

From natural sources to materials:

isocyanate-free polyure thanes from (R)-(+)-limonene oxide

Vincenzina Barbera^a

L. Rubino, ^a A. Rescifina, ^b V. Patamia, ^b M. Galimberti ^a

^a Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta" ^b Università di Catania, Dipartimento di Scienze del Farmaco e della Salute

vincenzina.barbera@polimi.it

V. Barbera et al - From natural sources to materials...

MoDeSt - 2021

1

ISCaMaP

Innovative Sustainable Chemistry and Materials and Proteomics

Group

Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta"

V. Barbera et al - From natural sources to materials...

Chemicals, Additives, Modifiers, Polymers

V. Barbera et al - From natural sources to materials...

ISMaterials group

ISMaterials group

instagram: @ismaterials.polimi

V. Barbera et al - From natural sources to materials...

Wastes from citrus fruits processing industries generate large amounts of products. Terpenes, in particular Limonene, are the major components of essential oils of citrus fruit

A rational design

Limonene: a biosourced building block

```
IUPAC: 1-methyl-4-(prop-1-en-2-yl)cyclohexene C_{10}H_{18}
```

Starting building block for many reaction pathways

Reactivity

Why polyure thanes?

- no co-products (polyaddition!)
- versatile polymers
- commercial value

The urethane bond

The world of polyurethanes

Concerns about polyurethanes

- Isocyanate production: phosgenation
- Isocyanate reactivity: storage
- Isocyanate toxicity
- Isocyanate reactivity: by-products

The most used isocyanates, TDI and MDI, are classified as CMR (Carcinogen, Mutagen, Reprotoxic) substances

This work. The rational design

This work. The rational design

This work. Polyurethanes from (R)-(+)-limonene

The strategy

The strategy

Polyurethanes from (R)-(+)-limonene

L. Rubino, A.Rescifina, V. Patamia, M. Galimberti, V. Barbera (2021). Submitted for pubblication

Polyurethanes from (R)-(+)-limonene

Aminolysis of (R)-(+)-limonene oxide

The aminolysis is regio- and diastereoselective. The approach of the nucleophile is known to be *trans*-diaxial (Fürst-Plattner rule). In the case of *cis*-limonene oxide, the reaction occurs via a S_N 1-type mechanism with inversion of configuration at the C-1. For *trans*-limonene oxide, a S_N 2-type reaction can be envisioned at C-2.

[1] Leffingwell, J. C., & Royals, E. E. (1965). Tetrahedron Letters, 6(43), 3829-3837.
[2] Royals, E. E., & Leffingwell, J. C. (1966). The Journal of Organic Chemistry, 31(6), 1937-1944.
[3] Newhall, W. F. (1964).. The Journal of Organic Chemistry, 29(1), 185-187.

Aminolysis of (R)-(+)-limonene oxide

Aminolysis of (R)-(+)-limonene oxide: mechanism

V. Barbera et al - From natural sources to materials...

Aminolysis of (R)-(+)-limonene oxide: computational studies

V. Barbera et al - From natural sources to materials...

Aminolysis of (R)-(+)-limonene oxide: computational studies

Polyurethanes from (R)-(+)-limonene

Synthesis of a library of cyclic carbamates via DAC chemistry

Green syntheses No toxic reagents High Yields

L. Rubino, A.Rescifina, V. Patamia, M. Galimberti, V. Barbera (2021). Manuscript in preparation

Polyurethanes from biosourced materials

Isocyanate-free Polyurethane via cationic ring opening polymerization of five-membered cyclic carbamates

Polyurethanes from terpenes: award

PhD Project

Innovative Materials Group

Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta"

MoDeSt - 2021

ISMaterials group