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Abstract: The Redundancy Allocation Problem (RAP) is well-known in the field of reliability opti-
mization. In this paper, RAP is investigated assuming that the distribution of the time to failure of
the components has the form of an Erlang distribution with a time-dependent rate parameter and
considering that the choice of redundancy for each subsystem can be none, active, standby or mixed.
A genetic algorithm is used to solve the problem of optimal allocation. To analyze the effect of the
time dependence, some numerical examples are worked out. Then, a case study of RAP from the
literature is analyzed. The obtained results show that time dependence of the failure time distribution
parameters can lead to significant differences in the optimal redundancy allocation.

Keywords: reliability optimization; redundancy allocation problem; redundancy strategies; Erlang
distribution; time-dependent failure rates; genetic algorithm
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1. Introduction

The reliability of a system can be improved at design by allocating redundant com-
ponents to the subsystems. In a redundant system, when a working component fails,
the failed component function is taken over by a redundant one which can provide the
same function. The problem to do this optimally is called Redundancy Allocation Problem
(RAP), which amounts to optimally selecting the redundant components to be allocated to
the subsystems. The choice of the redundancy allocation strategy is driven by objectives,
and/or subject to constraints, such as reliability, cost, volume and weight, depending on
the system application. Then, RAP can be defined as the problem of selecting the number
and type of the redundant components to allocate to the system, so to optimize a specific
objective, such as system reliability, under given constraints, such as total system cost
and weight.

The two redundancy strategies commonly considered in RAPs are “active” and
“standby”, although one called “mixed” has been introduced relatively recently [1]. In the
active redundancy strategy, all components start to work at time zero and a redundant
component might be found already failed before it is called to operation. In the standby
redundancy strategy, one component is active and the others (at least one component)
are standby. The standby redundancy strategy comes in the three types: cold, warm and
hot [2]. In cold-standby, redundant components do not fail before they are used. In warm-
standby, redundant components are subject to failure even when they are dormant, but at
a rate lower than that of the main component which is working. Finally, in hot-standby,
redundant components are subject to failure even while dormant, at a rate equal to that
of the main components. Without loss of generality of the analysis, among the standby
strategies, the present paper considers the cold-standby redundancy strategy, only for
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simplicity of illustration. In the mixed redundancy strategy, more than one component can
be active while some others (one or more) are standby. The mixed redundancy strategy
tries to combine the advantages of both active and standby strategies. Indeed, it is a general
form of the active and standby strategies. The mixed redundancy strategy can be used in
most practical cases, but the active and standby redundancy strategies are also used in
certain cases, due to their simple forms. In the standby and mixed redundancy strategies, a
switching system has to be used to activate a standby redundant component.

Some researchers considered RAP with the same redundancy strategy for all subsys-
tems in the system [3–34]. Following Coit [35], some researchers have turned to consider the
redundancy strategy for each subsystem, either active or standby, as a decision variable that
can be optimally determined by an optimization model [36–43]. The mixed redundancy
strategy has also been considered as an alternative for the subsystems [44–52].

Other aspects come realistically into play in a RAP; these include the objective function,
the states of the components and that of the entire system, the type of the components to be
allocated to each subsystem, the reparability of the components, and so on. For example,
RAPs may be considered with a single objective function, e.g., aiming to maximizing
system reliability [1,3–11,27,28,30,31,35–37,39–41,44,46–48,53–55], minimizing total system
cost [12–15] or maximizing/minimizing other parameters [16,29]. Alternatively, RAPs may
consider multi-objective functions [18–25,32,34,38,42,45,50,56–59].

Regarding the components, they might be represented as binary or multi-state. In
the binary state representation, the components can only be totally healthy or completely
failed [1,3–13,17–23,25–35,40,41,43–48,53,55]; in the multi-state, the components might have
other states, intermediate between these two [14–16,24,60–65]. The type of the components in the
subsystems can be characterized from different viewpoints. For instance, allocation of either iden-
tical [1,3–7,12,18–20,35,36,40,45,46,53,54] or non-identical components to each subsystem might
be allowed [8–11,13–17,21,22,25,27,28,33,37,41,44,48,49,62]. Moreover, the components character-
istics, including their cost, weight and performance function, might be deterministic or uncertain
functions [66]. From another aspect, the components can be repairable [14,15,20,24,26,30,56]
or non-repairable [1,3–7,9,11,13,16–19,21,22,27–29,31,35–37,40,41,43–48,53–55]. In this regard, a
comprehensive categorization of reliability optimization problems is provided in [67].

This paper considers the RAP for a system with identical binary components in each
subsystem. The redundancy strategy for each subsystem is taken as the decision variable
that can be active, standby or mixed, and the objective function requires system reliability
to be maximized. Also, the distribution of the time to failure of the components is assumed
to have the form of an Erlang distribution, whose rate parameter (λ(t)) is not constant in
time. To the best of our knowledge, no RAP with these novel realistic properties has ever
been investigated in the literature.

The failure of the components allocated to a system may be due to degradation or
due to occurrence of some shocks. In the case where component failure is due to shock
occurrence, the Erlang distribution can be considered suitable for modeling the stochastic
time to failure of the components. If the distribution of the time to failure of a component is
considered as an Erlang distribution with a shape parameter of k, it means that the failure
of the component is due to the occurrence of some shocks, so that the component will fail
as soon as the kth shock occurs. So, the problem is of practical interest, for example for
electronic components which often fail due to some shocks. In the Erlang distribution, the
rate parameter indicates the rate of occurrence of the shocks. The rate parameter is usually
assumed to be constant, to describe the failure of components subject to shocks occurring
at a constant rate. But the occurrence rate of the shocks may not be constant in time and,
for this reason, in this paper the rate parameter is considered time-dependent, λ(t).

The main contribution of this paper is to propose a model in which the rate parameter
of the time to failure distribution of the components is time-dependent and the redundancy
allocation strategy for the subsystems can be mixed or other redundancy strategies.

The rest of the paper is structured as follows. In Section 2, the mathematical formula-
tion of the RAP is described in detail. A solution method based on a genetic algorithm is
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proposed in Section 3. A numerical example is elaborated in Section 4 with and without
time dependence, to demonstrate the effect of the time dependence of the rate parameter.
Then, a case study taken from literature is considered. Finally, the conclusions and the
suggestions for future work are given in Section 5.

2. Materials and Methods
2.1. Problem Formulation

A single-objective RAP is considered, in which the distribution of the time to failure of
any component has the form of an Erlang distribution. The main specificities are the time-
dependent parameter λ(t) in the time to failure distribution function and the redundancy
strategy of any subsystem that can select among active, standby, mixed or no redundancy
strategies. Figure 1 depicts the structure of a system composed of a series of five subsystems.
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Figure 1. Structure of a system of redundant subsystems. Figure 1. Structure of a system of redundant subsystems.

A number of redundant components can be allocated to each subsystem, each of which
may be active or standby. In Figure 1, the active components are shown in green and the
standby ones are shown in grey. The purpose of allocating the redundant components is
to increase the reliability of the subsystems and consequently to increase the reliability of
the system. But, the existence of some physical and/or economical restrictions makes it
impossible to allocate any desired number of components to the subsystems. Therefore,
the goal is to determine the best choices including determining the type and number of
active and standby components allocated to each subsystem so that the reliability of the
system is maximized, under given constraints.

The number of active and standby components allocated to each subsystem determines
the redundancy strategy. If no redundant component is allocated to a subsystem, the
subsystem has no redundancy strategy. The redundancy strategy of a subsystem is active
if all of the components allocated to the subsystem are active. If one of the components
allocated to a subsystem is active and the rest are standby, the redundancy strategy is
standby, and if more than one allocated component is active and one or more components
are standby, the redundancy strategy is mixed. Since the number of active and standby
components allocated to each subsystem is a decision variable, the redundancy strategy is
also a decision variable that is determined during the optimization process.

In Figure 1, the redundancy strategy for each subsystem can be determined according
to the number of active and standby components allocated to the subsystem. Accordingly,
the redundancy strategy for subsystems 1 and 4 is standby, that for subsystems 2 and 5 is
mixed, and the one for subsystem 3 is active. Before addressing the mathematical model,
the assumptions considered and the notations used are presented below.
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2.1.1. Notation

i index for subsystems (i = 1, 2, . . . , s )

s number of subsystems

nA,i number of active components allocated to subsystem i

nS,i number of standby components allocated to subsystem i

nA, nS vectors of [nA,i] and [nS,i], (nA = [nA,1, nA,2, . . . , nA,s], nS = [nS,1, nS,2, . . . , nS,s] )

ni number of components allocated to subsystem i,
(
ni = nA,i + nS,i )

nmax,i maximum value allowed for ni

ARSi
redundancy strategy assigned for subsystem i,
(ARSi ∈ {NR, Active, Standby, Mixed})

ri(t) reliability at time t of the component (all identical) allocated to subsystem i

Rsys(t; nA, nS) system reliability at time t due to the vectors nA and nS

Ri,ARSi (t) reliability of subsystem i at time t with redundancy strategyARSi

ki
shape parameter of the Erlang distribution for the component allocated to
subsystem i

λi(t)
rate parameter of the Erlang distribution for the component allocated to
subsystem i

ci, wi cost and weight of the component allocated to subsystem i

cswitch,i, wswitch,i cost and weight of the switching system used in subsystem i (if present)

W, C maximum allowed amount for the system weight and cost

ρi(t) switching system reliability at time t for subsystem i (if present)

f (j)
i (t)

pdf of the jth failure time of standby components allocated to subsystem i at
time t

f Max,nA,i
i (t)

pdf of time to failure of the last active component allocated to subsystem i at
time t

fi(t) pdf of the time to failure of the component allocated to subsystem i at time t

Fi(t) cdf of the time to failure of the component allocated to subsystem i at time t

λa−b average rate of occurrence of events between times a and b (λa−b =
b∫
a

λ(t)dt)

N(t) number of events occurred until time t.

2.1.2. Assumptions

As previously mentioned, the objective is to maximize the reliability of a system under
a given number of constraints. The following assumptions are made:

• The components and the entire system are binary, i.e., they can be either totally healthy
or completely failed.

• Components failures are independent events that individually cause no damage to
the system.

• The redundancy strategy for each subsystem is a decision variable that can be selected
to be active, standby, mixed or none.

• The distribution of the time to failure of the components has the form of an Erlang
distribution with a time-dependent parameter λ(t).

• The components are non-repairable and there is no preventive maintenance.
• The components of each subsystem are identical, i.e., mixing of component types is

not allowed.
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2.1.3. Mathematical Model

The mathematical model for the considered problem can be formulated as follows:

max Rsys(t; nA, nS) (1)

s.t.
s

∑
i=1

ci.ni + ∑
i ∈ Standby

or Mixed

cswitch,i ≤ C (2)

s

∑
i=1

wi.ni + ∑
i ∈ Standby

or Mixed

wswitch,i ≤W (3)

1 ≤ ni ≤ nmax,i (4)

Equation (1) expresses the objective of maximizing the system reliability by determin-
ing the type and the number of active and standby components allocated to each subsystem
of the system. Constraints (2) and (3) express the maximum cost and weight for the entire
system, respectively, whereas constraint set (4) considers the maximum number of compo-
nents that can be allocated to each subsystem. The reliability of a system composed of a
series of subsystems can be calculated as in Equation (5):

Rsys(t; nA, nS) = ∏
i∈NR

Ri,NR(t) ∏
i∈Active

Ri,Active(t) ∏
i∈Standby

Ri,Standby(t) ∏
i∈Mixed

Ri,Mixed(t) (5)

where NR represents subsystems with no redundancy strategy, whereas Active, Standby and
Mixed represent those with active, standby and mixed redundancy strategies, respectively.
As previously mentioned, the redundancy strategy for each subsystem is determined
according to the number of active and standby components allocated. Therefore, the
number of active and standby components allocated to each subsystem determines in which
part of Equation (5) the reliability calculation of the subsystem should be placed. After
determining the redundancy strategy for each subsystem, the reliability of the subsystems
at time t is calculated with one of the following equations:

Ri,NR(t) = ri(t) (6)

Ri,Active(t) = 1− (1− ri(t))
ni (7)

Ri,Standby(t) = ri(t) +
ni−1

∑
j=1

t∫
0

(
ρi(u) f (j)

i (u)ri(t− u)
)

du (8)

Ri,Mixed(t) = 1− (1− ri(t))
nA,i +

t∫
0

(
ρi(u) f Max,nA,i

i (u)ri(t− u)
)

du

+
nS,i−1

∑
j=1

t∫
0

t∫
v

(
f Max,nA,i
i (v)ρi(u) f (j)

i (u− v)ri(t− u)
)

dudv
(9)

In these equations, ri(t) is the reliability of the components used in subsystem i at time
t, ni is the number of components allocated to subsystem i, ρi(t) is the reliability of the
switching system at time t, f (j)

i (t) is the pdf of the time to failure of the jth component in
subsystem i in standby and mixed redundancy strategies, whereas nA,i and nS,i represent
the numbers of active and standby components assigned to subsystem i, respectively, in
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the case a mixed redundancy strategy is used (in this case nis = nA,i + nS,i), and f Max,nAi
i (t)

is the pdf of the time to failure of the last active component in subsystem i in the mixed
redundancy strategy.

In Equation (6), the reliability of subsystem i with no redundancy strategy is equal to
the reliability of the only component allocated. In Equation (7), the reliability of subsystem
i at time t with an active redundancy strategy is equal to the probability that at least one of
the allocated components can remain healthy until time t. In Equation (8), the reliability
of subsystem i at time t with standby redundancy strategy consists of two parts. The first
part is the reliability of the active component allocated and the second one is equal to the
sum of the probabilities that the jth standby component fails at time u (a time before t) and
the next standby component is activated by the switching system at this time and can be
healthy until time t. In Equation (9), the reliability of subsystem i at time t with a mixed
redundancy strategy consist of three parts. The first part is equal to the probability that at
least one of the active components remains healthy until time t. The second part is equal
to the probability that the last active component fails at time u (a time before t) and the
first standby component is activated by the switching system at this time and can remain
healthy until time t. The third part is equal to the sum of the probabilities that the last
active component fails at time v (a time before t) and, then, the standby components will be
activated one by one after the failure of the previous one, until the jth standby component
fails at time u (a time between v and t), and the next standby component is activated by the
switching system at this time and can remain healthy until time t.

In Equation (9), f Max,nA,i
i (t) can be calculated using Equation (10):

f Max,nA,i
i (t) = nAi(Fi(t))

nA,i−1 fi(t) (10)

For example, if nA,i = 3, f Max,nA,i
i (t) can be calculated as in Equation (11):

f Max,3
i (t) = fi(t)Fi(t)Fi(t) + Fi(t) fi(t)Fi(t) + Fi(t)Fi(t) fi(t) = 3(Fi(t))

3−1 fi(t) (11)

If the time to failure of a component in subsystem i follows an Erlang distribution,
then its reliability at time t is given by Equation (12):

ri(t) =
∞∫

t

fi(t)dt =
ki−1

∑
j=0

e−λit(λit)
j

j!
(12)

When the time to failure of a generic component follows an Erlang distribution with
shape parameter k, this component is, then, exposed to shocks that follow a Poisson
distribution, and fails at the occurrence of the kth shock. The reliability of the component at
time t is, therefore, the probability that less than k shocks occur until time t.

Considering that the times to failure of the components follow Erlang distribution,
the reliability of subsystem i with no redundancy strategy and with an active redundancy
strategy is obtained as Equations (13) and (14), respectively:

Ri,NR(t) =
ki−1

∑
j=0

e−λit(λit)
j

j!
(13)

Ri,Active(t) = 1−
(

1−
ki−1

∑
j=0

e−λit(λit)
j

j!

)ni

(14)
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If the redundancy strategy of subsystem i is standby, considering that ρi(t) is a non-
increasing function, we have:

Ri,Standby(t) ≥ ri(t) +
ni−1
∑

j=1
ρi(t)

t∫
0

(
f (j)
i (u)ri(t− u)

)
du

=
ki−1
∑

j=0

e−λi t(λit)
j

j! + ρi(t)
niki−1

∑
j=ki

e−λi t(λit)
j

j!

(15)

The reliability formulation for a subsystem with a mixed redundancy strategy is
slightly more complicated than the others. In Equation (9), we can rewrite ri(t) and Fi(t)
as in Equation (12). Also, we know that for a component with Erlang time to failure
distribution of shape parameter ki, fi(t)dt is the probability that ki − 1 shocks occur before
time t and the kith shock occurs at time t. So, we can write fi(t)dt so as to explicitly represent
that ki − 1 shocks occur before time t and one shock occurs between time t and t + dt:

fi(t)dt =
e−λit(λit)

ki−1

(ki − 1)!
.
e−λidt(λidt)1

1!
(16)

For f (j)
i (t), the pdf of the time to failure of the jth component in subsystem i, we have:

f (j)
i (t)dt =

e−λit(λit)
j.ki−1

(j.ki − 1)!
.
e−λidt(λidt)1

1!
(17)

This means that f (j)
i (t)dt is the probability that j.ki − 1 shocks occur before time t and

one shock occurs between time t and t + dt. So, if the redundancy strategy of subsystem i is
mixed, the reliability of subsystem i, whose components times to failure follow an Erlang
distribution, can be calculated as in Equation (18):

Ri,Mixed(t) = 1−
(

1−
ki−1
∑

j=0

e−λi t(λi t)
j

j!

)nA,i

+
t∫

0

ρi(u)nA,i

(
1−

ki−1
∑

j=0

e−λi u(λiu)
j

j!

)nA,i−1
e−λi u(λiu)

ki−1

(ki−1)! . e−λi du(λi)
1

1!

ki−1
∑

j=0

e−λi (t−u)(λi(t−u))j

j!

du

+
nS,i−1

∑
j=1

t∫
0

t∫
v

ρi(u)nA,i

(
1−

ki−1
∑

j=0

e−λi v(λiv)
j

j!

)nA,i−1
e−λi v(λiv)

ki−1

(ki−1)! . e−λi dv(λi)
1

1! . e−λi (u−v)(λi(u−v))j.ki−1

(j.ki−1)! . e−λi du(λi)
1

1!

ki−1
∑

j=0

e−λi (t−u)(λi(t−u))j

j!

dvdu

(18)

In this paper, it is assumed that the rate parameter is not constant, but a function of
time, i.e., we have λ(t) instead of λ. So, the components will be exposed to shocks with a
variable rate over time. For a nonhomogeneous Poisson process with rate λ(t), we have:

P{N(b)− N(a) = j} = e−λa−b(λa−b)
j

j!
(19)

where

λa−b =

b∫
a

λ(t)dt (20)

and N(t) is the number of events occurring prior to time t. Therefore, the reliability at
time t for a component exposed to the shocks that follow a nonhomogeneous Poisson
distribution, i.e., the probability that less than k shocks occur until time t, can be calculated
as in Equation (21):

r(t) = P{N(t)− N(0) < k} =
k−1

∑
j=0

e−λ0−t(λ0−t)
j

j!
(21)
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Now, if the rate parameter is time-dependent (λ(t)), by replacing λit by λi,0−t in
Equations (13)–(15) and (18), the reliability of the subsystems with no redundancy strategy,
and of those with active, standby and mixed redundancy strategies can be written as
Equations (22)–(25), respectively:

Ri,NR(t) =
ki−1

∑
j=0

e−λi,0−t(λi,0−t)
j

j!
(22)

Ri,Active(t) = 1−
(

1−
ki−1

∑
j=0

e−λi,0−t(λi,0−t)
j

j!

)ni

(23)

Ri,Standby(t) =
ki−1

∑
j=0

e−λi,0−t(λi,0−t)
j

j!
+ ρi(t)

niki−1

∑
j=ki

e−λi,0−t(λi,0−t)
j

j!
(24)

Ri,Mixed (t) = 1−

1−
ki−1

∑
j=0

e
−λi,0−t (λi,0−t )

j

j!

nA,i

+
t∫

0

ρi (u)nA,i

1−
ki−1

∑
j=0

e
−λi,0−u (λi,0−u )

j

j!

nA,i−1
e
−λi,0−u (λi,0−u )

ki−1

(ki−1)! .
e
−λi,u−u+du (λi (u))

1

1!

ki−1
∑

j=0

e
−λi,u−t (λi,u−t )

j

j!

du

+

nS,i−1
∑

j=1

t∫
0

t∫
v

ρi (u)nA,i

1−
ki−1

∑
j=0

e
−λi,0−v (λi,0−v )

j

j!

nA,i−1
e
−λi,0−v (λi,0−v )

ki−1

(ki−1)! .
e
−λi,v−v+dv (λi (v))

1

1! .
e
−λi,v−u (λi,v−u )

j.ki−1

(j.ki−1)! .
e
−λi,u−u+du (λi (u))

1

1!

ki−1
∑

j=0

e
−λi,u−t (λi,u−t )

j

j!

dvdu

(25)

2.2. RAP Solution Method

RAP is a problem of NP-hard class [68], and a meta-heuristic algorithm is here devel-
oped to search for the optimal solution. The genetic algorithm (GA) is a well-known
meta-heuristic method for solving combinatorial optimization problems [69] and, in-
deed, it has been successfully employed for solving optimization problems in various
fields [1,4–6,8,24,30,38,41–47,56]. In the following, the deployment of the algorithm for the
solution of the proposed RAP is briefly described.

2.2.1. Solution Encoding (Chromosome)

Solution encoding in the GA used is a 3 × s matrix, in which s represents the number
of the subsystems in the system. For each subsystem, the first row is the type of selected
component and the second and third rows give the numbers of allocated active and standby
components, respectively. There is no need to add a row for the redundancy strategy, as it
may be determined using the second and third rows: if the number of standby components
is equal to zero, then the redundancy strategy is active (or no redundancy strategy, in case
the number of active components is equal to one); if the number of active components
is equal to one and there are some standby components, then the redundancy strategy
is standby; finally, if the number of active components is larger than one and there are
also some standby components, then the redundancy strategy is mixed. Figure 2 shows
an example for the solution encoding with s = 6 subsystems. In the Figure, the active
components are shown in green and the standby ones are shown in grey. As it can be
seen in the Figure, the redundancy strategy for subsystems 1 and 4 is standby, that for
subsystems 2 and 6 is mixed, and that for subsystems 3 and 5 is active. Figure 3 represents
the structure of the system.
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2.2.2. Initial Population

The initial population is composed of the nPop solution matrix, whose entries are
generated randomly. The solution matrices should be generated in such a way that in each
column (subsystem), the first element is an integer number between 1 and the number
of components types available for the subsystem, and the second and third elements are
integer numbers so that their summation is less than or equal to the maximum number of
components allowed for the subsystem.

2.2.3. Fitness Function

The fitness function is defined as the system reliability minus the penalty for con-
straints violation. Indeed, if a solution goes beyond the constraints, a large enough amount
of penalty is deducted from the fitness function to guarantee that the final optimal solu-
tion is feasible. The amount of the penalty is equal to the product of the total amount of
violations of the constraints and a fixed number. This penalty also allows the algorithm to
search in the infeasible space for maintaining appropriate diversity in the search.

2.2.4. Selection

At each iteration, new offspring are generated by implementation of the crossover and
mutation operators. The roulette wheel selection method is used to select the parents [8,40].
In the roulette wheel selection method, selection of the parents occurs based on their
fitness function value: in other words, a solution is selected with probability proportional
to its fitness function. After the selection process, the crossover and mutation operators
are performed.

2.2.5. Crossover Operator

The crossover operator activates at a prespecified rate, rc. To explore a large variety of
solutions, use has been made of different types of single-point, double-point, uniform and
max–min crossover operators [1,4,44], each with a predetermined probability.

2.2.6. Mutation Operator

The mutation operator is implemented at a prespecified rate, rm. The main purpose
of using this operator is to not get caught in the local optimal solutions. In this paper,
use has been made of the random and max–min mutations [1,4,44], each with a predeter-
mined probability.

To create the next generation, the offspring generated by implementation of the
crossover and mutation operators are combined with the current population and the nPop
best ones are selected. These best solutions, then, form the next-generation population.

2.2.7. Stopping Criteria

The GA is terminated after a prespecified number of iterations, MaxIt.

3. Results

As a numerical example, the new optimization model proposed in this paper is applied
to three simple systems composed of series subsystems, for each of which some component
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choices are available for selection. The first system consists of 6 subsystems and the
second one consists of 15 subsystems. The objective is to maximize system reliability at
a mission time t = 100 (in arbitrary units). The third example is a case study introduced
in [6]. The system is a pharmaceutical plant containing 10 series subsystems as follows:

1. Weighting machine, 2. Sifter machine, 3. Mass machine,
4. Granulator, 5. Fluid bed dryer, 6. Octagonal blender,
7. Rotary compression machine, 8. Coating machine, 9. Air compressor,
10. Strip packing machine.

In this work, we extend this case study so that the rate parameters for the time to
failure of the components are time-dependent. The mission time is equal to t = 1000.

The rate parameter of the Erlang distribution is assumed to be in the form of a bathtub
curve [70–74], as shown in Figure 4. As can be seen, the rate parameter first decreases over
time, representing infant mortality, i.e., the process for which defective items fail early and
the occurrence rate of the shocks decreases over time as the defective items are weeded out
of the population. Then, the rate parameter remains constant for a period of time, as fully
random shocks are the cause of failure, independent of time. Finally, the rate parameter
increases, due to the aging process, for which the components are more likely to fail as time
goes on.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 26 
 

 

early failure

random failure

wear out failure

ra
te

 p
ar

am
et

er

time
0 t1 t2

 
Figure 4. Rate parameter (bathtub curve). 

We consider the mathematical form of the rate parameter as in Equation (26) to de-
scribe all three parts, decreasing, constant and increasing: 

1
0 0( ) ( )t c t αλ λ λ −=  (26)

In the above equation, c is a positive constant parameter. Different values of the pa-
rameter α allow representing the different parts of the rate parameter: a value of 1α<  in-
dicates a rate parameter decreasing over time; 1α =  indicates a constant rate parameter 
over time; 1α >  indicates a rate parameter increasing over time. Then, the rate parameter 
for the components in Figure 4 can be expressed by Equation (27), in which α1 is a value 
less than one and α2 is a value larger than one: 

1

2

1
1 0 0

0
1

2 0 0

1

1 2

2

;  0    
;    

 

(
 

)
( )

( ;)

c t
t

c t

t t
t t t

t t

α

α

λ λ
λ λ

λ λ

−

−


= 


≤ ≤
≤ ≤

 ≥

 (27)

In this equation, the values of c1 and c2 should be determined so that the rate function 
is continuous at points t1 and t2. For this purpose, their values should be considered as 
given in Equation (28): 

1 1 1

2 2 2

1 1 1
0 1 0 0 0

1

0

1 1 1
20

1

1 2

2 0 0 0
2

;  0    

;  

( ) ( ) ( )

( )   

(

 

) ( ;) (  )

tt

t

t t

t t

t
t

t t

t t
t

t t

α α α

α α α

λ λ λ λ

λ λ

λ λ λ λ

− − −

− − −

 =
= 

 =


≤

≥


≤ ≤

≤  (28)

According to Equation (28), 0 tλ −  can be calculated as Equation (29) to be used in 
Equations (22)–(25). 

Figure 4. Rate parameter (bathtub curve).

We consider the mathematical form of the rate parameter as in Equation (26) to describe
all three parts, decreasing, constant and increasing:

λ(t) = cλ0(λ0t)α−1 (26)

In the above equation, c is a positive constant parameter. Different values of the
parameter α allow representing the different parts of the rate parameter: a value of α < 1
indicates a rate parameter decreasing over time; α = 1 indicates a constant rate parameter
over time; α > 1 indicates a rate parameter increasing over time. Then, the rate parameter
for the components in Figure 4 can be expressed by Equation (27), in which α1 is a value
less than one and α2 is a value larger than one:

λ(t) =


c1λ0(λ0t)α1−1 ; 0 ≤ t ≤ t1

λ0 ; t1 ≤ t ≤ t2

c2λ0(λ0t)α2−1 ; t ≥ t2

(27)
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In this equation, the values of c1 and c2 should be determined so that the rate function
is continuous at points t1 and t2. For this purpose, their values should be considered as
given in Equation (28):

λ(t) =


(λ0t1)

1−α1 λ0(λ0t)α1−1 = λ0(
t
t1
)

α1−1 ; 0 ≤ t ≤ t1

λ0 ; t1 ≤ t ≤ t2

(λ0t2)
1−α2 λ0(λ0t)α2−1 = λ0(

t
t2
)

α2−1 ; t ≥ t2

(28)

According to Equation (28), λ0−t can be calculated as Equation (29) to be used in
Equations (22)–(25).

λ0−t =

t∫
0

λ(t)dt =



t∫
0

λ0(
u
t1
)α1−1du = λ0t1

α1
( t

t1
)

α1 ; 0 ≤ t ≤ t1

t1∫
0

λ0(
u
t1
)α1−1du +

t∫
t1

λ0du = λ0t1
α1

+ λ0(t− t1) ; t1 ≤ t ≤ t2

t1∫
0

λ0(
u
t1
)α1−1du +

t2∫
t1

λ0du +
t∫

t2

λ0(
u
t2
)α2−1du = λ0t1

α1
+ λ0(t2 − t1) +

λ0t2
α2

(
( t

t2
)

α2 − 1
)

; t ≥ t2

(29)

The parameters α1, α2, t1 and t2 must be determined for each component type allo-
cated in each subsystem. The components characteristics, including cost, weight and rate
parameters, for the numerical examples are presented in Tables A1–A3 in Appendix A.
The values of C, W, reliability of the switching system at mission time and the maximum
number of components that can be allocated to each subsystem are provided in Table A4
(in Appendix A) for the examples considered.

In order to tune the parameters of the GA, the Taguchi method has been used. For
this purpose, three levels have been considered for population size, crossover rate and
mutation rate.

The results obtained by the implementation of the Taguchi method are shown in
Figure 5. The considered levels, as well as the best values obtained by this method for
population size, crossover rate and mutation rate are shown in Table 1. The number of
iterations is set to be MaxIt = 100 for all the examples.

Table 1. The results obtained by the implementation of Taguchi method.

Level nPop rc rm

1 100 0.2 0.2
2 200 0.3 0.3
3 300 0.4 0.4

Best level
Example 1 200 0.4 0.2
Example 2 300 0.3 0.3
Example 3 200 0.4 0.3

As the GA is a stochastic algorithm, 20 trials of the algorithm are performed for
each example and the best solution found amongst them is selected as the optimal solu-
tion. The trend of the algorithm towards the optimal solution in the 20 trials is shown
in Figures A1–A3 in Appendix A. In order to show the robustness of the algorithm, the
values of the minimum, maximum, average, standard deviation and coefficient of variation
values of the reliability, weight and cost of the system in the optimal solutions obtained by
different trials are reported in Table 2. The values of the reliability, weight and cost of the
system in the optimal solutions obtained by different trials are reported in Tables A5–A7 in
Appendix A.
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Table 2. The results obtained by different trials.

System Characteristics

First Example Reliability Cost Weight

Minimum 0.9284 37 65
Maximum 0.9702 50 70

First example Average 0.9571 45.15 68.4
Standard deviation 0.0131 3.7852 1.4283

Coefficient of variation 0.0137 0.0838 0.0209

Minimum 0.9337 200 265
Maximum 0.9707 306 393

Second example Average 0.9522 255.8 334.7
Standard deviation 0.0102 26.5643 36.5392

Coefficient of variation 0.0107 0.1038 0.1092

Minimum 0.9846 424 509
Maximum 0.9896 478 519

Third example Average 0.9882 457.95 515.3
Standard deviation 0.0014 13.1813 3.2879

Coefficient of variation 0.0015 0.0288 0.0064

To the best of our knowledge, there is no benchmark problem to compare with the RAP
presented in this paper. So, to show the effect of time dependence of the rate parameter,
the above-mentioned examples have also been considered with a constant rate parameter
(i.e., useful lifetime), of the same value for all components. The best solutions obtained
for the examples by considering a constant rate parameter (λ) and by considering a time-
dependent rate parameter (λ(t)) (i.e., also initial early failure and final wear-out parts of the
lifetime) are given in Tables 3–5.

Table 3. Optimal solution with time dependence and without time dependence; first example.

Subsystem
With Time Dependence Without Time Dependence

zi nAi nSi Red. Strategy Reliability zi nAi nSi Red. Strategy Reliability

1 3 2 3 Mixed 0.9938 2 2 1 Mixed 0.9994
2 1 1 1 Standby 0.9977 1 1 1 Standby 0.9987
3 4 2 0 Active 0.9939 4 1 1 Standby 0.9986
4 2 1 1 Standby 0.9909 4 2 1 Mixed 0.9981
5 1 2 2 Mixed 0.9959 1 1 2 Standby 0.9953
6 1 1 1 Standby 0.9977 1 1 1 Standby 0.9980

System reliability
System cost
System weight

0.9702
45
70

0.9877
37
70

Table 4. Optimal solution with time dependence and without time dependence; second example.

Subsystem
With Time Dependence Without Time Dependence

zi nAi nSi Red. Strategy Reliability zi nAi nSi Red. Strategy Reliability

1 1 3 1 Mixed 0.99997 7 5 1 Mixed 0.99788
2 2 2 1 Mixed 0.99835 9 4 2 Mixed 0.99938
3 3 2 2 Mixed 0.99999 3 1 1 Standby 0.99977
4 9 3 3 Mixed 0.99912 6 2 3 Mixed 0.99995
5 9 2 3 Mixed 0.99428 3 2 2 Mixed 0.99876
6 8 2 2 Mixed 0.99916 1 3 2 Mixed 0.99888
7 10 3 2 Mixed 0.99968 4 3 3 Mixed 0.99755
8 5 2 3 Mixed 0.99717 3 3 4 Mixed 0.99764
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Table 4. Cont.

Subsystem
With Time Dependence Without Time Dependence

zi nAi nSi Red. Strategy Reliability zi nAi nSi Red. Strategy Reliability

9 8 2 3 Mixed 0.99796 7 4 1 Mixed 0.99554
10 6 3 3 Mixed 0.99567 5 3 3 Mixed 0.99686
11 1 2 3 Mixed 0.99761 1 2 2 Mixed 0.99853
12 1 1 3 Standby 0.99979 10 3 2 Mixed 0.99915
13 2 2 3 Mixed 0.99877 2 2 3 Mixed 0.99921
14 9 2 3 Mixed 0.99365 8 3 3 Mixed 0.99493
15 5 2 3 Mixed 0.99914 5 2 3 Mixed 0.99921

System reliability
System cost
System weight

0.9707
272
282

0.9736
254
335

Table 5. Optimal solution with time dependence and without time dependence; third example.

Subsystem
With Time Dependence Without Time Dependence

zi nAi nSi Red. Strategy Reliability zi nAi nSi Red. Strategy Reliability

1 3 2 1 Mixed 0.99956 3 2 1 Mixed 0.99980
2 1 2 1 Mixed 0.99928 4 2 1 Mixed 0.99999
3 2 2 1 Mixed 0.99950 2 2 1 Mixed 0.99966
4 3 2 1 Mixed 0.99957 4 1 1 Standby 0.99976
5 1 1 1 Standby 0.99740 1 2 1 Mixed 0.99987
6 3 2 1 Mixed 0.99918 3 2 1 Mixed 0.99982
7 2 2 1 Mixed 0.99923 3 2 0 Active 0.99999
8 3 2 1 Mixed 0.99924 1 2 1 Mixed 0.99998
9 2 1 1 Mixed 0.99755 4 2 1 Mixed 0.99999
10 1 2 1 Mixed 0.99908 1 1 1 Standby 0.99981

System reliability
System cost
System weight

0.9896
454
514

0.9987
480
517

4. Discussion

In this paper, a formulation for RAP is proposed in which the redundancy strategy
for each subsystem is taken as the decision variable and the distribution of the time to
failure of the components is assumed to have the form of an Erlang distribution, whose
rate parameter (λ(t)) is not constant in time. Then, the genetic algorithm is proposed to
search for the optimal solution.

As a numerical example, the proposed model was applied to three simple systems
composed of series subsystems. As the GA is a stochastic algorithm, 20 trials of the
algorithm were performed for each example. The trend of the algorithm towards the
optimal solution was shown in Figures A1–A3. Due to the random nature of the GA, the
trend of the algorithm towards the optimal solution varies in different trials. But, it can be
seen that the differences are small, which shows the robustness of the algorithm in finding
the optimal solution. It can also be seen that, in all three numerical examples, the different
trials have converged to a similar solution, with only a slight difference, which shows the
convergence of the algorithm to a same optimal solution.

Also, the results obtained by different trials including the values of the minimum,
maximum, average, standard deviation and coefficient of variation of the reliability, the
weight and cost of the system in the optimal solutions were reported in Table 2. As can
be seen, the values of the coefficient of variation of the reliability, cost and weight of the
system are small. This shows that the optimal solutions obtained by different trials are
only slightly different from each other, which confirms the robustness of the algorithm in
finding the optimal solution and its convergence to the optimal solution.
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Since we did not find any benchmark problem to compare with the RAP presented
in this paper, to show the effect of time dependence of the rate parameter, the examined
examples have also been considered with a constant rate parameter, of the same value for
all components. By comparing the best solution obtained for the problems with a constant
rate parameter and with a time-dependent rate parameter (given in Tables 3–5), it can be
seen that the structure of the obtained solutions, the type of components allocated to the
subsystems and the redundancy strategy of the subsystems may be different.

For example, in the first numerical example, the type of the component allocated to
the first subsystem is different in the cases of time-dependent rate parameter and constant
rate parameter. In the case with time dependence, component type 3 is allocated to this
subsystem, and in the case without time dependence, component type 2 is allocated to
this subsystem. In this subsystem, the number of standby components is also different.
In the case with time dependence, three standby components are allocated, and in the
case without time dependence, one standby component is allocated to this subsystem.
As another example, in the first numerical example, the redundancy strategy of the third
subsystem is different in the two considered cases. In the case with time dependence,
the redundancy strategy is active and, therefore, no switching system is required, but in
the case without time dependence, the redundancy strategy is standby and, therefore, a
switching system is required. These differences can also be seen in other cases.

In general, it can be seen that the structure of the optimal solution is different in the
two cases. In other words, the optimal solution obtained in the case with time dependence
is not optimal in the case without time dependence and vice versa. This issue is important
in considering assumptions in designing a system. Because, if the rate parameter is variable
over time, by considering it as constant, the real optimal solution cannot be found and,
therefore, the system designed based on the considered assumptions is no longer optimal
and its reliability in practice will be lower than what is theoretically expected. Therefore, to
reach a real optimal solution, correct assumptions should be made.

In addition to the difference in the structure of the subsystems, there are also differ-
ences in the values of reliability, weight and cost in the obtained optimal solutions at the
system level. For the cases studied, the obtained results show that, when the rate param-
eters are considered as time-dependent, the system reliability is lower. This is expected,
because when the time-dependent rate parameters are considered for the components, the
failure rates in the early and wear-out parts of the lifetime are higher than the failure rates
in the useful part of the lifetime. Therefore, the probability of failure of the components
is larger and, as a result, the reliability of the system is smaller than with constant failure
rates. This decrease in reliability of the system in the case with time dependence is even
accompanied by an increase in the cost of the system in some cases. For example, in the
first numerical example, in the case with time dependence, the system reliability is 0.9702
and the system cost is 45, but in the case without time dependence, the system reliability is
0.9877 and the system cost is 37. This means that if the rate parameter is time-dependent,
the system cost is higher than the case of a constant rate parameter but the system reliability
is lower.

All of these confirm that it is important to consider the actual time-dependence of the
rate parameter according to reality.

5. Conclusions

A redundancy allocation problem with multiple redundancy types has been investi-
gated, in which the distribution of time to failure of the components has the form of an
Erlang distribution with time-dependent parameter λ(t). The mathematical model has been
formulated and a genetic algorithm has been developed to find the optimal solution.

To demonstrate the effect of time dependence of the time to failure distribution,
numerical examples have been worked out with and without time dependence of the rate
parameter. In the cases studied, it has been shown that taking the time dependence of the
parameter λ(t) into account changes the reliability of the components and as a result, both
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the optimal redundancy structure of the subsystems of the system and the values of its
reliability, cost and weight are different from those of the case with constant rate parameter.

In this paper, only identical components have been assumed to be allocated to each
subsystem. However, mixing non-identical components might lead to improved system
reliability; so, it is suggested that future studies examine the effect of mixing non-identical
components. Another aspect to consider is the uncertainty in the characteristics and the time
to failure distribution parameters of the components. Considering multi-state, repairable
components, other pdfs for the times to failure of the components and/or preventive
maintenance is another interesting area for future investigation.

Since the model presented in each research needs to be compared with the previous
ones, it can be useful to define benchmark problems that can show the impact of the
assumptions of each model well and be used in future research. Therefore, the definition of
suitable benchmark problems to be used in the research in this field can also be a suggestion
for future research.
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Table A1. Component data for the first numerical example.

Component Type 1 (j = 1) Component Type 2 (j = 2) Component Type 3 (j = 3) Component Type 4 (j = 4)

i λ0ij α1ij α2ij t1ij t2ij kij cij wij λ0ij α1ij α2ij t1ij t2ij kij cij wij λ0ij α1ij α2ij t1ij t2ij kij cij wij λ0ij α1ij α2ij t1ij t2ij kij cij wij

1 0.052 0.3 3 10 90 6 2 4 0.007 0.1 2 12 90 2 2 4 0.049 0.4 2 10 100 4 3 2 0.081 0.3 3 10 80 4 3 4
2 0.017 0.5 2 15 120 4 2 5 0.110 0.4 4 18 100 4 3 5 0.124 0.3 3 5 75 6 2 6 0.046 0.1 5 5 75 4 4 3
3 0.043 0.4 4 8 110 5 3 4 0.056 0.6 3 20 110 6 4 5 0.028 0.7 4 10 95 3 3 5 0.004 0.5 4 15 100 2 2 4
4 0.026 0.4 3 12 80 4 4 6 0.001 0.3 5 8 80 1 3 8 0.004 0.6 3 12 85 1 3 4 0.009 0.4 2 20 120 2 3 6
5 0.023 0.6 5 6 70 3 2 4 0.077 0.8 2 15 85 4 2 6 0.133 0.3 3 7 90 5 2 5 0.122 0.7 3 17 85 7 4 5
6 0.011 0.7 7 9 95 3 4 5 0.083 0.2 3 14 95 5 5 4 0.035 0.2 2 15 110 3 2 6 0.043 0.3 3 14 90 4 5 8

Table A2. Component data for the second numerical example.

Subsystem Component Type λ0ij α1ij α2ij t1ij t2ij kij cij wij

i = 1 1 0.014 0.5 5 20 70 3 4 2
2 0.034 0.4 6 7 80 5 4 3
3 0.014 0.2 4 10 110 2 3 6
4 0.052 0.2 2 7 85 7 5 4
5 0.048 0.3 3 16 85 8 2 6
6 0.013 0.4 3 6 75 2 3 4
7 0.021 0.1 4 5 100 3 4 2
8 0.045 0.3 3 19 80 7 5 5
9 0.023 0.3 5 18 80 4 5 8
10 0.071 0.7 5 5 90 7 2 4

i = 2 1 0.027 0.5 3 8 100 3 5 3
2 0.017 0.4 4 16 105 2 3 3
3 0.105 0.2 6 11 80 8 2 4
4 0.019 0.8 3 19 80 3 2 6
5 0.029 0.7 3 10 80 3 3 4
6 0.049 0.5 4 19 80 6 4 5
7 0.053 0.8 3 11 105 5 2 6
8 0.046 0.1 5 14 90 7 5 8
9 0.017 0.8 3 6 80 2 5 5
10 0.023 0.7 6 10 80 3 4 3
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Table A2. Cont.

Subsystem Component Type λ0ij α1ij α2ij t1ij t2ij kij cij wij

i = 3 1 0.071 0.6 5 10 85 8 2 8
2 0.018 0.3 3 7 95 2 2 8
3 0.022 0.6 3 15 85 2 5 2
4 0.034 0.6 2 18 85 4 2 4
5 0.021 0.5 2 12 70 2 5 8
6 0.019 0.2 6 16 70 4 5 4
7 0.071 0.6 4 15 95 8 3 7
8 0.051 0.8 5 20 85 6 4 2
9 0.063 0.6 5 11 105 7 5 6
10 0.018 0.4 2 10 70 2 4 2

i = 4 1 0.021 0.8 6 6 105 2 2 7
2 0.014 0.1 4 14 90 3 3 6
3 0.025 0.1 2 13 95 5 2 3
4 0.032 0.2 4 20 105 5 2 5
5 0.047 0.3 3 11 75 4 3 2
6 0.017 0.1 4 10 80 3 2 7
7 0.049 0.1 4 5 75 4 5 6
8 0.051 0.3 5 17 85 8 3 8
9 0.021 0.7 6 20 75 3 2 7
10 0.043 0.2 5 20 95 7 4 6

i = 5 1 0.073 0.5 3 10 85 8 5 3
2 0.048 0.5 5 10 85 6 3 2
3 0.022 0.2 4 6 105 3 2 3
4 0.055 0.8 3 11 85 6 3 8
5 0.054 0.2 6 11 95 8 5 7
6 0.017 0.3 3 10 100 2 2 8
7 0.032 0.6 5 6 95 4 3 2
8 0.063 0.3 6 12 90 9 4 4
9 0.051 0.7 6 10 90 6 4 8
10 0.073 0.5 4 7 105 9 2 2
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Table A2. Cont.

Subsystem Component Type λ0ij α1ij α2ij t1ij t2ij kij cij wij

i = 6 1 0.016 0.8 2 19 95 2 2 6
2 0.027 0.1 3 9 90 5 3 8
3 0.012 0.2 5 20 90 2 2 3
4 0.009 0.2 6 8 70 2 4 7
5 0.051 0.7 5 20 70 7 5 7
6 0.029 0.5 4 19 110 4 4 3
7 0.027 0.8 4 8 105 3 3 7
8 0.017 0.6 4 15 75 2 4 7
9 0.021 0.7 4 15 85 2 3 4
10 0.031 0.1 6 5 85 4 3 5

i = 7 1 0.032 0.5 6 9 70 6 4 7
2 0.022 0.2 2 9 100 3 3 6
3 0.053 0.4 6 13 90 7 4 5
4 0.017 0.7 2 14 95 2 5 5
5 0.029 0.3 6 13 105 4 3 3
6 0.034 0.1 4 13 90 7 4 8
7 0.037 0.6 4 16 70 5 4 6
8 0.051 0.3 6 20 75 8 3 8
9 0.024 0.7 4 16 95 2 2 4
10 0.015 0.4 2 20 90 2 3 5

i = 8 1 0.018 0.4 5 10 85 2 3 3
2 0.023 0.7 4 20 75 3 3 6
3 0.012 0.2 7 8 110 2 2 4
4 0.024 0.2 4 20 80 5 3 2
5 0.02 0.2 4 11 90 3 5 3
6 0.058 0.6 6 19 95 7 2 5
7 0.061 0.6 4 6 70 8 2 4
8 0.024 0.3 4 20 85 3 2 6
9 0.068 0.7 3 12 105 7 3 2
10 0.073 0.5 5 14 105 8 2 7
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Table A2. Cont.

Subsystem Component Type λ0ij α1ij α2ij t1ij t2ij kij cij wij

i = 9 1 0.049 0.7 2 8 85 5 5 7
2 0.068 0.6 6 11 85 8 2 7
3 0.024 0.6 6 15 70 4 3 5
4 0.019 0.2 3 10 90 2 3 7
5 0.024 0.7 6 10 80 3 5 5
6 0.049 0.7 3 13 75 6 3 5
7 0.035 0.2 3 20 110 6 5 5
8 0.025 0.8 3 7 80 3 3 6
9 0.049 0.8 4 5 75 6 2 8
10 0.039 0.2 2 14 90 5 4 5

i = 10 1 0.028 0.1 5 20 90 7 4 2
2 0.048 0.4 2 5 90 5 4 2
3 0.019 0.2 2 20 105 3 3 4
4 0.015 0.2 4 12 70 2 3 4
5 0.018 0.3 4 6 85 2 5 5
6 0.019 0.8 6 14 95 2 2 3
7 0.058 0.3 6 15 80 8 3 8
8 0.016 0.1 4 6 110 2 4 4
9 0.051 0.5 6 11 70 9 2 6
10 0.065 0.3 5 10 100 8 2 3

i = 11 1 0.033 0.6 5 14 80 4 3 3
2 0.027 0.3 2 5 85 3 3 7
3 0.035 0.4 4 15 90 5 2 8
4 0.009 0.1 2 10 110 2 5 8
5 0.038 0.2 6 17 85 6 2 3
6 0.035 0.3 3 20 110 5 3 3
7 0.029 0.1 6 11 75 6 2 3
8 0.022 0.6 3 10 70 3 2 3
9 0.058 0.6 4 18 90 7 2 8
10 0.062 0.2 3 11 90 8 2 2
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Table A2. Cont.

Subsystem Component Type λ0ij α1ij α2ij t1ij t2ij kij cij wij

i = 12 1 0.022 0.6 4 14 105 2 5 6
2 0.041 0.2 5 18 85 7 2 6
3 0.037 0.5 6 6 95 4 3 4
4 0.023 0.5 6 6 105 2 3 4
5 0.032 0.6 6 18 90 4 2 4
6 0.059 0.7 3 6 80 7 5 3
7 0.038 0.3 3 20 80 6 5 4
8 0.054 0.4 4 20 90 8 2 7
9 0.057 0.7 4 5 100 5 2 3
10 0.015 0.5 2 8 85 2 3 8

i = 13 1 0.047 0.8 3 11 95 5 2 7
2 0.019 0.5 3 12 75 2 5 5
3 0.053 0.3 3 10 80 7 4 8
4 0.039 0.6 2 11 70 4 5 3
5 0.019 0.8 5 17 85 2 3 2
6 0.048 0.4 2 11 90 6 2 6
7 0.023 0.1 3 7 90 3 4 8
8 0.034 0.1 4 6 80 5 3 7
9 0.072 0.3 3 11 85 9 2 8
10 0.051 0.8 2 20 85 5 4 3

i = 14 1 0.019 0.5 3 16 75 2 5 5
2 0.038 0.6 2 7 85 4 5 7
3 0.045 0.3 5 19 85 7 5 6
4 0.033 0.2 6 9 95 4 2 7
5 0.045 0.4 3 12 105 6 4 2
6 0.024 0.2 3 9 80 3 4 5
7 0.023 0.8 3 8 110 3 2 4
8 0.048 0.3 3 14 90 7 3 3
9 0.024 0.8 3 14 85 3 5 8
10 0.041 0.2 2 6 70 6 4 7
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Table A2. Cont.

Subsystem Component Type λ0ij α1ij α2ij t1ij t2ij kij cij wij

i = 15 1 0.021 0.8 4 14 75 2 4 2
2 0.041 0.4 7 11 90 5 5 3
3 0.043 0.5 3 6 70 5 4 8
4 0.025 0.6 4 16 110 3 3 3
5 0.012 0.2 2 18 95 2 5 6
6 0.039 0.8 4 7 75 4 5 4
7 0.047 0.3 5 9 90 5 2 6
8 0.013 0.2 6 14 95 2 2 6
9 0.015 0.6 4 18 90 2 4 4
10 0.044 0.2 6 16 75 8 2 3

Table A3. Component data for the third example (pharmaceutical plant).

Component Type 1 Component Type 2 Component Type 3 Component Type 4

i
λ0ij ×

105 α1ij α2ij t1ij t2ij kij cij wij
λ0ij ×

105 α1ij α2ij t1ij t2ij kij cij wij
λ0ij ×

105 α1ij α2ij t1ij t2ij kij cij wij
λ0ij ×

105 α1ij α2ij t1ij t2ij kij cij wij

1 128 0.5 5 200 880 3 16 26 176 0.8 2 50 840 3 20 19 276 0.6 3 140 860 5 18 17 607 0.9 4 190 1060 8 21 24
2 195 0.7 6 120 790 4 14 20 78 0.3 4 90 870 2 21 23 92 0.7 2 100 1000 2 13 26 430 0.1 4 80 1010 9 19 18
3 419 0.6 3 220 1050 7 20 24 473 0.8 5 150 1090 7 15 17 368 0.2 6 80 720 8 16 26 455 0.8 2 240 1010 7 17 27
4 480 0.5 4 90 850 7 19 22 388 0.7 6 120 990 6 17 24 394 0.9 7 80 750 8 20 17 159 0.1 8 90 780 5 19 21
5 495 0.7 6 80 820 8 14 19 173 0.5 7 70 990 3 18 22 97 0.5 7 150 900 2 19 19 88 0.9 5 190 840 2 18 24
6 101 0.2 6 150 850 3 15 23 106 0.1 2 210 940 4 13 26 194 0.2 4 70 980 4 20 19 68 0.2 6 210 930 2 14 22
7 68 0.3 7 180 830 2 14 26 245 0.5 7 160 800 5 15 18 241 0.2 8 240 760 8 21 23 455 0.9 3 100 820 7 14 22
8 194 0.2 4 220 1070 5 18 23 189 0.2 5 220 920 5 14 26 205 0.3 4 70 870 4 16 20 190 0.3 4 90 1100 4 20 25
9 265 0.8 6 50 780 5 21 27 415 0.8 5 240 830 7 15 19 293 0.7 3 210 1000 5 16 26 429 0.3 5 250 820 9 20 18

10 99 0.1 2 170 1050 4 14 18 597 0.6 4 90 840 9 15 25 213 0.7 6 150 910 4 21 23 452 0.2 4 120 990 8 18 25
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Table A4. Values of C, W, nmax,i and ρi(t) for the examples.

C W nmax,i ρi (t)

First example 50 70 6 0.99
Second example 310 400 6 0.99
Third example 480 519 6 0.99
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Figure A2. Trend of GA towards the optimal solution in 20 different trials; second example.
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Figure A3. Trend of GA towards the optimal solution in 20 different trials; third example.
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Table A5. Details of the optimal solutions obtained by different trials; first example.

System Characteristics

Iteration Number Reliability Cost Weight

1 0.9612 45 68
2 0.9541 37 70
3 0.9284 45 70
4 0.9578 39 68
5 0.9692 48 69
6 0.9702 45 70
7 0.9619 49 66
8 0.9662 46 68
9 0.9695 45 70
10 0.9652 50 70
11 0.9673 49 68
12 0.9669 49 68
13 0.9376 39 68
14 0.9689 48 69
15 0.934 47 66
16 0.9624 38 68
17 0.9549 47 65
18 0.9577 45 70
19 0.9315 46 69
20 0.9562 46 68

Table A6. Details of the optimal solutions obtained by different trials; second example.

System Characteristics

Iteration Number Reliability Cost Weight

1 0.9626 200 265
2 0.9506 306 367
3 0.9614 259 302
4 0.9557 251 380
5 0.9425 259 352
6 0.9584 250 337
7 0.9397 271 372
8 0.9574 303 319
9 0.9584 249 339
10 0.9351 242 325
11 0.9337 235 311
12 0.9384 237 298
13 0.9565 219 393
14 0.9643 248 333
15 0.9488 236 285
16 0.9707 272 282
17 0.946 240 323
18 0.9524 277 384
19 0.9493 302 384
20 0.9628 260 343
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Table A7. Details of the optimal solutions obtained by different trials; third example.

System Characteristics

Iteration Number Reliability Cost Weight

1 0.9866 458 519
2 0.9865 448 518
3 0.9881 466 517
4 0.9846 478 518
5 0.9896 454 514
6 0.9894 453 516
7 0.9889 469 513
8 0.9881 469 519
9 0.9886 464 509
10 0.9894 453 516
11 0.9889 469 513
12 0.9869 471 512
13 0.9864 429 518
14 0.9896 454 514
15 0.9868 451 519
16 0.9891 468 510
17 0.9869 424 509
18 0.9896 467 517
19 0.9896 461 519
20 0.9894 453 516
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