1, , , mω ω ω�ω L . The scaled Gaussian 

kernel is usually selected as the basis function in 
nonlinear prediction. Without loss of generality, 
the drift rate coefficient can be derived by taking 
the first partial derivative of � �Λ ;jt ω  with tj as 

� � � �; Λ ;j j jμ t d t dt�ω ω .        (3) 
The rate of change of the degradation 

measurement can be captured more effectively 
by (2) for short-term prediction. It can avoid 
scaling issues, and be more robust for non-
smooth degradation paths. Then, a generalized 
nonlinear model (Kernel-based Wiener Process, 
KWP) is formulated based on  (2) and (3). 

Considering that some elements in ω could be 
extremely small, the sparsity optimization 
strategy is adopted to avoid the overfitting in the 
maximum likelihood estimation (MLE). The 
non-zero weights are penalized to reduce the 
variance of the solutions and computational 
burden. The  1-norml  regularization is selected 
to realize the sparsity of ω. Assume the 
degradation process is observed at equal 
inspection intervals, 1j jτ t t �� � . The log-
likelihood of the degradation increment dataset 

� �
1

Δ Δ
m

j j
x

�
�x  with a sparsity term is written as 

� �� � � �

� �

2

2 2

0

ln Δ , ln 2
2

Δ 2

B B

m

B i
i

mp σ πσ τ

                 σ τ λ ω
�

� �

� � � �Ω

x ω

x ω
,   (4) 

where 	 
T
1Δ Δ , ,Δ mx x�x L , Ω  is an � �1m m
 �

matrix with � � � � T
1 , , mt t� �� � �� �Ω L , and 

� � � � � �11, , , , ,j j m jφ t κ t t κ t t� �� � �L . λ > 0 is the 

penalty coefficient with a large value. Then, the 
measurements corresponding to the nonzero 
weights are responsible for representing the 
temporal dependency in the degradation paths.  

Since it is difficult to estimate the values of ω 
and σB by directly maximizing (4) in closed-form, 
iterative estimation or evolutionary algorithms 
can be used to obtain the optimal MLEs, which 
are denoted by ω* and σB

*. Then, the prediction 
of xm+1 at the next time point tm+1 is Gaussian 
distributed conditional on the estimates, i.e., 

� �� �T 2
1 1ˆ Δ , , ,m B m m Bx σ x t σ τ�� �

� ��x ω ω: N .  (5) 

Generally, the system lifetime T is defined as 
the first passage time (FPT) of x(t) hitting a 
critical threshold ξ, i.e., 

� �� �0inf :T t x t ξ x ξ� � � ,          (6) 

According to (6), the RUL at time tj can be 
defined as the residual time for the degradation 
path crossing ξ from xj, i.e., 

� �� �inf :j j jR r x t r ξ x ξ� � � � .     (7) 

Given xj, the PDF for the RUL at time tj  is  

� � � � � �� �
� � � � � �

21, exp 2
2

Λ ;

jR B j

j j B

f r σ S r r
πr

                  S r r r σ r

� �

� �
 �� �

ω

ω
.    (8) 

where � � � �� �Λ ;j j j BS r ξ x r σ� � � ω  and 

� � � � � �Λ ; ; ;j j jr η t r η t� � �ωω ω . 

3. The Proposed Collaborative Modeling 
with Transfer Learning for RUL Prediction 

Note that Zhang et al. (2021) used a Gaussian 
basis function as part of RVM to represent the 
degradation drift increment for RUL estimation, 
which is the same as the proposed KWP model. 
However, the main limitation of KWP is that the 
prediction errors can accumulate in the long-term 
task, where the degradation mechanism is not 
explicit and the future data is unavailable. 
Moreover, due to unit-to-unit variability, even if 
the historical data from other identical units are 
used to estimate the parameters of KWP, the 
predictions by the determined KWP could 
deviate from the actual values. Considering that 
identical units should share some common features 
and are often cross-correlated, a novel TL-based 
collaboratively degradation model is developed to 
leverage cross-correlations between the degradation 
measurements of different units, for predicting the 
RUL more accurately with limited data.  

3.1. TL-based Collaboratively Modeling 
Unlike developing an independent KWP model for 
each unit, the TL-based collaborative KWP model 
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combines the degradation data from all units to 
capture both cross-correlations between multiple 
units and temporal dependency among different 
observations. The TL will transfer the shared 
knowledge between the target unit with limited 
data and the unit with complete historical data as 
much as possible, if the two units are correlated. 
Otherwise, the negative TL need to be avoided if 
the two units are nearly uncorrelated.  
 Only the selection of the kernel functions in the 
drift term will be used to account for the cross-
correlations between different units. Especially at 
the early degradation stage of the target unit with 
insufficient data, the collaborative model allows 
extrapolating the future degradation path by 
making full use of the complete historical data from 
other units. The framework of the TL-based 
collaborative model is shown in Fig. 1. 
 The kernel-based drift increment of sample l 
cross-correlated with another unit is formulated as 

� � � � 0
1

Λ ; ,
km

l k l
j i i j

i
t ω κ t t ω� �

�

� ��ω ,       (9) 

where k and l denote the reference numbers for the 
samples, and the kernel function is given by 
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,

1, exp
2

1exp 1 ,
2

k l
i j F i j L

k l

κ t t β t t β

               δ k l β
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� �� �
 � �� �� �� �

,   (10) 

where δ(k, l) is the Dirichlet function whose 
value equals to 1 if k l�  and 0 otherwise. For 
highly similar units k and l, the hyperparameter 
βk,l should be large when the positive TL occurs. 
On the contrary, for nearly uncorrelated units, βk,l 
is expected to be small and � �, 0k l

i jκ t t� � .  

Let � �,, ,F L k lβ β β�β . Given K samples with the 

degradation increment dataset � �
,

,Δk k
j j j k

t x , the 

log-likelihood with 1-norml  regularization of 
ΔX is expressed by 
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l l k
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(11) 

where � �
1

Δ Δ
Kl

l�
�X x , � � � � T, , ,

1 , ,l k l k l k
mt t� �� �� � �Ω L , 

and � � � � � �,
11, , , , ,l k k l k l

j j m jφ t κ t t κ t t� �� �� � �L . The 

MLEs of ω, β and σB can be obtained by 
maximizing (11), and are denoted by �ω , �β   
and Bσ�  for specifically. After the parameters are 
determined, the trained TL-based collaborative 
KWP model is used for real-time RUL prediction.  

 
Fig. 1. Schematic of Transfer learning-based 
collaborative modeling for multiple samples. 

To illustrate the necessity of transfer learning 
compared with Bayesian updating for individual 
degradation parameters, two shortcomings of the  
latter are as follows: firstly, if only the degradation 
data of the target unit is used, many useful 
information from other identical historical units is 
neglected; secondly, if both the degradation from 
the target unit and other identical units are used, the 
negative or useless information could be introduced 
into the parameter estimation as the other units’ 
data are adopted for estimating the initial values in 
the Bayesian updating. Note that, the transfer 
learning can address these two problems well. The 
model parameters are estimated based on the 
degradation data up to date of the target unit and 
the whole degradation process data of other units. 
Although this is not an iterative procedure, the 
parameters’ estimates are still updated step by step.  

3.2. RUL Prediction 
Based on the proposed degradation model, the 
RUL for the target unit at a given inspection 
timepoint is predicted in this subsection.  

Suppose that the available degradation 
measurements at time 1, , mt tL  of the target unit 
are 1, , my yL . There are K training samples with 
complete degradation data observed at time 

1 , ,k k
mt tL , i.e., � �1:

1: 1 1
, , , ,

KK k k k
n m n k

x x x
�

�X L L , m < n. 

Then, the synthetic dataset � �1:
1: 1:,K

m myX  is used to 
calculate the MLEs of the unknown parameters 
of the proposed model by using (11). The MLEs 
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are denoted by �ω , �β and Bσ� , where the hyper-
parameter � �1, , , ,F L Kβ β β β�β L . kβ , k = 1, …, 
K, represents the cross-correlation between the 
target unit and the k-th training sample.  

When only considering the historical data 1:my
of the target unit itself, the predicted mean of the 
degradation measurement involving the temporal 
dependency can be given by 

� � � �T
1, 1: 1 1: 1ˆΕ ,k

m Self m m m my y y t��
� � �� �X ω .  (12) 

 When only considering the transfer learning 
between the target unit and the k-th sample, the 
mean of the degradation measurement at tm+1 for 
the target unit can be predicted by 

 � � � �T
1, 1: 1 1: 1ˆΕ ,k k k

m TL m m m my y y t��
� � �� �X ω , (13) 

where � � � � � �1 1 1 11, , , , ,
k

k k k
m m m mt κ t t κ t t� � �

� � �
� �� � �L .  

Then, considering all the training samples and 
the target unit itself, the prediction of ym+1 can be 
approximated by leveraging the cross-correlations 
and auto-correlation as follows 

1, 1, 21
1

ˆ ˆ
ˆ ,

1

K k
m Self m TLk

m B

y y
y σ τ

K
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�

 !�
" #
" #�$ %

�: N . (14) 

Note that only the mean is assumed to be 
correlated and the variance completely depends 
on the temporal dependency. 

Assume that r gτ�  and g is an integer. Given 

1, , my yL , the PDF of the RUL for the proposed 
TL-based collaborative KWP model at time tm 
can be given by 
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1
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i
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�

� �� � ��ω . 

The real-time RUL prediction algorithm is 
summarized as Algorithm 1. Specifically, the 
flowchart of RUL prediction is shown in Fig. 2. 

Algorithm 1: Real-time RUL prediction. 
Input: Historical degradation data of K training 
samples 1:

1:
K
nX ; the degradation data of the target 

unit up to time tm, 1, , my yL  
Output: The PDF of the degradation value ym+1 at 
tm+1; the PDF of the RUL at tm, � �

mRf r . 

1:  Obtain the degradation increment dataset ΔX . 
2:  Calculate the MLEs of ω, β and σB by (11). 
3:  Predict the degradation measurement 1ˆmy � of 
 the target unit at time tm+1 by (14). 
4:  Calculate the PDF of the RUL � �,

mR Bf r σ� �ω  at 

  time tm by (15). 
5:   Set m = m + 1 and collect the new degradation 
  measurement of the target unit at time tm+1. 
6:  Go back to step 1. 

 

 
Fig. 2. Flowchart for the RUL prediction by the TL-
based collaborative KWP model. 

4. Illustrative Example 
The lithium-ion battery datasets from the NASA 
Ames Prognostics Center of Excellence (Saha and 
Goebel 2007) are used to validate the proposed 
TL-based collaborative KWP model. The state 
parameters of batteries, such as voltage, current, 
temperature and capacity, were observed for 
different running cycles during charge-discharge 
experiments performed on a test bed at room 
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temperature. Repeated charge and discharge cycles 
resulted in performance degradation of the 
batteries. The battery is defined failed when its 
capacity declines to below 1.4 Ah. The datasets of 
three battery cells (B05, B06, B07) are analysed. 

Fig. 3 shows the results of the correlation analysis 
of the capacity data. Not only the temporal 
dependency exists in the capacity degradation, but 
also the cross-correlation between two batteries is 
significant. Hence, it is necessary to consider both 
in the degradation modeling. 

  
(a)                                            (b) 

Fig. 3. Illustration of the correlations in degradation 
data. (a) Autocorrelation in the capacity data of B05. 
(b) Cross-correlations between the capacity data of 
two different batteries. 

Fig. 4 shows the multi-step prediction results 
obtained by the proposed model. In Fig. 4(a), the 
capacity observations for the first 168 cycles for 
B06 and B07 are available, and only limited 
observations for B05 are given. In Fig. 4(b), the 
capacity data for the first 91 cycles of B06 are 
given and those for the first 168 cycles of B05 and 
B07 are known. It can be clearly seen from Fig. 4(a) 
that the TL-based collaborative KWP model is able 
to transfer knowledge from B06 and B07 to B05. 
This verifies that there is high cross-correlation 
between B05 and the other two batteries. Similarly, 
we can see from Fig. 4(b) the excellent 
predictability of the proposed model for the future 
degradation trend of B06. In addition, the 95% 
confidence intervals of prediction are presented in 
shaded yellow. Almost all the true capacity data fall 
within the intervals. It can be asserted that the 
proposed model can yield a convincing uncertainty 
quantification in long-term prognostics tasks, 
which is important in practical applications. 

Next, the proposed model is compared to other 
models: (i) Artificial neural network (ANN) with 
one hidden layer (10 neurons), (ii) independent 
KWP (IKWP) for each sample, (iii) simple KWP 
(SKWP) by considering all the samples, which 
ignores the cross-correlations; (iv) a linear WP 

 
(a) 

 
(b) 

Fig. 4. Prediction results for the battery capacity by 
the proposed model. (a) Predictions for the capacity 
data of B05. (b) Predictions for the capacity data of 
B06. 

(LWP) with the drift function � �;η t ωt�ω  for 
all samples; (v) an improved WP (IWP) model 
with the power-law drift function for all samples. 
Two evaluation metrics, Mean-absolute Error 
(MAE), and Mean Squared Error (MSE) are 
calculated for the predictions of these four 
models based on the scenarios as shown in Fig. 
4. The corresponding results are presented in 
Table 1, where the TL-based collaborative KWP 
model is abbreviated as CKWP.  

It can be seen from Table 1 that the proposed 
model which the lowest MAE and MSE values. 
This is because both the temporal dependency 
and cross-correlations are considered. The IKWP 
model uses only observations from the sample of 
interest and leads to poor predictions with limited 
data. The SKWP model assumes that the 
degradation data from all the samples are identical 
and ignores the cross-correlations. By comparing 
the MAE and MSE values of IKWP and SKWP, 
we can conclude that considering data available 
from different samples significantly improve the 
prediction accuracy. From the comparative results 
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of LWP, IWP and CKWP, we can see that the 
Wiener process with a power-law term cannot 
capture the degradation nonlinearity well, while 
the CKWP with kernel-based function represent 
the nonlinear degradation paths better. 

Table 1. The comparative results of different 
models based on the battery datasets. 

Model MAE MSE 
ANN 1.056×10-1 1.399×10-2 
IKWP 5.188×10-2 3.918×10-3 
SKWP 4.142×10-2 3.049×10-3 
LWP 1.204×10-1 2.295×10-2 
IWP 1.204×10-1 2.327×10-2 
CKWP 2.735×10-2 1.127×10-3 
The results are based on the scenarios in Fig. 4. 

 
(a) 

 
(b) 

Fig. 5. Predicted PDFs of the RUL by the proposed 
model for (a) B05, (b) B06. 

The effectiveness of the real-time RUL 
prediction algorithm is also validated here. Four 
different starting timepoints of available capacity 
data for the RUL prediction are selected, i.e., 61 
cycles, 71 cycles, 81 cycles, 91 cycles and 101 
cycles. The predicted PDFs of the RUL distribution 
for B05 and B06 are shown in Fig. 5. The true RUL 

values are marked as asterisks. It can be observed 
that the PDF curves cover the true RULs better and 
better over time, whose peaks get narrower and 
higher. That is, the prediction results are robust and 
accurate with different quantity of available data, 
and the uncertainty declines with more available 
data as expected. It further indicates that the 
proposed model can perform stably, and provide 
effective and accurate predicted RULs in the task 
of long-term prediction, as the inspection keeps 
rolling over time. 

5. Conclusions 
This paper proposed a collaborative kernel-based 
Wiener process model for RUL prediction. The 
cross-correlations between different samples and 
the temporal dependency in the specific sample of 
interest were captured by introducing a transfer 
learning term into the kernel functions of the drift 
increments. To address the problem of error 
accumulation and lack of data in long-term 
prediction, multiple historical degradation data 
were used. Then, the distributions of the RUL of 
the target unit with limited data can be predicted 
accurately. An application to lithium-ion battery 
datasets was conducted to illustrate the 
effectiveness of the proposed method. 

Some future work is worth pursuing. The 
Bayesian updating for real-time iteratively 
estimating the model parameter can be introduced 
in the transfer learning to improve the 
computational efficiency. 
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