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Abstract—The presence of asymmetries in the mass distribu-
tion of automobile tires causes anomalous forces and torques,
which lead to vibrations and to ride disturbances. For this
reason, detection of unbalanced masses is fundamental in order to
perform a careful balancing, improving both safety and comfort.
To this aim, traditional wheel balancers are passive devices that
allow one to detect unbalances relying on force sensors. The
major drawbacks of this technology are the high production
costs and the loss of accuracy of the force sensors during the
wheel balancer lifetime. In this work, a new sensors layout for
the next generation of wheel balancers is proposed together
with a structural modification of the machine that allows us
to magnify the information provided by the sensors. Notably,
these modifications are quite practical, and allows retrofitting
traditional machines. The goal is to prove the effectiveness
of accelerometers and gyroscopes, which are low-cost devices
requiring minimum calibration effort, for unbalance detection
purposes. To this aim, an unbalance detection algorithm is
developed. Starting from the amplitudes and phases of the signals
acquired by the sensors, the severity and the angular position
of the unbalance is determined relying on a regression model.
Then, the proposed detection strategy is experimentally tested in
different unbalance conditions.

Index Terms—Wheel balancer, unbalance detection, balancing,
MEMS, Industry 4.0

I. INTRODUCTION

Everyday vehicles are characterized by a considerable num-
ber of rotating parts, for which smooth running is essential.
Components, such as crankshafts and turbines, need to be
optimally balanced in order to work without any flaw and nor
to suffer from excessive wear and tear. As a matter of fact,
each rigid body rotating about a fixed axis may show, due to
the possible presence of asymmetries in its mass distribution,
anomalous forces and torques which can lead to vibrations,
noise, and increased wearing; this may even lead to destruction
at high speeds [1]–[3]. To overcome this problem, a balancing
of the rotating masses is of paramount importance. Consid-
ering positive compensation, balancing weights are applied
directly to the rotor. Conversely, in negative compensation
scenarios, some mass is removed by drilling or grinding [4].

Therefore, also the vehicle wheels must be balanced after
a tire change or other maintainance operations. As a matter
of fact, a proper wheel balance is fundamental to improve
comfort, reduce vibrations, and prolong the tire lifetime. To
this aim, wheels are mounted on a Wheel Balancer (WB).
This machine, while making the wheel rotating, determines the
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mass, angle, and side of the rim to which balancing weights
must be applied. The goal is to ensure the weight is evenly
distributed throughout each of the wheels of the vehicle, so
that they rotate smoothly. Indeed, espetially at high speeds,
even a tiny imbalance can lead to large anomalous forces and
torques, which can cause the wheel assembly to dangerously
spin unevenly. Since the WB is generally operating at low
speeds (below 5000rpm), the rotor can be safely modeled as a
rigid shaft which does not show any elastic deformation during
operation [5]–[7]. Therefore, according to [8], any imbalance
distribution can be balanced in two different planes. In this
scenario, two principal types of unbalance may arise: static
and dynamic. Static unbalance is defined as “the eccentricity
of the center of gravity of a rotor, caused by a point mass
at a certain radius from the centre of rotation”, [9]. Thus,
the presence of an unbalance in the rotating mass generates a
harmonic force at the rotational speed ω, with the amplitude
proportional to the unbalance severity and increasing with
the square of the rotational speed [10]. In this scenario, the
balancing is performed attaching compensatory weights to the
rim, positioning them at 180deg and with identical radius.
Figure 1 shows a generic static unbalance for a rotating body.
On the other side, a pure couple unbalance arises when,
according to [9], “two equal masses are placed symmetrically
about the centre of gravity, but positioned at 180deg from each
other”. In this scenario, no eccentricity of the rotor center of
gravity is shown but, when the rotor starts turning, a shift
in the inertia axis is caused, leading to strong vibrations. An
illustrative couple unbalance scenario is shown in the middle
diagrams of Figure 1. If masses m1 and m2 are not equal, the

Fig. 1: Static, couple (m1 = m2), and dynamic (m1 6= m2)
unbalances.
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Fig. 2: Static unbalance for the wheel outer (a) and inner (b)
planes. The dynamic unbalance is shown in (c). If masses A and
B are equivalent, a couple unbalance is obtained. Dark and pale
colored masses highlight the unbalance and the balancing weights
respectively.

rotor center of gravity shows eccentricity and the unbalance is
called dynamic. Moreover, Figure 2 shows static and dynamic
unbalances for a minivan wheel. In particular, dark and pale
colored masses highlight the unbalance and the balancing
weights respectively.

The WBs on the market rely on embedded electronics that
evaluates the unbalance measuring the forces acting on the ro-
tating shaft through piezoelectric devices. In [11], the authors
present an experimental setup for vibrations measurement and
imbalance fault detection in the context of a rotating machin-
ery is presented using ceramic piezoelectric force sensors. The
study in [12] proposes a method for wheel unbalance detection
relying on a balancing machine capturing vibration signals
through the charge outputs of two piezoelectric force sensors.
Since car maintenance is becoming increasingly demanding,
a remarkable drawback of piezoelectric force sensors is that
they are prone to loose calibration and accuracy during the WB
lifetime. Moreover, this technology is dated and force sensors
are becoming much more expensive compared to today’s
standard Micro Electro-Mechanical Systems (MEMS) such as
accelerometers and gyroscopes [13]. Therefore, the goal of
this work is to develop an innovative wheel balancing solu-
tion, exploiting new, smart, and miniaturized sensors together
with an ad hoc unbalance detection algorithm for the next
generation of WBs. In practice, the detection of unbalanced
masses is attained relying only on low-cost accelerometers and
gyroscopes, easy to use sensing devices requiring a minimum
calibration effort. To do this, a mechanical modification of
the WB is proposed, which allows optimal exploitation of the
sensors’ capabilities. Further, an innovative unbalance detec-
tion algorithm is proposed and tested over different imbalance
conditions, proving the effectiveness of MEMS technology. To
the authors knowledge, this is the first time that gyroscopes
are employed in this field. In conclusion, this is a successful
example of engineering retrofit in Industry 4.0, for a machine
designed in the 80s and updated introducing modern sensors’

Fig. 3: Bosch WBE 4430.

technology and a minimally-impacting mechanical redesign.
The remainder of the paper is organized as follows. Section

II introduces and describes the experimental WB in its original,
piezoelectric sensors based, configuration. Then, in Section III,
the vibratory behavior of the in commerce WB is analyzed in
time and frequency domains. In Section IV, some structural
modifications of the machine are proposed in order to reduce
its mechanical stiffness: this is necessary in order to enhance
vibrations and make the detection of unbalances feasible
from MEMS signals. Section V contains the core of the
paper, in which a novel unbalance mass detection algorithm
is described. Eventually, in Section VI the performances of
the proposed algorithm are assessed by means of an extensive
experimental campaign.

II. MEASUREMENT SYSTEM SETUP

The analysis in this work is based on a Bosch WBE
4430 (Figure 3). The machine is instrumented with two XDK
programmable sensors1, to assess the vibratory behavior of
the structure by means of 3-dof accelerometer and gyroscope
measurements2. In a nutshell, the XDK platform is a wireless
device which enables for rapid prototyping of sensor based
products and applications for the Internet of Things (IoT).
Therefore, accelerations and rotational speeds along {x, y, z}
(as defined by the fixed sensor reference frame of Figure 4) are
acquired with a sampling frequency of 250Hz (sampling time
Ts = 0.004s). Experimental tests are carried out considering
a minivan wheel with a steel rim. The main characteristics of
the WB, modeled as in Figure 4, and of the test wheel are
summarized in Table I. In particular, the support is the me-
chanical component holding up the machine shaft. Therefore,
the wheel is attached to the shaft, which rotates at the constant
angular speed ω.

III. IN COMMERCE WB ANALYSIS

In order to assess the vibratory behavior of the WB currently
in commerce, six different locations for the XDK sensor

1https://xdk.bosch-connectivity.com/
2The gyroscopes’ sensitivity and range are 0.063(deg/s)/LSB (LSB

indicates the Least Significant Bit) and ±2000deg/s. The accelerometers’
sensitivity and range are 1.0× 10−3G/LSB and ±16G.

https://xdk.bosch-connectivity.com/
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Property Value

Rim Diameter 16′′ - 41 (cm)

Tire 215/64R16C

Shaft mass 11.0 (kg)

Wheel mass (tire+rim) 19.0 (kg)

Support mass 33.3 (kg)

Rotational speed (ω) 325 (rpm)

TABLE I: Wheel and WB properties.

are tested. The idea is to determine which position shows
the higher information content. Since the goal is to detect
unbalances in the vehicle wheels, the information content
is here measured as a signal energy difference between the
unbalanced and balanced scenarios. In practice, Signal to
Noise Ratio (SNR) [14] is computed

SNR =
Pu
Pb
, (1)

where Pu and Pb are the power of accelerations or angular ve-
locities in the unbalanced and balanced scenario respectively.
Therefore, the higher the SNR value, the higher the difference
between balanced and unbalanced conditions, and the higher
the chance to detect the unbalance. Using SNR as a cost
function, two locations are selected:
• F: fixed position, i.e., attached to the WB support;
• R: rotating position, i.e., attached to the WB shaft and

rotating with it at the rotational speed ω.

Shaft

Wheel

Support

F

Fixed sensor
reference frame

Base

R

Fig. 4: Tested XDK sensor locations. F and R highlights the sensor
positions with the higher information content. ω is the WB rotational
speed and gn is the gravitational acceleration. On the left, the fixed
sensor reference frame is shown.

Figure 4 shows the tested locations together with the afore-
mentioned most informative positions. The reference frame
for the fixed XDK sensor is also shown. For the sake of
completeness, the Power Spectral Density (PSD) [14] for
the x-axis acceleration measurements, acquired by the fixed
sensor, is shown in Figure 5. The presence of a static unbalance
is highlighted by a harmonic component at the rotational speed
of the WB (see also Appendix A), i.e., at 325rpm or 5.4Hz.
It must be noticed that, in order to obtain the results of Figure
5, a static unbalanced mass of 100g (far beyond a realistic
wheel unbalance, usually around 35g) is introduced.

Thus, in order to enhance accelerations and angular ve-
locities magnitudes for lower unbalance values, a reduction

SNR

In commerce WB: 2.27dB

Fig. 5: Spectral analysis of the x-axis acceleration measurements
acquired by the fixed sensor F. A static unbalance of 100g is
considered. The presence of the unbalance is highlighted by the
harmonic component at 5.4Hz (325rpm).

of the machine structural stiffness is needed. Eventually,
measurements acquired by the fixed (F) and the rotating (R)
sensors are denoted respectively as

{aFi (k), ωFi (k)}k=1,...,N

{aRi (k), ωRi (k)}k=1,...,N

(2)

with ai and ωi the accelerations and rotational speeds respec-
tively, i = {x, y, z} the sensor axes, and N the number of
data points.

IV. STRUCTURAL STIFFNESS REDUCTION

To reduce the mechanical stiffness of the WB, prelim-
inary multi-body analysis (relying on MATLAB Simscape
MultibodyTM) were performed in order to find configurations
capable of enhancing vibrations with minimum changes of the
in commerce WB structure. Specifically, flexibility is attained
by means of nm = 4 elastomer mounts placed in between
the shaft support and the machine base (Figure 6). Thus, a
careful sizing of these elastic elements is needed. Since the
mounts are characterized by two different stiffness coefficients,
depending whether the movement is along x (or, equivalently,

F
Elastomer
Mounts

Shaft

Wheel

Support

Fixed sensor
reference frame

Base

R

Fig. 6: Modified WB configuration. Four elastomer mounts are
introduced between the shaft support and the machine base to reduce
the structural stiffness.
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Set Kx
wb (kN/m) Ky

wb (kN/m)

A nm × 66 nm × 600

B nm × 54 nm × 400

C nm × 28 nm × 173

TABLE II: Stiffness coefficients along x (or z) and y for the sets of
elastomer mounts A, B, and C. According to [15], the damping ratio
ξ equals 10%. The nm = 4 elastomer mounts are placed in the four
corners of the shaft support.

z) or y (with respect to the fixed sensor reference frame),
the analysis considers both the displacements. Three different
sets of elastomer mounts, characterized by the properties
highlighted in Table II, are tested. To assess the dynamic
behavior of the WB, transfer functions between a force F (t)
and the displacements of the assembly support/shaft/wheel
along x and y are computed. In practice, the idea is to
approximate the WB of Figure 6 as a lumped sprung mass
Mwb (given by the summation of shaft, wheel, and support
masses), with lumped stiffness (Kd

wb), and damping (Rwb)
coefficients. Therefore, the input/output relationship takes the
following form

d(t) = Gd(s)F (t),

Gd(s) =
Ω2
n

s2 + 2ξΩns+ Ω2
n

,

where Ωn =
√
Kd
wb/Mwb is the natural frequency, ξ the

damping ratio, and d = {x, y} the displacements.
The Bode diagrams for x and y displacements are depicted

in Figure 7. Recalling that the rotation of the WB at 325rpm
generates a force at 5.4Hz if a static unbalance is present, the
elastomer mounts are selected in order to increase vibrations
amplitudes while avoiding moving too close to the resonance
peaks. As shown by Figure 7a, the force at 5.4Hz is
extremely close to the resonance peak of the Bode plot of
configuration C, leading to potentially dangerous oscillations.
Therefore, between set A and B, the stiffer one is chosen.
This is a conservative solution to avoid high oscillations
amplitude and potentially dangerous scenarios. In Figure 8,
aFx measurements for the in commerce WB (stiff) and the
reduced stiffness WB are compared. The SNR, with respect
to the balanced scenario, is computed, showing an increased
information content for the reduced stiffness WB acquisitions.
Indeed, the introduction of elastomer mounts leads to a one
order of magnitude increment for both accelerations and rota-
tional speeds amplitudes, making the detection of unbalances
feasible.

V. UNBALANCE DETECTION

In this section, an innovative algorithm for MEMS-based
unbalance detection is proposed. First, the details of the
testing procedure are presented, then, the detection algorithm
is outlined.

A. Test description

Figure 9 depicts the modified WB with the 600kN/m
(stiffness along y) elastomer mounts (set A). The fixed and

(a)

(b)

Fig. 7: Bode plots for (a) x and (b) y displacements. The external
force is at 5.4Hz.

rotating XDK sensors are highlighted. The rotating XDK
sensor is attached to the wheel at a distance of 10cm from
the axis of rotation, i.e., the WB axle. Clearly, this introduces
an unbalance which must be removed before the testing
campaign. Thus, another XDK sensor, named balancing, is
attached in opposite position, ensuring an almost perfect
balancing. This sensor is not used to acquire data but is just
needed for balancing purposes.

As mentioned in Section II, a balanced minivan wheel with
a steel rim is used. Then, tests are performed introducing
known unbalances by means of zinc tire weights ranging
between 10 to 60g. Usually, unbalances higher than 60g are
caused, for instance, by rim deformations. In this scenario, the
only options are substituting or repairing the rim (a balancing
is not enough), which is out of the scope of this work. As a
matter of fact, the main goal is to propose a procedure capable
of detecting the severity and angular position of the unbalanced
masses in order to perform a balancing. Thus, the algorithm



5

SNR

In commerce WB: 2.27dB

Reduced stiffness WB: 16.18dB

(a)

(b)

Fig. 8: Comparison of PSD and time-domain aFx measurements
for the in commerce WB and the reduced stiffness WB. A static
unbalance of 100g is considered. Acquired data are compared to
the balanced baseline, showing the higher information content of
accelerations acquired in the reduced stiffness scenario.

is developed considering two principal scenarios: a pure static
unbalance and a pure couple unbalance (see again Figure 2).
The study is focused on static and couple unbalances because
the objective is to show whether the usage of MEMS in the
place of force sensors is feasible. As a matter of fact, detection
of static unbalance is usually straightforward for in commerce
WBs. Thus, this is the minimum performance requirement,
which must be satisfied. On the other hand, detection of pure
couple unbalances is usually a hard task. Therefore, it is used
to test the capabilities of the newly developed approach.

For each tested unbalance, eight different angular positions
are analyzed (Figure 10). The 0deg reference point is chosen
in order to obtain the initial direction of the rotating sensor
reference frame coincident to the fixed one, i.e., as shown by
Figure 10, with the z-axis aligned to the WB axis of rotation.
For instance, given a zinc tire weight of 10g and considering
the static unbalance, its effect is analyzed for each angular
position of Figure 10. This procedure is followed for both the
inner and outer planes of the wheel. Concerning the couple

Fixed 
Sensor

Rotating 
Sensor

Balancing
Sensor

Elastomer
mounts

Wheel

Shaft

𝒙

𝒚
𝒛

Fig. 9: Detail of the modified WB. The 600kN/m (stiffness along y)
elastomer mounts are shown together with the XDK sensors locations.
A balancing sensor is introduced to counteract the presence of the
rotating sensor, which is at a distance of 10cm from the axis of
rotation.

unbalance, two equivalent tire weights of, e.g., 10g are used.
The two masses are attached on different wheel planes and in
opposite positions, i.e., forming an angle of 180deg with each
other.

B. Data selection and post-processing

Both accelerations and rotational speeds are characterized
by three components measured along {x, y, z} directions.
First, a post-processing of the acquired data is necessary in
order to remove the mean value. Then, the most informative
data are selected. As far as the rotating sensor is concerned,
the ωRz component is neglected because affected by the ro-
tational speed of the WB shaft, which hides the presence of
unbalances. As a matter of fact, the z-axis of the rotating
sensor is aligned with the WB axis of rotation. As for the
fixed sensor, only aFy is neglected because characterized by
the lower energy content if compared to aFx and aFz (Figure
11). The same comment applies for aRz .

45°90°135°

225° 270° 315°

0°180°
𝒙

𝒚

Fig. 10: Minivan test wheel. The considered angular positions are
shown. A reference point at 0deg is chosen and the initial condition
for the rotating XDK sensor reference frame is depicted.
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Fig. 11: Spectral analysis of aFx , aFy , and aFz . aFy shows the lower
energy content. A static unbalance of 60g at 0deg is considered.

Fig. 12: Data alignment with respect to aRx and aRy for the fixed
sensor acceleration measurements. A static unbalance of 60g at 0deg
is considered.

Accordingly, the following signals are retained for unbal-
ance detection purposes:
• F: aFx , a

F
z , ω

F
x , ω

F
y , ω

F
z ;

• R: aRx , a
R
y , ω

R
x , ω

R
y .

Before entering the details of the unbalance detection algo-
rithm, data must be aligned with respect to the 0deg position
of Figure 10. Therefore, aRx and aRy come to hand. As a
matter of fact, x and y components of the rotating sensor
acceleration measurements are affected by gravity and, for
this reason, they can not be used for unbalance detection.
However, they are extremely useful in order to align all the
fixed/rotating sensor data with respect to the reference angular
position 0deg. Indeed, when the wheel position is exactly the
one of Figure 10, the following condition holds

aRx (k) = 0, aRy (k) = gn. (3)

with k being the alignment time instant and gn the gravita-
tional acceleration. Therefore, all the data are aligned accord-
ing to this position. In Figure 12, an illustrative alignment for
the fixed sensor acceleration measurements is shown.

Fig. 13: Spectral analysis of ωF
x and ωR

x for a static unbalance of
60g positioned at 0deg. The spectrum of ωR

x shows two prevalent
harmonic components at ω and 2ω.

C. Unbalance detection

To perform an effective balancing, meaningful relationships
between acquired data and severity/angular position of un-
balances must be retrieved. To this aim, the algorithm is
subdivided into two portions. First, the problem of feature
extraction is addressed. Then, a regression model is built.

Feature extraction. The goal of the feature extraction step
is to condense the information provided by the sensors, i.e.,
the sequence of N data points, in few variables in order to
reduce the computational burden. According to Figure 13, data
from gyroscopes and accelerometers show principal harmonic
components at the WB rotational speed and at its multiples.
Therefore, measured data are fitted by sinusoidal models in
order to extract phase and amplitude information. Considering
the fixed sensor F, the unbalance is seen as an increase in the
harmonic component at the frequency of rotation ω [9]. Thus,
the following model class is introduced

M1 : ŷ1(k; [A φ]T ) = A sin(ωkTs + φ), (4)

where A and φ are the unknowns, i.e., the amplitude and the
phase lag respectively. Looking now at the rotating sensor
measurements, the superposition of vibrations at the WB
rotational speed and of the rotation of the sensor itself at
325rpm leads to an increment of the harmonic component
at 2ω. Therefore, the following model is introduced

M2 : ŷ2(k; [A1 A2 φ1 φ2]T ) =A1 sin(2ωkTs + φ1)+

A2 sin(ωkTs + φ2),
(5)

where A1, A2 and φ1, φ2 are the unknowns, i.e., the amplitudes
and the phase lags, respectively. The idea is to fit the data
by means of (4) and (5) in order to extract amplitudes and
phases of the acquired signals. Models are fit to data relying
on nonlinear least squares fitting approaches [16], which
minimizes an objective function of the form

min
β

N∑
k=1

(ŷj(k;β)− y(k))
2
, (6)
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where ŷj (j = {1, 2}) is the chosen class of mod-
els, β is a generic column vector containing the un-
known parameters, and y is the vector of observations, i.e.,
{aFi (k), ωFi (k)}k=1,...,N for (4) and {aRi (k), ωRi (k)}k=1,...,N

for (5), with i = {x, y, z}. Considering the rotational speed
measurements, an illustrative fitting is shown for both the
rotating and the fixed sensor in Figure 14. In this scenario,
the ωx component is studied for a static unbalance of 60g
positioned at 0deg.

Regression model. Once amplitudes and phases are re-
trieved from (4) and (5), a regression model linking the
extracted features to the actual unbalanced mass is needed.
Therefore, two fundamental problems arise:

a) Detection of the unbalance severity;
b) Detection of the unbalance angular position.

The first issue is tackled relying only on amplitudes extracted
from the fixed sensor measurements. As a matter of fact,
the higher the unbalance severity the higher the magnitude
of accelerations and rotational speeds and, consequently, the
higher the amplitudes. A preliminary analysis shows that the
relationship between amplitudes and unbalance severity can
be approximated as linear, no matter which angular position
is considered. This fact is shown by Figure 15, considering the
ωFx measurements. For each tested mass, amplitudes are ex-

(a) Fixed sensor

(b) Rotating sensor

Fig. 14: Illustrative fitting of ωx for the fixed (a) and the rotating
sensor (b) respectively. A static unbalance of 60g at 0deg is
considered.

tracted relying on (4) and (6). Therefore, for each unbalanced
mass, different angular positions are tested. Theoretically, for
a perfectly balanced wheel, amplitudes should not change in
correspondence of variations of the angular position of the
unbalance. However, given the fact that the test wheel is
a real minivan wheel with asymmetries and imperfections,
some dispersion is shown. It is worth to mention that the
same linear trend arise for all the acceleration and rotational
speed measurements of the fixed sensor. Thus, a linear map
fm : R5 → R is used to link the amplitudes to the unbalanced
mass severity

m̄ = fm([AaFx AaFz AωF
x
AωF

y
AωF

z
]) = fm(A) =

= [AaFx AaFz AωF
x
AωF

y
AωF

z
1]


θ1
θ2
θ3
θ4
θ5
θ6

 = ATθ,
(7)

where AaFx , AaFz , AωF
x
, AωF

y
, AωF

z
are the amplitudes of ac-

celerations and rotational speeds acquired by the fixed sensor.
Thus, ATθ forms a hyperplane whose parameters, collected in
θ, are unknown and must be identified relying, for instance, on
the standard least squares approach (here presented in matrix
form) and on N experiments

θ = (ÂT Â)−1ÂTM̂, (8)

where Â is a N × 6 regressor containing the identified
amplitudes for each experiment and M̂ is a N × 1 vector
containing the tested unbalanced masses. Thus, Â and M̂ are
defined as follows

Â =



A1
aFx

A1
aFz

A1
ωF

x
A1
ωF

y
A1
ωF

z
1

A2
aFx

A2
aFz

A2
ωF

x
A2
ωF

y
A2
ωF

z
1

...

ANaFx
ANaFz

ANωF
x
ANωF

y
ANωF

z
1


, M̂ =


m1

m2

...

mN


(9)

Once the parameters vector θ is identified, (7) is used to
estimate the unbalanced mass m̄, given the amplitudes of the
measured accelerations and rotational speeds.
Looking now at problem b), the phase lags extracted from the
rotating sensor measurements are used. As a matter of fact,
given a constant unbalanced mass, variations in its angular
position can be detected from the phase lags of the rotational
speed measurements. First, the relative quantities, i.e., those
computed with respect to the alignment signals aRx and aRy ,
are derived as

∆φωR
x

= φaRy − φωR
x
,

∆φωR
y

= φaRx − φωR
y
,

(10)

where φaRx , φaRy , φωR
x

, and φωR
y

are obtained fitting (5) to the
rotating sensor data. As shown in Figure 16, the relationship
between ∆φωR

x
(or ∆φωR

y
) and the unbalanced mass angular

position is generally nonlinear and it changes depending on
the unbalanced mass at hand. For instance, given a static
unbalance of 20g the relationship becomes linear. Therefore, a
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Fig. 15: Amplitude of the rotational speed ωF
x for the static and

the couple unbalance scenarios. The dashed lines highlight the linear
trend.

Fig. 16: Phase lags of ωR
x for static unbalanced masses of 10 and

20g, respectively. The dashed lines highlight the generally nonlinear
trend.

nonlinear map fφ : R2 → R is used to link the relative phase
lags to the unbalance angular position (defined with respect to
the 0deg reference point in Figure 10), which can be expressed
in the form

φ̄ = fφ([∆φωR
x

∆φωR
y

], m̄) = fφ(∆φ, m̄). (11)

As mentioned before, possible changes in (11) depend on the
unbalanced mass severity m̄, which is retrieved from the linear
map (7). Thus, a Neural Network (NN) [17] is trained, for
each unbalanced mass m̄, in order to model the functional
relationship fφ. NN are effective tools for nonlinear regression
problems. Therefore, given the time-varying behavior of fφ,
which is nonlinear for small unbalanced masses and linear
for large ones (see Figure 16), the NN provides the needed
flexibility. In Table III, the structure and main parameters of
the NN are listed3. This configuration leads to good results in
terms of prediction error. Given the reduced dataset at hand,

3The MATLAB Deep Learning ToolboxTM is used.

Parameters/Hyperparameters Value/Setting

Activation function Sigmoid

Hidden layers (# neurons) 1 (2)

Learning rate (initial) 0.001

Loss function Mean Squared Error (MSE)

Max. epochs 20 (static) – 5 (couple)

Optimization algorithm Levenberg-Marquardt

Weights and biases 9

TABLE III: Structure and configuration parameters of the NN.

of 16 samples for the static scenario and of 8 samples for
the couple one, the number of epochs (i.e., the maximum
number of training iterations) is limited to 20 and to 5,
respectively. This allows to train the NN effectively, while
avoiding overfitting. Summarizing, the fundamental idea of the
algorithm is to first identify the unbalanced mass m̄, relying
on the linear map (7), and then detect the angular position
by means of the NN (11). The overall unbalance detection
algorithm is summarized by Figure 17.

VI. EXPERIMENTAL RESULTS

Validation results for the proposed algorithm are shown
in Figures 18, 19, and 20. The algorithm is tested for the
static and couple unbalance scenarios, considering different
severity and angular positions of the unbalanced masses (see
Figure 10). It must be noticed that, when the test campaign
was performed, only one 60g zinc tire weight was available.
Therefore, this configuration was tested in the static scenario
only. Moreover, validation data for some specific angular
positions (e.g., 315deg for the unbalanced mass of 40g, Figure
18) are not available. For the purpose of this study, the type of
unbalance, i.e., static (inner/outer) or couple, is assumed to be
known a priori. Since the focus of this work is assessing the
effectiveness of MEMS technology for unbalance detection,
this is a reasonable assumption. Practically speaking, the
distinction between static and couple unbalances can be easily
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Fig. 17: Unbalance detection algorithm. Given the fixed and the
rotating sensor, measured data are depolarized and features, i.e.,
amplitudes and phases, are extracted. Signals amplitudes are used
for unbalance severity detection. Then, given m̄, the angular position
of the unbalance is obtained relying on a nonlinear map.
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Fig. 18: Static unbalance: outer plane validation.

made in an automatic fashion evaluating the magnitude of the
rotational speeds measured by the fixed sensor along the z-
axis. As a matter of fact, in case of couple unbalances the
ωFz magnitude is of order 10−4 rad/s. Conversely, in static
unbalance scenarios, values of order 10−3 rad/s are always
measured.

Eventually, in the event of a static unbalance, the algorithm
can be used to compute two possible balancing configurations:
one for the inner plane and one for the outer plane. Therefore,
the user can choose whether to perform the balancing with the
inner or the outer plane of the wheel.

In Figures 18, 19, and 20, the truth, i.e., the value of the
tested unbalanced mass, is represented by the filled dots. To
the truth is associated a standard deviation σ, which models
the precision interval that the WB in commerce possesses in
the detection process. In particular, concerning the unbalance
severity detection, the standard deviation takes a value of 5g,
i.e., the minimum available balancing weight. Conversely, a
value of 5deg models the standard deviation for the unbalance
angular position detection. This value is consistent with the
actually on the market WB level of uncertainty. Thus, we
consider that the achieved detection process produces non
zero estimation error only if the void circles fall outside the
±σ region. Therefore, from now on detection errors express
quantities which are exceeding the σ tolerance.

Figures 18 and 19 show the performance for the static
unbalance scenario (considering both inner and outer planes
of the wheel). As shown in Table IV, the severity detection
error, averaged over the different tested angular positions, is
at most 1.8g for a tested severity of 30g. Overall, detection

Fig. 19: Static unbalance: inner plane validation.

Fig. 20: Couple unbalance validation.
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Severity Detection Error (g)

Tested severity (g)
Static

Outer plane
Static

Inner plane
Couple

10 0.6 0.1 1.5

20 1.2 0.4 0.4

30 1.8 0 0.1

40 0.6 0.4 1.9

60 0 0 NA∗

Average 0.8 0.2 1.0

∗ NA: Not Applicable

TABLE IV: Unbalance severity detection error. The error is averaged
over the tested angular positions of Figure 10.

errors of 0.8g and 0.2g are guaranteed for the outer and the
inner wheel planes, respectively. Therefore, Table V shows
the angular position detection error, which is mainly confined
to values below 10deg. Only for a tested severity of 10g
performance worsen leading to a detection error of 31.9deg
for the inner wheel plane. As for Figure 20, the performance
of the algorithm in the couple scenario is shown (only the
pure couple unbalance is considered). In this case, the average
severity detection error is still satisfactory, i.e., 1.0g. While,
the average angular position detection error worsen, leading to
a value of 9.3deg. Eventually, the worst performance is still
obtained in correspondence of an unbalanced mass of 10g.

The proposed algorithm guarantees adequate performances
in terms of unbalance severity detection. As a matter of fact,
the detection error is always confined, on average, below 1.0g.
Therefore, the unbalance is detected correctly for almost all the
tested scenarios and the algorithm provides a good indication
for the subsequent wheel balancing. As far as the angular
position detection is concerned, the performance is highly
function of the tested unbalance severity. For both static and
couple scenarios, if low unbalances are considered, the angular
position detection error rises. Clearly, lowering the unbalanced
mass leads to smaller vibrations amplitudes (close to the sensor
sensitivity), which brings to a more challenging identification
of the signal phases and, consequently, to a worst detection
of the angular position. Eventually, to improve the unbalance
angular position detection and make the severity detection even
more robust, the sensor layout should be modified with more
accurate accelerometers and gyroscopes. This would allow for
a finer characterization of the vibratory components induced
by the unbalances and, consequently, to an improved detection.

In conclusion, starting from the information provided by
the proposed algorithm, the wheel balancing is performed
according to the steps outlined in Figure 2. Thus, for static
unbalances, the balancing weight is attached at 180deg with
respect to the detected angular position. The same procedure
is followed for the couple unbalance, but here two balancing
weights are used: one for the inner and one for the outer plane.
The exact angular position of the balancing weights may be
determined using a protractor, detached from the machine, and
measuring angles starting from the 0deg reference.

Ang. Position Detection Error (deg)

Tested severity (g)
Static

Outer plane
Static

Inner plane
Couple

10 11.4 31.9 22.0

20 8.7 7.3 3.9

30 3.9 3.6 3.8

40 7.1 4.1 7.4

60 4.5 1.6 NA∗

Average 7.1 9.7 9.3

∗ NA: Not Applicable

TABLE V: Unbalance angular position detection error. The error is
averaged over the tested angular positions of Figure 10.

VII. CONCLUSIONS

In this work, the effectiveness of accelerometers and gy-
roscopes for unbalance detection purposes is proven. By
extracting amplitude and phase information from the acquired
data, the algorithm is capable of detecting the unbalanced
mass with a reasonable accuracy. To do this, an effective
mechanical modification of the machine has been proposed,
which allows retrofitting existing WBs. As a matter of fact,
as shown in Section VI, the approach guarantees an average
severity detection error always below 1g, which is adequate
and close to the in commerce WB performance. On the other
hand, the average angular position detection error is varying
between 7.1deg and 14.1deg, depending whether the static
or couple scenario is considered. In particular, low values of
unbalanced masses (i.e., 10g) are generally difficult to detect
with a satisfactory accuracy. Eventually, the whole procedure
takes less than 5s, exactly the same time needed for the in
commerce WB.

Future works will be focused on improving detection per-
formance especially in the case of low values of unbalanced
masses. Moreover, robustness will be increased testing differ-
ent wheel masses and geometries, in order to provide a general
and reliable detection of the unbalance.
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APPENDIX A

A brief theoretical insight on the static unbalance is pro-
vided to the reader. Consider the mechanical system depicted
in Figure 21 and focus on the x-displacement. The motion
dynamics is described by the following equation [10]

(M +mr)ẍ+ rẋ+ kx = mrω
2ε sin(ωt), (12)

where M is the machine mass, mr the rotor mass, r the
damping coefficient, k the spring stiffness, ω the rotational
speed, and ε the distance of the rotor center of gravity G
from the axis of rotation. The presence of an unbalance in
the rotating mass generates a harmonic force at the rotational
speed ω.
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