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Abstract

In the attempt to make aviation more energy efficient, both academia and industry are seeking innovative
propulsion systems, improved aerodynamic designs, or unusual configurations. However, smart usage of
existing configurations can play a prominent role in this context. In this work, we exploit the possibility of
increasing the lift-to-drag ratio of a complete aircraft, using a three-surface configuration with redundant longi-
tudinal control, obtained through two movable surfaces located respectively on the horizontal tail and canard.
In a nutshell, the idea is exploiting the redundancy to minimize the drag of the entire airplane at each wind
speed (and hence each lift coefficient). The numerical analysis performed in this work shows that a standard
back-tailed airplane can be updated by adding a third surface, equipped with a degree of control, leading a
similar aircraft with an improved lift-to-drag ratio.
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1. Introduction
Airplane configurations based on three-lifting surfaces have been widely considered among aero-
nautical aircraft designers as a possible alternative to conventional back-tailed planes. Throughout
history, such a configuration has always been proposed as an efficient solution, as witnessed by P180
experience [1], and by literature that has shown its potential advantages as a means for improving
trim [2, 3] and suppressing flutter in highly flexible aircraft [4].
However, this design has never gained the upper hand over traditional two-surface configurations.
A reason for that probably lies in the intrinsic complexity of aerodynamics, which is characterized
by the mutual interaction between multiple surfaces [5]. It is expected that the deflection of the flow
induced by the upstream surfaces will impact the performance of the downstream ones: the tail feels
the flow deflected by the wing, which, on its own, feels a flow deflected by the canard. However, if
the canard and the wing are close, as typically happens in three-surface configurations, the upwash
in front of the wing may also affect the flow at canard location, a phenomenon usually neglected in
traditional airplanes.
Recently, a redundant longitudinal control has been studied in conjunction with the three-surface
configuration, where both the canard and tail feature a movable part [6]. When these two controls
are present, the longitudinal trim problem, consisting of finding the equilibrium in terms of the vertical
forces and pitching moments, becomes overdetermined. The additional degree of freedom can then
be used for optimization purposes, such as the minimization of overall drag. In Ref. [6] a detailed flight
mechanics model of the three-surface airplane with redundant longitudinal control was introduced,
extending standard lumped two-surface models (e.g. [7], chapter 3) by including the canard surface
and a suitable modeling of the canard-wing interactions [8]. The preliminary results reported in [6]
show that such redundancy is effective in minimizing the trim drag and in increasing the achievable
maximum lift-to-drag-ratio of some percentage points.
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Moreover, in [9], it was also possible to demonstrate that the redundancy in the longitudinal control
may also be associated with improved take-off performance.
Notwithstanding the promising results, having a simple but accurate aerodynamic characterization of
three-surface airplanes, featuring redundant longitudinal control, still represents an urgent need to
allow a suitable preliminary design of such systems.
With the goal of further analyzing the performance of three-surface airplanes including redundant
longitudinal control, in the present work, we extend the work of [6] in three directions:

1. First, we develop a Matlab tool for the estimation of the airplane aerodynamic model of a three-
surface airplane based on the Digital Datcom software [10], in contrast with previous works
where more simple models were employed.

2. We include in the trim optimization problem also the cancellation of the hinge moments of
both control surfaces. This requires enlarging the array of the trim optimal variables with the
incidence of both canard and tail, in addition to the angle of attack and the deflection of elevator
and canard movable surfaces.

3. We formulate a preliminary design problem for three-surface airplanes aimed at finding some
geometrical parameters related to wing, tail, and canard, to optimize the maximum lift-to-drag
ratio of the trimmed polar.

In this paper, we will first show some features of the tool for the estimation of the aerodynamic model
of the three-surface airplane. Then, we will detail the optimization of the trim including the cancelation
of the hinge moments, exploiting the control redundancy. Finally, we will show the results of a design
process aimed at updating a twin-engine propeller-driven airplane as an equivalent three-surface
model featuring a higher lift-to-drag ratio.

2. Methodology
2.1 Using Datcom for modeling the aerodynamics of a three-surface airplane with redundant

longitudinal control.
The purpose of this section is to describe a procedure for obtaining the stability and control derivatives
and, more in general, the aerodynamic model of the three-surface airplane from the Digital Datcom
Software. In this work, we focus on the steady aerodynamic models and, accordingly, on the steady
constitutive equations for the lift coefficient CL, drag coefficient CD, pitch moment coefficient about the
center of gravity CmG and hinge moment coefficients of the tail CHT and of the canard CHC . All these
variables are defined as functions of five trim parameters, i.e. the angle of attack α, the deflection of
the elevator δE, the deflection of the movable part of the canard δC and the incidence of tail iT and
canard iC, 

CL = CL0 +CLαα +CLδEδE +CLδCδC +CLiT iT +CLiC iC
CmG = CmG 0 +CmG α

α +CmG δE
δE +CmG δC

δC +CmG iT iT +CmG iC iC
CHT = CHT 0 +CHT α

α +CHT δE
δE +CHT δC

δC +CHT iT iT +CHT iC iC
CHC = CHC 0 +CHC α

α +CHC δE
δE +CHC δC

δC +CHC iT iT +CHC iC iC

(1)

where symbols Cσ 0 and Cσ ξ represent the constant value of the generic coefficient Cσ , with σ =
(L,D,mG,HT,HC), and its derivative with respect to trim variable ξ . The drag coefficient, on the other
hand, features a more complex and nonlinear behavior with respect to the trim variable, which can
be formalized as

CD =CD(α, δE, δC, iT, iC). (2)

Equation (2) also assumes combined interactions among the angle of attack and the deflections of
the control surfaces.
Estimating the entire model with a single run in Datcom is impossible as the compendium only con-
siders canard or back-tailed configurations, hence airplanes featuring both lifting surfaces cannot
be directly modeled. To cope with this, the estimation problem was split into multiple subproblems,
exploiting and combining the analyses already available in Datcom.
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A key aspect in this context is that Datcom also allows one to generate aerodynamic models of
usual back-tailed airplanes where the wing is included through its aerodynamic derivatives already
estimated with other methods. This possibility will be exploited for modeling three-surface airplanes
as explained in the following paragraphs.

2.1.1 Estimation of lift and pitching moment coefficients
Starting from the constitutive equation for lift coefficient, i.e. the first of Eq. (1), the values of the
parameters CL0, CLα , CLδE , CLδT , CLiT and CLiC should be estimated for a given configuration.
To do so, four analyses are performed through Datcom. The first one considers the combination of
the canard and the wing and generates a preliminary aerodynamic model of all aerodynamic bodies
in front of the tail, including the derivative of the lift coefficient with respect to the deflection of the
movable part of the canard δC, CLδC

. The second analysis, on the other hand, considers a back-tailed
configuration with the physical tail and an artificial wing described through the aerodynamic model
generated in the previous run. Hence, such an artificial wing incorporates the mutual interaction
between the canard and the real wing. After the second one of this two-step analysis, we have access
to the coefficients CLα

, CLδE
and CL0 of the complete three-surface airplane. Notice that, within this

approach, not only is the down-wash of the wing on the tail included but also the mutual interaction
between canard and wing. On the other hand, any direct aerodynamic interference between the
canard and the tail is neglected. This fact, however, is not considered critical because of the distance
between the two surfaces.
Finally, the derivatives taken with respect to the incidences of tail and canard, CLiT

and CLiC
, are

estimated through two analyses, one for the canard alone and one for the tail alone. Obviously, for
isolated surfaces, the incidence and the angle of attack correspond to the same degree of freedom.
Consequently, indicating with CLα

(T) and CLα
(C), respectively, the derivative of the isolated tail and

isolated canard with respect to the angle of attack, the desired derivatives are computed as

CLiT
= ηT σTCLα

(T) (3)

and
CLiC

= ηC σCCLα
(C) (4)

where σT is the ratio between the tail and the wing surfaces, σT is the ratio between canard and wing
surface, whereas ηT and ηC are the ratio between the free-stream dynamic pressure and the dynamic
pressure felt at the surface location, respectively for the tail and canard. Clearly, being the canard in
the front of the airplane, ηC can be safely assumed equal to one.
Finally, all values of the dynamic pressure ratios result dependent on the angle of attack, to capture
its impact on the wake of the upstream surface. Similarly, the estimated derivatives are typically
dependent on the angle of attack, as a result of the intrinsic nonlinear nature of the aerodynamics.
Concerning the pitching moment constitutive law, as represented by the second equation of (1), the
values of the coefficients CmG 0, CmG α

, CmG δE
, CmG δC

, CmG iT and CmG iC of the three-surface airplane are
to be determined.
The approach to estimate all these quantities is the same as already applied for the lift coefficient.
In particular, CmG 0, CmG α

, CmG δE
, CmG δC

are extracted from the two-step analysis, while the derivatives
with respect to the incidences iT and iC are obtained from the analyses of the isolated canard and
horizontal tail. In particular, for the determination of the CmG iT coefficient, the analysis of the isolated

horizontal tail is used for computing the tail-specific CmG
(T)
α coefficient. Notice that, even if this analysis

considers an isolated surface, the pole about which the pitching moment is reduced coincides with
the center of gravity of the overall airplane. Then, the airplane-specific coefficient is computed as

CmG iT = ηT σT κTCmG
(T)
α

(5)

where κT is the ratio between the mean aerodynamic chords of the tail and that of the wing.
The same approach was used for computing the derivative with respect to the canard incidence, iC,
resulting in the relation

CmG iC = ηC σC κCCmG
(C)
α

(6)
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where CmG
(C)
α is the canard-specific derivative and κC is the ratio between the mean aerodynamic

chords of the canard and that of the wing.
Figure 1 schematically summarizes the process followed to estimate lift and pitching moment coeffi-
cients.

Figure 1 – Process to model lift and pitching moment coefficients in Datcom for three-surface
airplanes.

2.2 Estimation of the hinge moment Coefficients
The problem of estimating the derivatives of the hinge moment of the elevator and canard movable
part is simplified, assuming that each moment is linearly dependent on the variables associated with
the surface on which the hinge is located. Moreover, constant coefficients, i.e. CHT 0 and CHC 0, were
imposed equal to zero.
Therefore, the hinge moment coefficient of the horizontal tail depends solely on α, δE , and iT, while
that of the canard is a function of α, δC, and iC. Given these considerations, it follows that{

CHT = CHT α
α +CHT δE

δE +CHT iT iT
CHC = CHC α

α +CHC δC
δC +CHC iC iC

(7)

The estimation of CHT α
, CHT δE

, CHC α
and CHC δC

are obtained from the two-step analysis of the complete
aircraft. On the other side, the derivatives with respect to the incidence are computed from isolated
tail and isolated canard analyses.
As mentioned earlier, for the isolated surfaces, the angle of attack can be interpreted as the incidence
angle of that surface, hence the derivatives of the hinge moments with respect to the incidences equal
the same derivatives respective to the angle of attack. Hence,

CHT iT =CHT
(T)
α

, (8)

and
CHC iC =CHC

(C)
α

, (9)

where CHT
(T)
α and CHC

(C)
α are the tail- and canard-specific moment derivatives with respect to the angle

of attack, that are obtained from the analyses of the isolated surfaces.
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2.3 Estimation of drag coefficient constitutive law
Despite the models for lift and pitching moment coefficients are typically linear in the aerodynamic pa-
rameters and are considered adequate to predict the aerodynamic performance of a generic aircraft,
at least before stall, when it comes to defining the constitutive law of the drag, one has to consider
generic nonlinear functions.
For this reason, it is necessary to define a suitable model structure to capture the variation of the
drag with the angle of attack α and the deflection of the control surface δE and δC. To do so, we were
inspired by the way Datcom models the drag coefficients, through the sum of three contributions: an
angle-of-attack-dependent coefficient CD(α), a variation in parasite drag coefficient ∆CD0(δ ) attributed
to longitudinal control deflection δ , and a variation in induced drag coefficient ∆CDi(α,δ ) function of
both α and δ . Consequently, the generic drag function reads

CD(α,δ ) =CD(α)+∆CD0(δ )+∆CDi(α,δ ). (10)

Following the same idea, we can model the drag of three surface airplane by including, along with the
angle-of-attack-dependent coefficient CD(α), three contributions related to the four control variables,
∆CD0(δE), ∆CD0(δC) ∆CD0(iT) and ∆CD0(iC), and other four contributions to the induced drag depen-
dent on the combinations of the angle of attack and the control variables, ∆CDi(α,δE), ∆CDi(α,δC),
∆CDi(iT,δE) and ∆CDi(iC,δC).
The final drag equation for the three-surface airplane C(3S)

D (α,δE ,δC, iT, iC) results

C(3S)
D (α,δE ,δC, iT, iC) = CD(α)+∆CD0(δE)+∆CD0(δC)+∆CD0(iT)+∆CD0(iC)+

+∆CDi(α,δE)+∆CDi(α,δC)+∆CDi(iT,δE)+∆CDi(iC,δC).
(11)

Notice that, in this equation, additional terms related to possible couplings between the tail and
canard were not considered. Because of the distance between these two surfaces, this is expected
to be a good assumption.
To estimate all these parameters, it is possible to exploit the same analyses employed for the estima-
tion of the lift and pitching moment coefficients described in Sec. 2.1.1.
In particular from the two-step analysis, i.e. steps (1) and (2) in Fig. 1, one estimates a drag, indicated
here with the superscript (TS), associated with the three surface airplane with the sole elevator as
the control surface. This model takes the form of

C(TS)
D =C(TS)

D (α)+∆CD0
(TS)(δE)+∆CDi

(TS)(α,δE) (12)

and can be employed for estimating those coefficients of Eq. (11) that model the drag of the three-
surface airplane and the mutual coupling between α and δE . Consequently,

CD(α) =C(TS)
D (α), ∆CD0(δE) = ∆CD0

(TS)(δE), ∆CDi(α,δE) = ∆CDi
(TS)(α,δE). (13)

The contribution to the drag of the canard deflection δC and of the incidence of both tail and canard
is not included and hence should be estimated through dedicated simulations.
To this end, from the two analyses of the isolated tail and the isolated canard, i.e. simulation (3) and
(4) of Fig. 1, one estimates the model for the drag of the isolated tail, indicated with the superscript
(T),

C(T)
D =C(T)

D (α)+∆CD0
(T)(δE)+∆CDi

(T)(α,δE), (14)

and the model for isolated canard, indicated with the superscript (C)

C(C)
D =C(C)

D (α)+∆CD0
(C)(δC)+∆CDi

(C)(α,δC). (15)

The tail- and canard-specific drag models provide for the remaining contributions needed to complete
the drag model of the three-surface airplane in Eq. (11).
In fact, recalling that the change of the incidence corresponds to a physical change in the angle of
attack, it is possible to recover the term ∆CDi(iT,δE) from ∆CDi

(T)(α,δE) as

∆CDi(iT,δE) = ηT σT ∆CDi
(T)(α,δE), (16)
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and the term ∆CD0(iT) from C(T)
D (α) as

∆CD0(iT) = ηT σTC(T)
D (α), (17)

Applying the same argument, also ∆CDi(iC,δC) and ∆CD0(iC) are computed from the terms ∆CDi
(C)(α,δC)

and C(C)
D (α) as

∆CDi(iC,δC) = ηC σC ∆CDi
(C)(α,δC) (18)

and
∆CD0(iT) = ηC σCC(C)

D (α). (19)

Finally, the variation in the parasite drag induced by the sole deflection of the canard control surface
is computed out of the term ∆CD0

(C)(δC) as

∆CD0(δC) = ηC σC ∆CD0
(C)(δC) (20)

while the induced contribution due to the coupling of α and δC is recovered from ∆CDi
(C)(α,δC) as

∆CDi(α,δC) = ηC σC ∆CDi
(C)(α,δC). (21)

2.4 Optimization of trim including hinge moments.
The longitudinal trim of an airplane implies the satisfaction of the vertical equilibrium, of the pitching
moments and the cancelation of the hinge moments. Given an aerodynamic model, the trim in
horizontal flight conditions is formulated as

CL = C∗
L = W

qS
CmG = 0
CHT = 0
CHC = 0

(22)

where C∗
L is the lift coefficient at trim, S the wing area, W the airplane weight and q the dynamic pres-

sure. According to Eq. (1), CL, CmG , CHT and CHC are expressed as functions of the five trim variables
α, δE , δC, iT and iC. Equation (22) represents an undetermined linear system of four equations in five
trim variables, that can be given a more compact form as

yyy = XXXξξξ , (23)

where

yyy =


C∗

L −CL0
−cmG 0
−cHT 0
−cHC 0

 , (24)

ξ = {α, δE , δC, iT, iC}T , (25)

and

XXX =


CLα CLδE CLδC CLiT CLiC

CmG α
CmG δE

CmG δC
CmG iT CmG iC

CHT α
CHT δE

CHT δC
CHT iT CHT iC

CHC α
CHC δE

CHC δC
CHC iT CHC iC

 . (26)

The indeterminacy of system (23) implies infinite parameter combinations solve the equilibrium and
the cancelation of hinge moments. The idea, here, is that it is possible to exploit such an indeter-
minacy to optimize a particular merit function, i.e. to look for that parameter combination, among all
satisfying Eq. (23), that results optimal from a desired point of view.
As it was already suggested in [6], a smart choice for solving the indeterminacy is to minimize the
drag coefficient CD of the overall airplane for a given lift coefficient C∗

L =W/(qS).
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The optimal trim problem can then be formalized as the following constrained optimization,

ξξξ trim = arg(min(CD(ξξξ ))) s. t. yyy = XXXξξξ (27)

that can be solved by standard optimization routines for any CL and hence for any airplane speed,
yielding the scheduling of the trim control variables as functions of the lift coefficient.
In [6], it was demonstrated that, if the drag model is quadratic in the parameters ξξξ and lift and moment
coefficients are linear in ξξξ , problem (27) can be solved in closed form and the trim variables assume
the shape of straight lines with respect to C∗

L. In this work, however, we do not have the same
assumptions; hence, the solution can only be found numerically.
Let us now consider that solution ξξξ trim is a generic nonlinear function fff of C∗

L, i.e. W/(qS),

ξξξ trim = fff (C∗
L) . (28)

Equation (28) can be expanded by components, yielding the relationship between each optimal trim
variable and the lift coefficient as

αopt = fα (C∗
L)

δE opt = fδE (C
∗
L)

δCopt = fδC (C
∗
L)

iTopt = fiT (C
∗
L)

iCopt = fiC (C
∗
L)

(29)

where fα , fδE , fδC , fiT and fiC are the scalar nonlinear functions associated with each trim variable.
Finally, the optimal trimmed polar of the three-surface airplane can be computed by inserting Eq. (29)
in Eq. (2) as

CDopt =CD( fα(C∗
L), fδE (C

∗
L), fδC(C

∗
L), fiT(C

∗
L), fiC(C

∗
L)) (30)

From that polar, one can easily extract the optimal performance such as the maximum lift-to-drag
ratio,

Emax = max
(

C∗
L

CDopt

)
, (31)

and the maximum power index,

Fmax = max

(
C∗

L
√

C∗
L

CDopt

)
, (32)

associated respectively with the minimum required thrust and the minimum required power in steady
horizontal flight (see [7], chapter 2).

2.5 Turning a standard two-surface airplane into a three-surface one with redundant longi-
tudinal control through a design optimization

In order to evaluate if the three-surface configuration with redundant longitudinal control can be con-
sidered a valuable alternative to usual back-tailed configurations, a procedure to update an existing
two-surface design is considered. The aim is to find a three-surface version of an existing airplane,
that features a higher aerodynamic performance in terms of lift-to-drag ratio Emax and in terms of
power index Emax.

2.5.1 Definition of the equivalence between a two-surface and a three-surface airplane ac-
cording to static margin and empennage volume

To have a fair comparison, the three-surface version and the nominal airplane must share some
similar characteristics strongly connected with trim and controllability.
In this work, as similarly done in [6], we decided to create an equivalent three-surface airplane with
unaltered wing, with the same static stability margin µ and the same empennage volume Vemp. The
static margin, for both configurations, is defined conventionally, as

µ = (xG − xN)/c, (33)

7
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where xG and xN are the longitudinal position of the center of gravity G and the neutral point N,
whereas c is the mean aerodynamic chord of the wing. It is assumed that the longitudinal x-axis
originates in the airplane nose and points forward. The location of the neutral point is defined as,

xN = xG +
CmG α

CLα

. (34)

Equation (34) is formally identical to the one used for conventional back-tailed airplanes. However, in
the case of three-surface configurations, the derivative CmG α

and CLα also consider the presence of
the third lifting surface.
Finally, the total empennage volume Vemp is defined as the sum of the tail volume Vtail and canard
volume Vcanard, computed as

Vtail =
ST (xG − xACT)

Sc
(35)

and
Vcanard =

SC (xACC − xG)

Sc
, (36)

where xACT and xACC represent respectively the location of the aerodynamic centers of tail and canard
surfaces. Obviously, in the case of traditional two-surface airplanes, Vemp corresponds to the sole tail
volume Vtail.
The location of the center of gravity must also be updated to reflect the different configurations when
passing from a reference two-surface to a modified three-surface airplane. To this end, the weight
of both empennages Wemp is estimated through a semiempirical relationship, proposed in [11], that
reads

Wemp = kh Semp
3.81SempVD

1000
√

cos(Λ)
, (37)

where Kh is a coefficient whose value is 1 for fixed incidence and 1.1 for variable incidence stabilizers,
Semp is the empennage surface in ft2, VD is the dive speed in kn, λ is the sweep angle of the surface
while resulting weight Wemp is given in lbf. Clearly, Eq. 37 can be employed to estimate the variation
of both empennage weights and the implied change in the airplane center of gravity.

2.5.2 Optimization of the equivalent three-surface airplane
The constitutive laws of aerodynamic coefficients and hinge moments, expressed in Eqs. (1) and (2)
with all parameters estimated through the process detailed in Secs. 2.1.1, 2.2 and 2.3 , represent a
parameterized steady flight mechanics model M (θθθ), being θθθ the array containing all design variables
of the three-surface airplane. Model M (θθθ) is also associated with an optimal drag polar obtained from
the optimization process described in Sec. 2.4 , that in turn features a specific maximum lift-to-drag
ratio and maximum power index.
Within this context, by exploiting the aforementioned tools, the three-surface airplane design can be
formulated as the problem of finding the design parameter array θθθ opt associated with the maximum
lift-to-drag ratio and subjected to the constraint of having the same static margin and empennage
volume of a reference two-surface airplane. Accordingly,

θθθ opt = arg(max(Emax (θθθ))) (38a)

s. t.

µ(θθθ) = µnom (38b)

Vtotal(θθθ) =Vtailnom (38c)

where µnom and Vtailnom are respectively the static margin and the tail volume of the nominal, i.e.
two-surface, airplane.
Notice also that in Eq. (38a), one could also choose to maximize the power index F = (CL

√
CL)/CD,

yielding a possible different design solution.
Figure 2 summarizes the design process for the three-surface aircraft with redundant longitudinal
control, consisting of two nested optimizations: the optimization of the trim that exploits the control

8
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Figure 2 – Design process for the three-surface airplane with redundant longitudinal control, made
by two nested optimizations: optimal trim definition exploiting the control redundancy (brown

rectangle) and optimal design aimed at maximum lift-to-drag, or maximum power index (dashed
light-green rectangle).

redundancy, reported in the brown rectangle, and the overall optimization aimed at maximizing the
aerodynamic performance displayed within the dashed light green rectangle.
As a final remark, it is important to stress that, since problem (38) includes two equality constraints,
the array θθθ with the design parameters must be chosen in such a way the satisfaction of the con-
straints themselves is possible. This typically entails that the longitudinal location of the wing be an
active optimization parameter.
In this work, the two nested constrained optimizations are performed by the SQP algorithm imple-
mented in the Matlab function »fmincon, [12].

3. Results
In this section, we will discuss the initial results of updating a traditional two-surface airplane into a
three-surface one featuring redundant longitudinal control, following the process detailed in Sec. 2.. A
similar exercise was already done in Ref. [6]. However, in that case, the formulation did not include
hinge moments within the optimal trim definition and, additionally, the design was accomplished as a
parametric study rather than through an optimization process.
At first, a flight mechanics model loosely based on the Diamond DA42 Twin Star was derived. The
DA42 is a twin-engine propeller-driven airplane featuring a wing area of slightly more than 16m2 with
a maximum take-off mass of 1900kg.
The nominal model was subsequently updated into an equivalent three-surface airplane with redun-
dant longitudinal control following the process of Sec. 2.5.
The longitudinal flight mechanics model of the nominal airplane was developed with the tool described
in Secs. 2.1.1, 2.2and 2.3. Afterward, the trim equation was solved yielding the schedule of the control
variables as a function of the lift coefficients.

9



Steady Analysis of Three Surface Airplanes with Redundant Longitudinal Control

The nominal airplane does not feature a redundant control, hence, the trim simply consists in the
computation of the values of the angle of attack α, the deflection of the elevator δE , and the incidence
of the tail iC, that satisfy the vertical and pitching moment equilibrium and the cancelation of the tail
hinge moment, i.e. the first, second and third lines of Eq. (22). Clearly, in this case, the trim problem
considers three equations in three unknowns α, δE and iC, and three equations, hence the problem
is not overdetermined and does not allow one to optimize a desired merit figure.
Figure 3 shows the trim variables as functions of the lift coefficient CL.

Figure 3 – Trim variable scheduling as a function of the lift coefficient for the nominal two-surface
airplane

The plot also shows the points associated with the maximum lift-to-drag Emax (circle marker) and
the maximum power index Fmax (star marker). Additionally, the attitude that maximizes the index
G =

√
CL/CD is indicated with a diamond marker. Maximum G is associated with the maximum cruise

range for jet airplanes and, therefore, is not interesting for the DA42. As expected, the trim angle of
attack increases as CL increases, while deltaE decreases. The incidence, on the other hand, features
a mild decrement as the lift coefficient increases, which is barely visible in the plot. The resulting
maximum lift-to-drag ratio of the nominal airplane is equal to 20.
The nominal airplane was then updated as a three-surface airplane with redundant control using
as optimization parameters the canard and tail surface SC and ST, the location of the aerodynamic
center of the wing xACW , that of the canard xACC , and the aspect ratio of the canard λC. All these
design variables are collected in vector θθθ = {SC, ST, xACW , xACC , λC}T .
Two preliminary optimization tests were performed, changing the ratio between the elevator and the
tail span, belev/btail.
In the first case, the elevator span ratio belev/btail was maintained equal to that of the nominal airplane
belevnom/btailnom.
For this condition, Tab. 1 summarizes the optimal design parameters characterizing the equivalent
three-surface airplane. Looking at the results, it is clear that the three-surface airplane features a
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reduced tail as a consequence of the inclusion of the canard surface. To maintain the constraint
related to the static margin, the wing moves 50cm backward. The overall increase of the maximum
lift-to-drag ratio is quite significant and can be quantified in about 33%.

Table 1 – Nominal airplane and optimized three-surface equivalent version.

SC xACC xACW λC ST Emax
m2 m m m2

Nominal - - -2.21 - 2.35 20.04
Optimized 2.26 -0.0432 -2.89 3.55 1.34 26.64

Figure 4 shows the schedule of the trim variables as functions of the lift coefficients. The red curve
refers to the angle of attack α, the blue and yellow ones respectively to elevator δE and canard δC

deflections, whereas purple and green ones are respectively associated with tail iT and canard iC
incidence. Dots indicate the point of maximum lift-to-drag ratio CL/CD (point E), the maximum power
index CL

√
CL/CD (point F) and the maximum

√
CL/CD (point G).

Figure 4 – Trim variable scheduling as a function of the lift coefficient for the equivalent three-surface
airplane in the case of belev/btail = belevnom/btailnom

The behavior of the trim variables is nonlinear since the drag function is no longer quadratic. More-
over, at CL equal to 0.9 the canard incidence hit the upper boundary of 16deg causing the “knee” in
the curves related to the incidence of canard and tail.
In a second test, the elevator span ratio was halved, i.e. belev/btail =

1
2 belevnom/btailnom. The obtained

results are summarized in Tab. 2.
Also in this case, the maximum lift-to-drag ratio increased significantly from about 20 to 25.5 (27%)
and similar conclusions with respect to the previous case can be derived. In particular, the optimal
three-surface version of DA42 features a canard with surface SC = 2.23m2, tail surface ST = 1.35m2
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Table 2 – Nominal airplane and optimized three-surface equivalent version.

SC xACC xACW λC ST Emax
m2 m m m2

Nominal - - -2.21 - 2.35 20.04
Optimized 2.21 -0.061 -3.04 8.03 1.35 25.5

(reduced with respect to the nominal one, that was equal to 2.35m2). Surprisingly, the canard aspect
ratio now is λC = 8.033, greater than the one obtained in the previous case. Rather than being an
effect of the different elevator span ratios, we believe that this fact could indicate that the canard
aspect ratio does not significantly influence the merit function.
For this optimal airplane, Fig. 5 shows the scheduling of the trim variables as functions of the lift
coefficient.

Figure 5 – Trim variable scheduling as a function of the lift coefficient

Finally, Fig. 6 shows the comparison between the nominal airplane and the two equivalent three-
surface airplanes in terms of the lift-to-drag ratio. The solid thin blue curve refers to the nominal
airplane, featuring Emax = 20 at CL = 0.75 while the thick solid red and dashed green curves refer
to the three-surface airplane respectively with nominal and halved elevator span ratio, belev/btail. The
updated airplanes are characterized by higher maximum lift-to-drag ratios, which are reached at CL of
about 0.85, higher than the nominal case, indicating that the updated airplane will have lower optimal
flight speeds. This however suggests that possible improvements could be obtained by reducing the
wing area, a task that falls out of the scope of the present investigation.
Notice also that the three-surface airplanes have lower lift-to-drag ratios for CL lower than 0.3. This
is certainly expected: the addition of a new control surface penalizes the parasite drag of the overall
airplane, jeopardizing the beneficial impact of the control redundancy and trim optimization. This
could additionally indicate that the three-surface configuration with control redundancy may be less
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effective for faster airplanes.

0 0.25 0.5 0.75 1 1.25 1.5
0

4

8

12

16

20

24

28

Nominal airplane
Three-surface (nominal elevator span ratio)
Three-surface (halved elevator span ratio)

Figure 6 – Lift-to-drag ratios of the nominal and the three-surface updated airplanes as functions of
lift coefficient CL. Thin blue curve: nominal airplane; solid thick red curve: three-surface airplane

with nominal elevator span ratio; dashed thick green line: three-surface airplane with halved elevator
span ratio. Dots represent the maximum lift-to-drag for each configuration.

4. Conclusions
In this work, we presented a procedure to model, find the optimal trim, and design a three-surface
airplane with redundant longitudinal control. The modeling is based on multiple estimation trials of the
steady aerodynamic model through the Digital Datcom. The optimal trim, including the cancelation of
the hinge moment, is based on the minimization of the drag coefficient for all airplane speeds. Finally,
the preliminary design consists of two nested optimizations aimed at maximizing lift-to-drag ratio.
For a given three-surface geometry, the inner optimization loop aims at finding the schedule of the
trim variables associated with the minimum drag and constrained to the satisfaction of both the lon-
gitudinal equilibrium and the cancellation of canard and elevator hinge moments.
The outer optimization loop, on the other hand, acts on some suitable geometry variables with the
aim of turning an existing two-surface model into a three-surface one featuring a redundant control
with improved lift-to-drag ratio performance.
From the analyses presented in this paper, we can derive the following conclusions.

• Although the semiempirical models included in Datcom do not consider the three-surface con-
figurations, a suitable combination of multiple analyses can be used for modeling the steady
aerodynamics of such airplanes.

• An additional degree of freedom in the longitudinal trim problem can be profitably exploited to
maximize the aerodynamic performance of the trimmed polar, i.e. the relationship between lift
and drag coefficients that incorporate the pitching moment equilibrium and the cancelation of
hinge moments.

• A three-surface model with redundant longitudinal control equivalent to an existing two-surface
one can be designed with an improved lift-to-drag ratio. In the analysis performed on a twin-
engine propeller drive airplane loosely based on DA42, it was found a strong increase in the
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maximum lift-to-drag ratio, quantified in about 30%, associated with the update of the traditional
configuration into an equivalent three-surface one.

• The beneficial impact of the three-surface configuration with control redundancy seems effec-
tive, especially for relatively high lift coefficients. For low lift coefficients, the penalization due
to the inclusion of a third surface in terms of parasite drag is not compensated by the improve-
ments entailed by the trim optimization. This suggests that possibly faster airplanes may be
less impacted by the proposed configuration updating.

Clearly, such promising results are only preliminary and the methodology should be consolidated.
First, experimental data are needed to validate the estimation procedure of the aerodynamic model
of the three-surface airplane. Secondarily, it should be understood whether the obtained increase
in the aerodynamic performance is more due to the additional lifting surface or to the inclusion of a
redundant longitudinal degree of freedom. The answer to this particular question may be useful for
the preliminary design of such airplanes, a task that presents more critical points than the updating
of an existing configuration faced in this paper.
All the aforementioned points are currently under investigation.
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