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Abstract—Next-generation mobile communication systems are
planned to support millimeter Wave (mmWave) transmission
in scenarios with high-mobility, such as in private industrial
networks. To cope with propagation environments with unprece-
dented challenges, data-driven methodologies such as Machine
Learning (ML) are expected to act as a fundamental tool
for decision support in future mobile systems. However, high-
quality measurement datasets need to be made available to the
research community in order to develop and benchmark ML-
based methodologies for next-generation wireless networks. We
present a reliable testbed for collecting channel measurements at
sub-6 GHz and mmWave frequencies. Further, we describe a rich
dataset collected using the presented testbed. Our public dataset
enables the development and testing of innovative ML-based
channel simulators for both sub-6 GHz and mmWave bands on
real-world data. We conclude this paper by discussing promising
experimental results on two illustrative ML tasks leveraging
on our dataset, namely, channel impulse response forecasting
and synthetic channel transfer function generation, upon which
we propose future exploratory research directions. The original
dataset employed in this work is available on IEEE DataPort1,
and the code utilized in our numerical experiments is publicly
accessible via CodeOcean2

Index Terms—machine learning, deep learning, radio channel
prediction, radio channel simulation, vehicular communications,
channel sounding, channel measurements.

I. INTRODUCTION

Adaptive wireless transmission is among the core paradigms
for achieving consistent communication performance close to
the Shannon limit [2]. In particular, to estimate the quality of
a radio link and to adapt the transmission parameters to the
current channel condition, the transmitter needs to know the
Channel State Information at the Transmitter (CSIT), i.e., a
set of channel properties of the radio link. These properties
are strongly affected by several propagation phenomena such
as path loss, scattering, fading and shadowing [3]. Accurate
CSIT knowledge allows optimally tuning several transmission
parameters e.g., the transmit power, constellation size, coding
rate, single- and multiuser-beamforming/precoding, as well as
scheduling and resource allocation. Whenever link adaptation
is based on the assumption of instantaneous CSIT, outdated
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1Link to IEEE DataPort dataset: [1] https://dx.doi.org/10.21227/3tpp-j394
2Link to CodeOcean: https://codeocean.com/capsule/9619772/tree

CSIT can cause significant performance degradation [4]. For
example, feedback delay and processing delay in frequency-
division duplex (FDD) and time-division duplex (TDD) sys-
tems, respectively, are causes of outdated CSIT. Both feedback
and processing delays become more severe in rapidly changing
fading channels.

To deal with the problem of outdated CSIT in a data-driven
way, researchers have already proposed several channel predic-
tion methods based on ML. The goal of channel prediction is
to accurately forecast future CSIT in advance with a time span
that counteracts the induced delay. The proposed methods are
mostly based on Recurrent Neural Networks (RNN), as they
are especially suited for processing time-series data [5]. For
example, in [6], authors develop a channel forecaster based on
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) neural network layers.

In this context, next-generation mobile communication sys-
tems are planned to support mmWave transmission and are
expected to operate in high-mobility scenarios. 5G private
industrial networks, for instance, are planned to operate in-
doors at sub-6 GHz and mmWave frequencies. High mobility,
in this case, often refers to rapidly moving and rotating parts
of industrial machines. Motion control and Mobile Control
Panels - two of the interest use cases suggested by the 5G
Alliance for Connected Industries and Automation (ACIA) -
are systems in charge of accurately controlling, maintaining
and detecting faults of these moving parts with a closed control
loop involving the periodical collection of data from built-in
transmitting sensors. In this scenario, the co-location of anten-
nas and sensors on mobile parts is imperative for continuously
monitoring their proper functionality in a timely manner. Due
to fast channel fading, abrupt shadowing transitions and larger
Doppler spreads, channel prediction in the scenario intro-
duced above poses a significant challenge. Hence, high-quality
datasets of channel measurements in high-speed scenarios are
required for benchmarking ML-based techniques in real-world
conditions.

However, collecting reliable and self-consistent datasets of
comparative measurements between sub-6 GHz and mmWave
bands is not trivial. For instance, sub-6 GHz and mmWave
antennas cannot be simultaneously mounted at exactly the
same physical location. Such an antenna displacement may
result in a different fading behavior for different frequency
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bands, thus altering a fair comparison.
In this paper, to address these multifaceted challenges,

we provide the research community with a reliable and rich
high-speed channel measurements dataset for both sub-6 GHz
and mmWave frequencies, and we illustrate its potential ap-
plication for ML-based channel forecasting and simulation.
The testbed introduced in this study emulates the typical
motion patterns exhibited by mechanical components in in-
dustrial machines, and is therefore of particular interest for
the characterization of sub-6 GHz and mmWave 5G industrial
communications scenarios. Our contributions are summarized
as follows:

• We present the testbed hardware (published in [7]) for
fairly comparing systems between different frequency
bands in terms of small-scale and fast-fading in a high-
mobility environment.

• We describe a methodology (published in [8]) that allows
multi-band channel sounding over the identical measured
antenna path.

• We describe our dataset of channel measurements at sub-
6 GHz and mmWave bands, with transmitter velocities of
40 km/h and 100 km/h.

• We present two illustrative use cases of our dataset for the
application of ML-based techniques: RNN-based channel
forecasting and Generative Adversarial Network-based
channel impulse response (CIR) simulation.

II. TESTBED DESIGN AND IMPLEMENTATION

This section presents the proposed testbed setup. We focus
on the testbed implementation for sub-6 GHz and mmWave
cases, as well as on the necessary time and frequency syn-
chronization. We then elaborate on the two major advantages
of the proposed testbed: reproducibility and controllability.
Finally, we introduce a methodology for comparing multi-band
measurements performed at different transmitter velocities in
a fair manner.

A. Testbed Hardware

Our testbed setup is composed of a moving transmitter
and a static receiver, both located in an indoor propagation
environment [8]. Our moving transmitter employs a rotary
unit [9] which spins a transmit antenna around a central axis.
Specifically, the transmit antenna is placed on the top of a 1 m
long, rotating aluminum alloy arm that can reach speeds up
to 400 km/h, i.e., up to 1000 rotations-per-minute (rpm). We
control the rotation speed using an frequency inverter.

Furthermore, the rotary unit includes two rotary joints at
both ends of the central axis. The rotary joints are used to
connect the two rotating coaxial cables inside the rotary arm
to the static cables and the signal source outside the arm.
The maximum allowed signal frequency for these rotary joints
is 12.4 GHz. Thus, while sub-6 GHz signals can be directly
transmitted to the arm end, mmWave signals cannot. To the
best of our knowledge, a rotary joint capable of both mmWave
transmission and rotation up to approximately 1000 rpm is not
available off-the-shelf. Therefore, the testbed setup requires
hardware modifications to enable mmWave transmission.

Fig. 1. Testbed setup for multi-band time-variant channel measurements. A
transmit antenna is attached at the edge of the rotating arm.

In the following, for both sub-6 GHz and mmWave cases,
we generate the signal with an Arbitrary Waveform Generator
(AWG) (Keysight M8195A) and sample the received signal
with a signal analyzer (Rohde & Schwarz FSW67).

B. Sub-6 GHz Setup

The transmit Intermediate Frequency (IF) signal is digitally
up-converted via the AWG to the 2.55 GHz center frequency.
Then, the up-converted signal is transmitted through the rotary
joint and the coaxial cable up to the end of the rotary arm.
Finally, the radio signal is transmitted by a monopole antenna
shown in Fig. 1.

C. Millimeter Wave Setup

In the mmWave case, as previously mentioned, a direct
transmission of the Radio Frequency (RF) signal through
the rotary joint is not possible. Thus, we mount a mmWave
transmitter at the edge of the rotary arm and perform frequency
up-conversion. Since the edge of the rotary arm is exposed
to non-negligible acceleration forces during rotation, using
off-the-shelf, bulky RF modules is unfeasible. As a possible
solution, we developed our mmWave transmitter on a 6-
layered Printed Circuit Board (PCB) with the RF dielectric
substrate Rogers RO4350B (see Fig. 1). The PCB consists of
Surface Mount Device (SMD) components on the bottom side
and a monopole antenna on the top side. The entire PCB is
remarkably lightweight, weighing only 43.1 grams.
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As before, the IF signal is up-converted to the center
frequency of 5.5 GHz by the AWG. In addition, the mmWave
transmitter uses a Local Oscillator (LO) signal to up-convert
the signal to RF domain. Specifically, the LO signal at the
center frequency of 10 GHz is generated with a Continuous
Wave (CW) signal generator (R&S SMF). The IF and LO
signals are transmitted through the two rotary joints to the
mmWave transmitter, which is placed at the edge of the
rotating arm.

Besides the IF and LO signals, the mmWave transmitter
requires a +5 V and a +10.175 V DC supply. In our setup, as
the two rotary joints are being used for high-frequency signals,
we mounted a battery on the central rotating axis. In this
way, the DC supply is exposed only to negligible acceleration
forces.

Within the mmWave transmitter, an up-converter Integrated
Circuit (IC) performs LO frequency doubling. The doubled LO
frequency mixed with the IF signal leads to an RF frequency of
25.5 GHz. As the up-converter, we use the Macom MAMF-
011024, which operates in the frequency range from 21 to
27 GHz. Undesired spectral components (e.g., higher-order
harmonics, intermodulation products) generated by the up-
converter are filtered out via a 25−26 GHz bandpass filter
(B259MC1S). Furthermore, we leverage on a power amplifier
(HMC994APM5E) for compensating the large path losses at
mmWave frequencies. Finally, the amplified mmWave signal
is radiated by a 25.5 GHz monopole antenna.

For fairly comparing sub-6 GHz and mmWave frequency
bands, we require the same receive antenna raditation pat-
terns for both scenarios. Therefore, we employ 2.55 GHz
and 25.5 GHz horn antennas with the same opening angle as
receive antennas for sub-6 GHz and mmWave, respectively.

D. Synchronization

To reach optimum performance of the proposed channel
sounding system, accurate frequency and timing synchro-
nization are required. For instance, in a typical Industrial
Internet of Things (IIoT) scenario, multiple transmitter devices
are often located on moving mechanical parts and far away
from each other. Hence, a cable connection for providing
precise frequency and timing synchronization between sensing
devices and the receiver is not feasible. Instead, to provide
precise frequency synchronization, expensive Rubidium fre-
quency standards are usually employed at the transmitter
and the receiver [10]. As a possible solution for precise
timing synchronization, a preamble with good auto-correlation
properties is often exploited to detect the starting point of the
signal at the receiver [11].

In our setup, the transmitter and the receiver are placed only
10 m apart in the indoor laboratory environment. Therefore,
the cable connection is feasible and it represents a significant
advantage of the proposed setup compared to usual ones. To
provide accurate frequency synchronization, we interconnect
the AWG at the transmitter’s site and the signal analyzer
at the receiver’s site with a 100 MHz reference. For time
synchronization, we equip the rotary unit with a triggering
unit based on a Field Programmable Gate Array (FPGA) and a

rotational encoder. A trigger signal is derived by decoding the
signal of the rotational encoder via a counter and a comparator.
The generated trigger signal is fed to both the transmitter and
the receiver. Therefore, measurements can be initiated at a
specific and previously defined angular position of the rotating
arm once per revolution.

E. Reproducibility and Controllability

Two major advantages of the proposed testbed setup are
reproducibility and controllability. Reproducibility is the abil-
ity to replicate a sample under identical channel conditions,
which can hardly be achieved in real-world measurements. For
instance, in industrial communication scenarios, it is extremely
unlikely that the surroundings of a machine being monitored
(e.g., other machines and human operators) remain constant
over time. Our testbed setup achieves reproducibility in the
following way.

Firstly, the fading environment is kept static by ensuring
that there are no moving obstacles in the measurement room
during the experiment. This enables us to observe the effect of
individual system parameters (e.g., velocity, transmit power).
Secondly, via the trigger unit, we ensure that the transmit
antenna moves over an identical circular trace at the same
constant velocity for both sub-6 GHz and mmWave frequen-
cies. Thirdly, the receive antenna is kept static for the whole
duration of the measurement campaign. Therefore, we are able
to fairly compare measurements at sub-6 GHz and mmWave
frequencies.

The second major advantage of our proposed setup is
controllability, which is the ability to control environmental
and system parameters. Indeed, our setup allows fine tuning
of individual parameters of the radio link. For instance, we
can easily change the receive power by adjusting the transmit
power, and control the transmitter velocity by adjusting the
rotation speed through the frequency inverter.

F. Ensuring Fair Comparisons

To fairly compare measurements performed at various ve-
locities and frequency bands, we extend the methodology
from [8]. Firstly, the fading environment is kept static. To
this end, we ensured that there are no moving obstacles in
the measurement room during our experiments. Secondly, we
dimension the symbol duration such that the same number
of symbols is transmitted along the same measured trace for
different velocities. Overall, our parameter selection makes the
measurement results independent of the transmitter’s velocity,
and therefore leads to a fair comparison.

III. DATASET

In this section, we first describe our measurement campaign
with all measured scenarios and explain the post-processing
procedure of the measurement results to obtain our dataset.
Subsequently, we show some examples of data extraction and
provide practical guidelines for using our dataset.
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Fig. 2. Measured indoor laboratory environment. The rotating transmitter and the statical receiver are located in adjacent rooms. The transmitter is placed on
a sliding board, which is moved according to the illustrated rectangular grid.

A. Measurement Campaign

Using the above described testbed and methodology, we
perform channel measurements in the indoor propagation envi-
ronment illustrated in Fig. 2. Since indoor Line-of-Sight (LOS)
scenarios have already been well investigated, we focused on a
more challenging indoor Non-Line-of-Sight (NLOS) scenario,
which is more representative of real-world IIoT scenarios. We
perform channel measurements in four scenarios at the center
frequency of 2.55 GHz or 25.5 GHz, and transmitter velocity
of 40 km/h or 100 km/h. The detailed list of channel sounding
parameters is reported in Tab. I. The moving transmit antenna
follows the same circular arc segment at a constant velocity.
The receive antenna is kept static, being placed on a table in
an adjacent room.

We employ an Orthogonal Frequency-Division Multiplexing
(OFDM) Zadoff-Chu sequence [12] as the channel-sounding
signal. Specifically, a single measurement sequence consists of
50 000 identical OFDM symbols. Each measurement sequence
is grouped into 500 snapshots, and each snapshot consists of
100 OFDM symbols. Here, we assume that the coherence time
of the measured channel is larger than the duration of one
snapshot. The trigger unit starts the transmission when the
rotary arm is at a position of −40◦. The transmission continues
as the antenna moves along the circular arc from −40◦ to 40◦,
corresponding to a trace length of 1.39 m. Note that the angular
position of 0◦ corresponds to the direction perpendicular to the
ceiling.

At the receiver, the first OFDM symbol of each snapshot
is used as a cyclic prefix to remove intersymbol interference
(ISI), and the remaining 99 symbols are averaged, thereby
improving the Signal-to-Noise Ratio (SNR) by roughly 20 dB.
Once the OFDM signal processing is completed, the wireless
channel for each subcarrier is estimated via least-squares. We

TABLE I
CHANNEL SOUNDING PARAMETERS

Parameter Value
Bandwidth [MHz] 100

Number of Snapshots 500

Symbols per Snapshot 100

Delay Resolution [ns] 10

x-axis Positions 7

y-axis Positions 18

Measured Arc Segment −40◦ . . . 40◦

A B C D
Carrier Frequency [GHz] 2.55 2.55 25.5 25.5

Tx Velocity [km/h] 40 100 40 100

Number of Subcarriers 250 100 250 100

Subcarrier Spacing [kHz] 400 1000 400 1000

Symbol Duration [µs] 2.5 1 2.5 1

Measurement Duration [ms] 125 50 125 50

Maximum Doppler Shift [Hz] 94.5 236.2 945 2362

therefore obtain doubly-selective channel transfer functions.
Using this measurement procedure, we generate a dataset

consisting of different doubly-selective channel transfer func-
tions. These functions are generated by conducting measure-
ments at different positions of the transmitter. Besides rotating,
we can move the transmitter in space as well. Specifically,
the rotary unit with the transmit antenna is mounted on a
sliding board, which can be moved in space. We assume local
stationarity of the doubly-selective channel within a window
of approximately six wavelengths. At center frequencies of
2.55 GHz and 25.5 GHz, six wavelengths correspond roughly
to 70 cm and 0.7 cm, respectively. Under the aforementioned
assumptions, we performed measurements at 126 different



5

0 20 40 60 80 100
Frequency (MHz)

30

25

20

15

10

5

0

5

10
|h

CT
F|

2  
(d

B
)

Scenario A: fc=2.55GHz  v=40km/h
Scenario B: fc=2.55GHz  v=100km/h
Scenario C: fc=25.5GHz  v=40km/h
Scenario D: fc=25.5GHz  v=100km/h

0 100 200 300 400 500 600 700 800 900
Delay (ns)

60

50

40

30

20

10

0

|h
CI

R
|2  

(d
B

)

Scenario A: fc=2.55GHz  v=40km/h
Scenario B: fc=2.55GHz  v=100km/h
Scenario C: fc=25.5GHz  v=40km/h
Scenario D: fc=25.5GHz  v=100km/h

Fig. 3. Channel transfer function and channel impulse response of the 50th snapshot in all of the measured scenarios. Location on the x-y axis is X0Y0.

positions, as illustrated in Fig. 2. The positions on the x-
and y-axis are mutually separated by 0.4 λ. The blue (large)
and red (small) rectangles indicate the measured region for
sub-6 GHz and mmWave, respectively. Thereby, we obtain
different realizations of the same wireless channel for both
sub-6 GHz and mmWave.

B. Dataset Description

The dataset is accessible via IEEE DataPort [1], and con-
sists of doubly-selective channel transfer functions classified
in four categories depending on the measurement scenarios
in Tab. I. Our dataset is provided as numpy (.npy) files. Each
.npy file contains a 2D complex-valued matrix, where rows
represent snapshots and columns represent subcarriers. For
each scenario, there are 126 channel realizations obtained by
conducting measurements at different positions in accordance
with the grid from Fig. 2. Each filename in the dataset
is formatted as “frequency velocity position”. For example,
the entry “25 5GHz 100kmh X6Y2.npy” denotes the doubly-
selective channel transfer function measured at 25.5 GHz at
the velocity of 100 km/h for the position six on the x-axis and
position two on the y-axis.

Additionally, we provide an illustrative “example.py” script
for visualizing our dataset. The script loads measurement
samples according to user-specified parameters, such as the
x- and y- positions within the rectangular grid, and displays
the measured channel transfer function (CTF) and the channel
impulse response (CIR). Specifically, the script computes
the CIR via Inverse Fast Fourier Transform (IFFT) of the
corresponding CTF. As an illustrative example, in Fig. 3, we
show the CTF and CIR for the 50th snapshot and positions
X0Y0 for all measured scenarios.

IV. ILLUSTRATIVE MACHINE LEARNING USE-CASES AND
EXPLORATORY RESEARCH DIRECTIONS

In this Section, we outline two illustrative ML use-cases for
the presented dataset, namely i) CIR forecasting using recur-
rent neural networks, and ii) CTF simulation using generative
neural networks. For each task we describe a baseline ML

approach, we discuss our main results, and we propose future
research directions.

A. Channel Forecasting with Recurrent Neural Networks

We consider the problem of forecasting CIR values over a
fixed time horizon, given a time-series of past CIR values. In
the context of an adaptive transmission systems, accurate CIR
forecasting can help mitigating the problem of outdated CSIT
in the presence of fast fading [6].

To implement our forecaster, we leverage Long Short Term
Memory (LSTM) neural networks with Variational Dropout.
LSTM networks can efficiently learn complex temporal de-
pendencies in the sequence of input CIR values. Varia-
tional Dropout allows to estimate the uncertainty associated
with each forecast, providing richer information for proactive
decision-making compared to single point-estimates.

Our channel forecaster is implemented as a classical
encoder-decoder architecture, which comprises an encoder
neural network and a decoder neural network. More specif-
ically, the encoder and decoder networks consist of multiple
LSTM layers with Variational Dropout [13]. The task of the
encoder is to produce a fixed-dimension vector (often referred
to as context vector) from an input time-series of past CIR
values. The decoder takes as an input the context vector and
the last (either ground-truth or forecasted) CIR value, and
outputs a forecast for the CIR value at the next time instant as
well as an updated context vector. The forecasted CIR value
and the updated context vector are auto-regressively fed back
to the decoder, and the process is repeated until the desidered
forecast time-horizon is reached.

As an illustrative task, we will consider forecasting the abso-
lute CIR values for a single subcarrier, i.e., we limit ourselves
to a simple univariate forecasting problem. In particular, we
train our neural network to predict the future 32 CIR snapshots
given 64 past CIR snapshots.

Fig. 4 shows an illustrative CIR forecast for 2.55GHz center
frequency and 40km/h speed. Our encoder-decoder model cor-
rectly captured the CIR time-varying behaviour and it is able to
produce accurate forecasts. In particular, the ground-truth CIR
values are almost always within the predicted 95% confidence
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Fig. 4. Illustrative CIR mean forecasts and 95% confidence bands for a single
OFDM subcarrier, 2.55 GHz center frequency and 40 km/h transmit antenna
speed.

bands, therefore providing a truthful interval in which the
ground-truth CIR values are expected to lie. As expected, due
to forecasting errors compounding over time, the CIR forecasts
become increasingly inaccurate as the forecasting horizon
grows. On average, over all the considered measurement points
in the room, the Mean Absolute Percentage Error (MAPE) of
the forecasts is approximately 9.3 ± 0.2%, which indicates
good overall forecasting performance.

As exploratory future reseach, joint forecasting of multiple
subcarriers can be investigated. In particular, leveraging on
state-of-the-art attentional models [14], temporal correlations
between different subcarriers can be exploited for producing
more accurate forecasts, and for quantitatively evaluating the
impact of each subcarrier in the output forecasts.

B. Channel Simulation with Generative Neural Networks

We consider the problem of building an approximate and
lightweight channel simulator from channel sounding mea-
surement data. More specifically, we aim at generating syn-
thetic CTF samples whose behaviour over frequency and time
mimics real-world measurements. Illustrative applications in-
clude the design of radio interfaces and systems in propagation
environments similar to the training data, and benchmarking
transmission and coding techniques in realistic, but diversified
stochastic channel samples.

We propose leveraging generative neural networks for build-
ing approximate channel simulators. Briefly, the learning ob-
jective of generative neural networks is to model the distri-
bution of a given dataset (in our case, CTF samples). Said
distribution can then be cheaply sampled from, allowing for
cheap generation of arbitrarily large volumes of new, synthetic
data.

Leveraging on recent advances in synthetic generation
of image data, we implement our generative network as a
Deep Convolutional Generative Adversarial Network (DC-
GAN) [15]. In particular, we consider the task of generating
synthetic samples of the absolute CTF value over time and
frequency. As such, we represent each experimental run in our
presented dataset as a single image. At full resolution, each

(a) Absolute CTF values from real measurements

(b) Absolute CTF measurements generated by a DCGAN

Fig. 5. Illustrative real and synthetic absolute CTF values for 2.55 GHz
center frequency and 40 km/h transmit antenna speed. Time/frequency are
the horizontal/vertical axes.

image will have height equal to the number of OFDM carriers,
and width equal to the number of samples. For keeping training
times reasonably short and facilitating convergence, we resize
our input data down to 64x64.

Fig. 5 illustrates real and synthetic absolute CTF values
for a center frequency of 2.55GHz and velocity equal to
40km/h. The synthetic CTF samples, albeit looking slightly
noisy, are indeed visually resemblant to the real measurements.
We underline that by leveraging off-the-shelf Graphical Pro-
cessing Units (GPUs), large volumes of synthetic data can
be generated in short computational times. Thus, our simple
exercise illustrates the potential of generative neural networks
for building realistic channel simulators.

V. CONCLUSION

In this paper, we describe the testbed hardware for col-
lecting comparative doubly-selective channel measurements
between sub-6 GHz and mmWave bands and we provide
the corresponding measurement dataset. We outline in detail
practical setup guidelines for ensuring the repeatability and the
controllability of the experiments. After that, we describe the
measurement campaign that has been conducted for creating
the dataset. Finally, we present two illustrative ML use-
cases for our dataset, namely CIR forecasting with recurrent
neural networks and synthetic CTF generation with generative
adversarial networks, and we suggest future exploratory re-
search directions. Overall, our dataset provides rich, dynamic
channel measurements in highly diversified scenarios of par-
ticular interest for the characterization of 5G private industrial
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networks. This enables the development of innovative ML-
driven methodologies on challenging real-world propagation
environments. We hope that the research community will find
use and inspiration in our work.
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