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Abstract

The steady motion of a viscous incompressible fluid in a pipe (perforated with a large number of small 
holes) is modeled through the Navier-Stokes equations with mixed boundary conditions involving the 
Bernoulli pressure and the tangential velocity on the inlet and outlet of the tube, while either the transversal 
flux rate or the pressure drop is prescribed along the pipe. Applying the classical energy method in homog-
enization theory, we study the asymptotic behavior of the solutions to these systems, without any restriction 
on the magnitude of the data, as the size of the perforations goes to zero and show that the effective equa-
tions remain unmodified in the limit. The main novelty of the present work lies in the obtainment of the 
required uniform bounds, which are achieved (in the case of the prescribed flux problem) by a contradiction 
argument based on Bernoulli’s law for solutions of the stationary Euler equations.
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1. Introduction and presentation of the problem

Applications in physics and engineering often lead to the analysis of steady flow of a viscous 
incompressible fluid through perforated pipes [7,28], where the goal is to obtain a macroscopic
description of the system dynamics when the number of perforations goes to infinity and, simul-
taneously, the size of each hole vanishes. In many of such studies, of particular relevance is the 
possibility of calculating the velocity net fluxes from prescribed pressure drops, or alternatively, 
of finding the pressure drops that originate these net fluxes [27]. From a strictly mathematical 
point of view, starting from the pioneering works of Marchenko & Khruslov [38, Chapter IV], 
Sánchez-Palencia [19,45] and Tartar [48], passing through the benchmark contributions of Al-
laire [1–3] and Conca [12–14], homogenization methods in the context of viscous incompressible 
fluid flows (in stationary regime, see also [34]) have attracted the interest of several authors that 
adapted and expanded such techniques to models involving unsteady incompressible [22,37,41], 
viscous compressible [20,36,39,43] or heat-conducting [21,23,35,44] fluid flows, among many 
others (the list of references presented is far from being exhaustive). Concerning the boundary 
conditions imposed on the velocity field, while Navier boundary conditions on the surface of the 
perforations have been treated in [3,12], the no-slip boundary condition is typically assumed on 
the external boundary, that is, the velocity field is set to be zero on the boundary of the domain 
containing the perforations. Under a different choice for the outer boundary conditions, the well-
posedness of the corresponding problem in the perforated domain can be guaranteed, in most 
cases, under a smallness assumption on the data [6,8,15,25,33,47] (we also recall that the cele-
brated Leray problem for the steady-state Navier-Stokes system with nonhomogeneous Dirichlet 
boundary conditions remains open in the general three-dimensional case [31]). Motivated by 
the works of Heywood, Rannacher & Turek [27] and Korobkov, Pileckas & Russo [32], in the 
present article we tackle two models associated to the steady-state Navier-Stokes equations with 
mixed and non-standard boundary conditions (in the sense of [15,16]) involving the Bernoulli 
pressure: the prescribed net flux (1.4) and the prescribed pressure drop (1.5) problems. As we 
will see in Section 2 (in particular, Theorem 2.1), the main difficulty encountered here lies in the 
obtainment of the uniform bounds (without any restriction on the magnitude of the data) that are 
required to describe the macroscopic behavior of the system through a compactness argument.

In the space R3 we use a system of cylindrical coordinates (ρ, θ, z) ∈ [0, ∞) × [0, 2π] ×R, 
in which any spatial point will be denoted by ξ = ρρ̂ + ẑk, with ρ ≥ 0, z ∈ R and 

{
ρ̂, θ̂ , k̂

}⊂ R3

the orthonormal basis in this geometry. Given h > R > 1, we consider an open straight cylinder 
� of radius R and length 2h whose axis of symmetry is directed along the z-axis:

� =
{
ξ ∈R3 | 0 < ρ < R, −h < z < h

}
.

For any ξ ∈ R3 and r > 0 we denote by B(ξ, r) ⊂ R3 the open ball of radius r with center at 
ξ . Let (Kn)n∈N be a sequence of open, bounded and simply connected sets with a C2-boundary 
such that (0, 0, 0) ∈ Kn, for every n ∈N , and

sup
n∈N

|Kn| < ∞ .

Take ε∗ ∈ (0, 1) such that ε∗|Kn| < 2πR2h, ∀n ∈ N . Following [17,21,35], given α > 3 and ε ∈
(0, ε∗], suppose that there exist an integer N(ε) ≥ 1 and a collection of points ξε

1 , ..., ξε
N(ε)

∈ R3

such that
2
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Fig. 1.1. Representation of the perforated domain �ε .

ξε
n + εαKn ⊂ B(ξε

n , δ0ε
α) ⊂ B(ξε

n , δ1ε) ⊂ B
(
ξε
n , δ2ε

)⊂ � ∀n ∈ {1, ...,N(ε)} ,

∂B
(
ξε
n , δ2ε

)∩ ∂B
(
ξε
m, δ2ε

)= ∅ ∀n,m ∈ {1, ...,N(ε)} , n 
= m,

∂B
(
ξε
n , δ2ε

)∩ ∂� = ∅ ∀n ∈ {1, ...,N(ε)} ,

(1.1)

for some constants δ0, δ1, δ2 > 0 that are independent of ε ∈ (0, ε∗] and such that δ1 < δ2. Setting 
Kε

n
.= ξε

n + εαKn for every n ∈ {1, ..., N(ε)}, we will refer to the family {Kε
n}N(ε)

n=1 satisfying (1.1)
as the solid obstacles, while the set

�ε
.= � \ Kε

.= � \
N(ε)⋃
n=1

Kε
n , (1.2)

represents the perforated fluid domain at the ε-level. We emphasize that, given ε ∈ (0, ε∗], the 
family of obstacles {Kε

n}N(ε)
n=1 is built in such a way that the size of each solid is proportional to 

εα , while the mutual distance between any two consecutive holes is proportional to ε. Moreover, 
since we only consider those obstacles that are strictly contained in � (in the sense of (1.1)3), 
the following bound on the number N(ε) holds:

N(ε) ≤ 3R2h

2δ3
2ε3

.

Notice, however, that the solids {Kε
n}N(ε)

n=1 may have different shapes and that they are not neces-
sarily periodically distributed in �, see Fig. 1.1.

We decompose the boundary of �ε as ∂�ε = �I ∪ �ε
W ∪ �O , where

�I =
{
ξ ∈R3 | 0 < ρ < R , z = −h

}
, �O =

{
ξ ∈R3 | 0 < ρ < R , z = h

}
,

�ε
W = L∪ ∂Kε

.=
{
ξ ∈R3 | ρ = R , −h < z < h

}
∪

N(ε)⋃
n=1

∂Kε
n .

(1.3)

The outward unit normal to ∂�ε is denoted by ν (with some abuse of notation, as such vector 
also depends on ε). Henceforth we will refer to �I and �O in (1.3) as the inlet and outlet of �, 
respectively, while �ε

W includes all the physical walls of �ε . Given ε ∈ (0, ε∗], we analyze the 
steady motion of a viscous incompressible fluid (with a constant kinematic viscosity η > 0) along 
�ε , which is characterized by its velocity vector field uε : �ε −→ R3 and its scalar pressure 
pε : �ε −→ R, under the action of an external force f : � −→ R3. Such stationary motion will 
be modeled through two different boundary-value problems (with mixed boundary conditions) 
3
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associated to the steady-state Navier-Stokes equations in �ε. We firstly consider the prescribed 
net flux problem, which reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η�uε + (uε · ∇)uε + ∇pε = f , ∇ · uε = 0 in �ε ,

uε = 0 on �ε
W ,

uε × ν = 0 , pε + 1

2
|uε|2 = p−

ε on �I ,

uε × ν = 0 , pε + 1

2
|uε|2 = p+

ε on �O ,∫
�ε(s)

uε · k̂ = F ∀s ∈ [−h,h] .

(1.4)

While (1.4)2 describes the usual no-slip boundary condition on the physical walls �ε
W , the first 

equality in (1.4)3-(1.4)4 dictates that the fluid flow must enter and leave the domain � orthogonal 
to the inlet and outlet walls. The second identity in (1.4)3-(1.4)4 imposes that, respectively on 
the inlet �I and outlet �O , the Bernoulli pressure defined as �ε

.= pε + |uε|2/2 must equal 
some constants p∓

ε ∈ R that represent the unknown pressure drop p+
ε − p−

ε along the perforated 
pipe (therefore, p∓

ε are unknown, not prescribed, constants that depend on the solution). Finally, 
(1.4)5 dictates that the transversal flow rate of the velocity field must be constant along the pipe, 
given by a quantity F ∈R, where we set

�ε(s)
.= {ξ ∈ �ε | 0 < ρ < R , z = s} ∀s ∈ [−h,h].

Secondly, we analyze the prescribed pressure drop problem, which reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η�uε + (uε · ∇)uε + ∇pε = f , ∇ · uε = 0 in �ε ,

uε = 0 on �ε
W ,

uε × ν = 0 , pε + 1

2
|uε|2 = p− on �I ,

uε × ν = 0 , pε + 1

2
|uε|2 = p+ on �O ,

(1.5)

where now the constants p∓ ∈ R are given and prescribe the pressure drop p+ − p− along 
the perforated pipe. Given a velocity field uε ∈ C2(�ε) ∩ C(�ε) solving (1.5), observe that the 
transversal flux rate

Fε
.=

∫
�ε(s)

uε · k̂ ∀s ∈ [−h,h] , (1.6)

is constant along the pipe, but depends on the solution. Indeed, given s ∈ (−h, h], we define the 
region

�ε(s)
.= {ξ ∈ �ε | − h < z < s} =⇒ ∂�ε(s) = �I ∪ {

ξ ∈ �ε | − h < z < s
}∪ �ε(s) .
W

4
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Since uε vanishes on �ε
W , after applying the Divergence Theorem we infer

0 =
∫

∂�ε(s)

uε ·ν = −
∫
�I

uε · k̂ +
∫

�ε(s)

uε · k̂ =⇒
∫

�ε(s)

uε · k̂ =
∫
�I

uε · k̂ ∀s ∈ [−h,h] .

Since the scalar pressure can be determined up to an additive constant, without loss of generality 
we may take p−

ε = 0 in (1.4)3. Moreover, in view of the identity

∇
(

1

2
|uε|2

)
= (∇uε)

�uε in �ε ,

it is customary (see, for example, [27,32]) to add the term (∇uε)
�uε to both sides of the equation 

of conservation of momentum (1.4)1-(1.5)1, thereby resulting in the problems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η�uε + (uε · ∇)uε − (∇uε)
�uε + ∇�ε = f , ∇ · uε = 0 in �ε ,

uε = 0 on �ε
W ,

uε × ν = 0 , �ε = 0 on �I ,

uε × ν = 0 , �ε = p+
ε on �O ,∫

�ε(s)

uε · k̂ = F ∀s ∈ [−h,h] ,

(1.7)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− η�uε + (uε · ∇)uε − (∇uε)
�uε + ∇�ε = f , ∇ · uε = 0 in �ε ,

uε = 0 on �ε
W ,

uε × ν = 0 , �ε = p− on �I ,

uε × ν = 0 , �ε = p+ on �O .

(1.8)

In the case of a non-perforated pipe (that is, when ε = 0), existence of a generalized solution 
to systems (1.7)-(1.8) has been recently proved by the authors of [32] without any restriction on 
the data, that is, for any prescribed flux rate or prescribed pressure drop: in the case of (1.7), the 
a priori estimates required by the Leray-Schauder Principle are obtained through a contradiction 
argument that employs Bernoulli’s law [30] for solutions of the stationary Euler equations (2.43). 
Later, in [46], this result was extended to the case of a pipe containing a fixed obstacle with a 
Lipschitz boundary.

Ultimately, the main goal of the present article is to study the asymptotic behavior of the 
solutions of problems (1.7)-(1.8) as ε → 0+. For the prescribed flux rate problem, our homoge-
nization result reads:

Theorem 1.1. Let (�ε)ε∈(0,ε∗] be the family of perforated domains verifying (1.1) with α > 3. 
Given any F ∈ R and f ∈ L2(�), let (uε, �ε) ∈ H 1(�ε) × L2(�ε) be a weak solution of (1.7). 
Then, up to the extraction of a subsequence, the sequence {(ũε, ̃�ε)}ε∈(0,ε∗] ⊂ H 1(�) × L2(�)
5
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of trivially extended functions converges strongly to a weak solution (u, �) ∈ H 1(�) ×L2(�) of 
problem (1.7) in � as ε → 0+. Furthermore, (u, �) ∈ H 2(�) × H 1(�) and it satisfies in strong 
form the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η�u + (u · ∇)u − (∇u)�u + ∇� = f , ∇ · u = 0 in �,

u = 0 on L ,

u × ν = 0 , � = 0 on �I ,

u × ν = 0 , � = p+ on �O ,∫
�(s)

u · k̂ = F ∀s ∈ [−h,h] ,

for some (unknown) constant p+ ∈R.

Similarly, for the prescribed pressure drop problem, our homogenization result reads:

Theorem 1.2. Let (�ε)ε∈(0,ε∗] be the family of perforated domains verifying (1.1) with α > 3. 
Given any p± ∈R and f ∈ L2(�), let (uε, �ε) ∈ H 1(�ε) ×L2(�ε) be a weak solution of (1.8). 
Then, up to the extraction of a subsequence, the sequence {(ũε, ̃�ε)}ε∈(0,ε∗] ⊂ H 1(�) × L2(�)

of trivially extended functions converges strongly to a weak solution (u, �) ∈ H 1(�) ×L2(�) of 
problem (1.8) in � as ε → 0+. Furthermore, (u, �) ∈ H 2(�) × H 1(�) and it satisfies in strong 
form the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− η�u + (u · ∇)u − (∇u)�u + ∇� = f , ∇ · u = 0 in �,

u = 0 on L ,

u × ν = 0 , � = p− on �I ,

u × ν = 0 , � = p+ on �O .

In order to prove Theorems 1.1-1.2, in Section 2 we derive uniform ε-independent bounds 
for the solutions of (1.7)-(1.8). Theorem 2.1, the most involved in this work, adapts the con-
tradiction argument of [32] previously described and, additionally, employs several properties 
of the relative capacity of the perforations inside � (see Lemma 2.1) and a uniform Bogovskii-
type operator over the space of square-integrable functions (not necessarily having zero mean 
value, see Lemma 2.2) which, in turn, relies on the construction given by Diening, Feireisl & 
Lu in [17]. Subsequently, applying the classical energy method in homogenization theory [45, 
Appendix], in Section 3 (specifically, Theorems 3.1-3.2) we show that, as ε → 0+, the effective 
or homogenized equations remain unchanged in the limit: up to the extraction of a subsequence, 
the sequences of solutions (indexed by the parameter ε) of (1.7)-(1.8) converge strongly (in a 
sense made precise in Theorems 3.1-3.2) to solutions of problems (1.7)-(1.8), respectively, in �
as ε → 0+. This is usually interpreted by stating that very small perforations cannot appreciably 
perturb the fluid flow [2, Remark 3.3.2]. We point out that this phenomenon is not new in the 
literature, as it coincides with other results in homogenization theory in the regime of tiny holes 
6
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[2,20,35,36]. Therefore, as already announced, the main technical novelty of this note are pre-
cisely the uniform bounds of Section 2 without any restriction on the size of the data (external 
force, prescribed flux rate and prescribed pressure drop).

2. Mixed boundary-value problems at the ε-level: uniform bounds

Let ε ∈ I∗ be a fixed parameter, with I∗
.= (0, ε∗]. Many of the results contained in the present 

article exploit the concept of relative capacity of Kε with respect to �, defined as

Cap�(Kε)
.= min

v∈H 1
0 (�)

⎧⎨⎩
∫
�

|∇v|2
∣∣∣ v = 1 in Kε

⎫⎬⎭ . (2.1)

The relative capacity potential of Kε with respect to �, that is, the scalar function φε ∈ H 1
0 (�)

achieving the minimum in (2.1), satisfies

�φε = 0 in �ε , φε = 0 on ∂�, φε = 1 in Kε , Cap�(Kε) = ‖∇φε‖2
L2(�)

, (2.2)

see [40, Chapter 2] for more details. Further essential properties of the relative capacity potential 
are collected in the following result, in the spirit of [3, Proposition 4.3] and the examples of [11, 
Section 2]:

Lemma 2.1. Let �ε be as in (1.2) and φε ∈ H 1
0 (�) be the function satisfying (2.2). Then, we 

have φε ∈ H 2(�ε) and the following estimates hold

‖1 − φε‖L2(�ε)
≤ C∗ and ‖φε‖L2(�ε)

+ ‖∇φε‖L2(�ε)
≤ C∗ε

α−3
2 , (2.3)

for some constant C∗ > 0 that depends on � and {δi}2
i=0, but is independent of ε ∈ I∗.

Proof. In what follows, C > 0 will always denote a generic constant that depends on � and 
{δi}2

i=0 (independently of ε ∈ I∗), but that may change from line to line.
Since Kε

n has a boundary of class C2 for every n ∈ {1, ..., N(ε)}, � is convex and its lateral 
boundary is smooth, standard elliptic regularity arguments show that φε ∈ H 2(�ε). The first 
estimate in (2.3) follows directly from the Maximum Principle. Concerning the second estimate 
in (2.3), choose λ > δ0 (independent of ε ∈ I∗) such that

Kε
n ⊂ B(ξε

n , δ0ε
α) ⊂ B(ξε

n , λεα) ⊂ B(ξε
n , δ1ε) ∀n ∈ {1, ...,N(ε)} .

Given n ∈ {1, ..., N(ε)}, consider the function ϕε
n : � −→ R defined by

ϕε
n(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 0 ≤ |ξ − ξε

n | ≤ δ0ε
α ,

λεα − |ξ − ξε
n |

λεα − δ0εα
if δ0ε

α < |ξ − ξε
n | ≤ λεα ,

0 if |ξ − ξε| > λεα ,
n

7
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so that, by the assumptions in (1.1)1, ϕε
n ∈ H 1

0 (�) and ϕε
n = 1 in B(ξε

n , δ0εα). Since the relative 
capacity is an outer measure and is increasing with respect to domain inclusion (see [40, Section 
2.2]), we get

Cap�(Kε) ≤
N(ε)∑
n=1

Cap�(Kε
n) ≤

N(ε)∑
n=1

Cap�(B(ξε
n , δ0ε

α)) ≤
N(ε)∑
n=1

∫
�

|∇ϕε
n|2 ≤ Cεα−3 ,

so that

‖∇φε‖L2(�) ≤ Cε
α−3

2 .

Since φε ∈ H 1
0 (�), an application of Poincaré’s inequality in � allows us to conclude the 

proof. �
Let Q ⊂ R3 be any bounded Lipschitz domain, and consider the space of square-integrable 

functions in Q having zero mean value:

L2
0(Q) =

⎧⎪⎨⎪⎩g ∈ L2(Q)

∣∣∣ ∫
Q

g = 0

⎫⎪⎬⎪⎭ . (2.4)

Another essential preliminary result concerns the construction of a uniform Bogovskii-type oper-
ator on the space L2(�ε), which exploits the corresponding uniform operator on L2

0(�ε) built in 
[17] and the particular geometry of our setting. To fix ideas, given any function (scalar or vector) 
ψ ∈ L2(�ε), hereafter we will denote by ψ̃ ∈ L2(�) the function defined by

ψ̃
.=
{

ψ in �ε ,

0 in Kε .

Then, inspired by [32, Lemma 4.2], we have:

Lemma 2.2. Let �ε be as in (1.2) and q ∈ L2(�ε). There exists a vector field Jε ∈ H 1(�ε) such 
that {∇ · Jε = q in �ε ; Jε × ν = 0 on �I ;

Jε = 0 on �ε
W ∪ �O ; ‖∇Jε‖L2(�ε)

≤ C∗‖q‖L2(�ε)
,

(2.5)

for some constant C∗ > 0 that depends on � and {δi}2
i=0, but is independent of ε ∈ I∗.

Proof. In what follows, C > 0 will always denote a generic constant that depends on � and 
{δi}2

i=0 (independently of ε ∈ I∗), but that may change from line to line.
For every s ∈ [−h, h] we set

�(s)
.= {ξ ∈ � | 0 < ρ < R , z = s} .
8
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Consider a Hagen-Poiseuille flow having unit flow rate in �, that is,

U0(ξ)
.= 2

πR4 (R2 − ρ2)̂k ∀ξ ∈ �. (2.6)

Clearly U0 ∈ C∞(�) is divergence-free, it vanishes on L, and U0 ×ν = 0 on �I ∪�O . Moreover,∫
�I

U0 · k̂ =
∫

�O

U0 · k̂ = 1 . (2.7)

Let φε ∈ H 2(�ε) ∩ H 1
0 (�) be the relative capacity potential of Kε with respect to �, as in 

Lemma 2.1. Notice that ̃q ∈ L2(�) and ‖q‖L2(�ε)
= ‖q̃‖L2(�). We then define the vector field

Qε(ξ)
.= (1 − φε(ξ))

⎛⎜⎝ h∫
z

∫
�(s)

q̃(x, y, s) dx dy ds

⎞⎟⎠U0(ξ) ∀ξ ∈ �ε ,

which is an element of H 1(�ε) such that Qε = 0 on �O ∪ �ε
W and Qε × ν = 0 on �I . Then, in 

view of Hölder’s inequality and the Maximum Principle, the following pointwise bounds hold:∣∣∣∣∂Qε

∂x
(ξ)

∣∣∣∣≤ C‖q‖L2(�ε)
(1 + |∇φε(ξ)|) ,

∣∣∣∣∂Qε

∂y
(ξ)

∣∣∣∣≤ C‖q‖L2(�ε)
(1 + |∇φε(ξ)|) ,∣∣∣∣∂Qε

∂z
(ξ)

∣∣∣∣≤ C‖q‖L2(�ε)
(1 + |∇φε(ξ)|) + C‖q̃‖L1(�(z)) for a.e. ξ ∈ �ε .

(2.8)

The estimates in (2.3)-(2.8), combined with Jensen’s inequality, give us

‖∇Qε‖2
L2(�ε)

≤ C

⎛⎝‖q‖2
L2(�ε)

+
h∫

−h

2π∫
0

R∫
0

ρ‖q̃‖2
L1(�(z))

dρ dθ dz

⎞⎠

≤ C

⎛⎜⎝‖q‖2
L2(�ε)

+
h∫

−h

∫
�(s)

|̃q(x, y, s)|2 dx dy ds

⎞⎟⎠≤ C‖q‖2
L2(�ε)

,

that is,

‖∇Qε‖L2(�ε)
≤ C‖q‖L2(�ε)

. (2.9)

On the other hand, from the Divergence Theorem and (2.7) we obtain

−
∫

∇ · Qε = −
∫

Qε · ν =
∫

Qε · k̂ =
h∫ ∫

q̃(x, y, s) dx dy ds =
∫

q̃ =
∫

q ,
�ε ∂�ε �I −h �(s) � �ε

9
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so that q + ∇ · Qε ∈ L2
0(�ε), see (2.4). Then, there exists a vector field Xε ∈ H 1

0 (�ε) such that

∇ ·Xε = q +∇ ·Qε in �ε and ‖∇Xε‖L2(�ε)
≤ CB(�ε)‖q +∇ ·Qε‖L2(�ε)

, (2.10)

see [9]. From [17, Theorem 2.3] we know that CB(�ε) (the so-called Bogovskii constant of �ε , 
see [24, Section 2]) admits the uniform bound

CB(�ε) ≤ C
(

1 + ε
α−3

2

)
. (2.11)

We set Jε
.= Xε − Qε which, in view of (2.9)-(2.10)-(2.11), is an element of H 1(�ε) satisfying 

(2.5). �
As in [46], we introduce the functional spaces (of vector fields) that will be employed here-

after:

V∗(�ε) =

⎧⎪⎪⎨⎪⎪⎩v ∈ H 1(�ε)

∣∣∣∣∣
∇ · v = 0 in �ε ; v × ν = 0 on �I ∪ �O ;

v = 0 on �ε
W ;

∫
�ε(s)

v · k̂ = 0 ∀s ∈ [−h,h]

⎫⎪⎪⎬⎪⎪⎭
and

V(�ε) =
{
v ∈ H 1(�ε) | ∇ · v = 0 in �ε ; v × ν = 0 on �I ∪ �O ; v = 0 on �ε

W

}
,

which are Hilbert spaces if endowed with the Dirichlet scalar product of the gradients. Concern-
ing the boundary-value problems (1.7)-(1.8), throughout this section we assume that F ∈ R, 
p± ∈ R, f ∈ L2(�) are a given transversal flux rate, pressure drop and external forcing 
term, respectively. Then, [46, Theorem 3.1] allows us to prove the existence of a vector field 
�ε ∈ H 2(�ε) such that⎧⎪⎪⎨⎪⎪⎩

∇ · �ε = 0 in �ε ; �ε × ν = 0 on �I ∪ �O ;

�ε = 0 on �ε
W ;

∫
�ε(s)

�ε · k̂ = F ∀s ∈ [−h,h] . (2.12)

Moreover, as a consequence of Lemma 2.1 and [17, Theorem 2.3], there holds the bound

‖∇�ε‖L2(�ε)
≤ C∗|F | , (2.13)

for some constant C∗ > 0 that depends on � and {δi}2
i=0, but is independent of ε ∈ I∗. We give 

the following definition for the weak solutions of problems (1.7)-(1.8) (equivalently, of problems 
(1.4)-(1.5)):

Definition 2.1. A vector field u ∈ V(�ε) is a weak solution of (1.7) if u − �ε ∈ V∗(�ε) and

η

∫
∇u · ∇ϕ +

∫ [
∇u − (∇u)�

]
u · ϕ =

∫
f · ϕ ∀ϕ ∈ V∗(�ε) .
�ε �ε �ε

10
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A vector field u ∈ V(�ε) is called a weak solution of (1.8) if

η

∫
�ε

∇u · ∇ϕ +
∫
�ε

[
∇u − (∇u)�

]
u · ϕ + (p+ − p−)

∫
�O

ϕ · k̂ =
∫
�ε

f · ϕ ∀ϕ ∈ V(�ε) . (2.14)

We refer to [32, Section 2] for an explanation of the fact that the boundary conditions involving 
the Bernoulli pressure in (1.7)-(1.8) are implicitly contained in the variational formulations of 
Definition 2.1.

The first main result of this section provides uniform bounds (with respect to ε ∈ I∗) for the 
solutions of the prescribed flux problem (1.7).

Theorem 2.1. Let �ε be as in (1.2), and suppose that there exists δ3 ∈ (0, h) such that, for every 
ε ∈ I∗ and n ∈ {1, ..., N(ε)}, we have

∂B
(
ξε
n , δ2 ε

)∩ {
ξ ∈ � | − h ≤ z ≤ −h + δ3 or h − δ3 ≤ z ≤ h

}= ∅ . (2.15)

For any F ∈ R and f ∈ L2(�), there exists at least one weak solution uε ∈ H 2(�ε) ∩ V(�ε) of 
the prescribed net flux problem (1.7) and an associated Bernoulli pressure �ε ∈ H 1(�ε) such 
that the pair (uε, �ε) satisfies (1.7) in strong form for some constant p+

ε ∈ R. Moreover, the 
uniform bound

sup
ε∈I∗

(‖∇uε‖L2(�ε)
+ ‖�ε‖L2(�ε)

+ |p+
ε |)≤ C∗ , (2.16)

holds for some constant C∗ > 0 that depends on �, η, f , F and {δi}3
i=0, but is independent of 

ε ∈ I∗.

Proof. In what follows, C > 0 will always denote a generic constant that depends on �, η, F
and {δi}3

i=0 (independently of ε ∈ I∗), but that may change from line to line.
Then, given any F ∈R, f ∈ L2(�) and ε ∈ I∗, a direct extension of [46, Theorem 3.3] ensures 

the existence of at least one weak solution uε ∈ V(�ε) of problem (1.7). Then, [46, Theorem 3.2]
guarantees that uε ∈ H 2(�ε) ∩ V(�ε) and the existence of an associated pressure �ε ∈ H 1(�ε)

satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η�uε + E(uε)uε + ∇�ε = f , ∇ · uε = 0 in �ε ,

uε = 0 on �ε
W ,

uε × ν = 0 , �ε = 0 on �I ,

uε × ν = 0 , �ε = p+
ε on �O ,∫

�ε(s)

uε · k̂ = F ∀s ∈ [−h,h] ,

(2.17)

in strong form, for some (unknown) constant p+
ε ∈ R. In (2.17)1, E(w) .= ∇w − (∇w)� de-

notes the skew-symmetric gradient of any w ∈ H 1(�). Notice that �̃ε ∈ L2(�), ũε ∈ S�(�) is 
divergence-free separately in �ε and Kε , where we have introduced
11
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S�(�)
.=
{
v ∈ H 1(�) | v = 0 on L ; v × ν = 0 on �I ∪ �O

}
, (2.18)

which is a closed subspace of H 1(�). Moreover,

‖∇ũε‖L2(�) = ‖∇uε‖L2(�ε)
and ‖�̃ε‖L2(�) = ‖�ε‖L2(�ε)

. (2.19)

We multiply the first identity in (2.17)1 by uε and integrate by parts, each term separately, to 
obtain

−
∫
�ε

�uε · uε = ‖∇uε‖2
L2(�ε)

−
∫

∂�ε

∂uε

∂ν
· uε = ‖∇uε‖2

L2(�ε)
−
⎛⎜⎝∫

�I

∂uε

∂ν
· uε +

∫
�O

∂uε

∂ν
· uε

⎞⎟⎠ .

Write uε = (u
(1)
ε , u(2)

ε , u(3)
ε ) in �ε . Notice that ν = ∓k̂ on �I and �O , respectively, and thus 

u
(1)
ε = u

(2)
ε = 0 on �I ∪ �O , in view of (1.7)3-(1.7)4. The regularity and incompressibility con-

dition of u then imply

∂uε

∂ν
· uε = u(3)

ε

∂u
(3)
ε

∂z
= −u(3)

ε

(
∂u

(1)
ε

∂x
+ ∂u

(2)
ε

∂y

)
= 0 on �I ∪ �O . (2.20)

Therefore,

−
∫
�ε

�uε · uε = ‖∇uε‖2
L2(�ε)

. (2.21)

Concerning the nonlinear term, we obviously have∫
�ε

E(uε)uε · uε = 0 . (2.22)

Regarding the pressure term, from (2.17)3-(2.17)4-(2.17)5 we infer∫
�ε

∇�ε · uε =
∫

∂�ε

�ε(uε · ν) = Fp+
ε . (2.23)

By adding the identities (2.21)-(2.22)-(2.23) we get

η‖∇uε‖2
L2(�ε)

+ Fp+
ε =

∫
�

f · ũε , (2.24)

so that an application of Poincaré’s inequality in � and (2.19) give us

|p+
ε | ≤ C

(
‖∇uε‖2

2 + ‖f ‖L2(�)‖∇uε‖L2(� )

)
. (2.25)
L (�ε) ε

12
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Now, in view of Lemma 2.2, let Jε ∈ H 1(�ε) be a vector field such that{∇ · Jε = �ε in �ε ; Jε × ν = 0 on �I ;
Jε = 0 on �O ∪ �ε

W ; ‖∇Jε‖L2(�ε)
≤ C‖�ε‖L2(�ε)

.
(2.26)

We multiply the first identity in (2.17)1 by Jε and integrate by parts in �ε to obtain

η

∫
�ε

∇uε · ∇Jε − η

∫
�I

∂uε

∂ν
· Jε +

∫
�ε

E(uε)uε · Jε − ‖�ε‖2
L2(�ε)

=
∫
�ε

f · Jε . (2.27)

Since Jε × ν = 0 on �I , as in (2.20) one can show that

∂uε

∂ν
· Jε = 0 on �I . (2.28)

Observing that J̃ε ∈ H 1(�) and that ‖∇J̃ε‖L2(�) = ‖∇Jε‖L2(�ε)
, we insert (2.28) into (2.27), 

apply Hölder’s inequality, the Sobolev and Poincaré inequalities in � and (2.19)-(2.26) in order 
to write

‖�ε‖2
L2(�ε)

= η

∫
�ε

∇uε · ∇Jε +
∫
�

E(ũε)ũε · J̃ε −
∫
�

f · J̃ε

≤ η‖∇uε‖L2(�ε)
‖∇Jε‖L2(�ε)

+ ‖E(ũε)‖L2(�)‖ũε‖L4(�)‖J̃ε‖L4(�)

+ ‖f ‖L2(�)‖J̃ε‖L2(�)

≤ η‖∇uε‖L2(�ε)
‖∇Jε‖L2(�ε)

+ C‖∇ũε‖2
L2(�)

‖∇J̃ε‖L2(�)

+ C‖f ‖L2(�)‖∇J̃ε‖L2(�)

≤ C
(
‖∇uε‖L2(�ε)

+ ‖∇uε‖2
L2(�ε)

+ ‖f ‖L2(�)

)
‖∇Jε‖L2(�ε)

≤ C
(
‖∇uε‖L2(�ε)

+ ‖∇uε‖2
L2(�ε)

+ ‖f ‖L2(�)

)
‖�ε‖L2(�ε)

,

(2.29)

thereby yielding

‖�ε‖L2(�ε)
≤ C

(
‖∇uε‖L2(�ε)

+ ‖∇uε‖2
L2(�ε)

+ ‖f ‖L2(�)

)
. (2.30)

By contradiction, suppose now that the norms ‖∇uε‖L2(�ε)
are not uniformly bounded with 

respect to ε ∈ I∗. Then, there must exists a subsequence (not being relabeled) such that

lim
ε→0+ Zε = +∞ with Zε

.= ‖∇uε‖L2(�ε)
∀ε ∈ I∗ . (2.31)

The estimates in (2.25)-(2.30) (see also (2.19)) enable us to establish that, along this divergent 
subsequence (2.31), the following sequences are all uniformly bounded with respect to ε ∈ I∗:
13
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(ûε)ε∈I∗
.=
(

ũε

Zε

)
ε∈I∗

⊂ S�(�) ; (�̂ε)ε∈I∗
.=
(

�̃ε

Z2
ε

)
ε∈I∗

⊂ L2(�) ;

(p̂ε)ε∈I∗
.=
(

p+
ε

Z2
ε

)
ε∈I∗

⊂ R .

There must exist ̂u ∈ S�(�), �̂ ∈ L2(�) and p̂ ∈ R such that the following convergences hold:

ûε ⇀ û weakly in S�(�) ; ûε → û strongly in L4(�) ;
�̂ε ⇀ �̂ weakly in L2(�) ; p̂ε → p̂ in R ,

(2.32)

as ε → 0+, along subsequences that are not being relabeled. Notice that∣∣∣∣∣∣ 1

Z2
ε

∫
�

f · ũε

∣∣∣∣∣∣≤ C

Zε

‖f ‖L2(�)‖∇ûε‖L2(�) → 0 as ε → 0+ .

If we then divide identity (2.24) by Z2
ε and let ε → 0+ along the subsequences in (2.32), we 

obtain

η = −F p̂ . (2.33)

A contradiction will be reached in (2.33) after proving that p̂ = 0. Firstly, given any scalar func-
tion φ ∈ C∞

0 (�), an integration by parts and the divergence-free condition in (2.17)1 imply that

∫
�

ûε · ∇φ = 1

Zε

∫
�ε

uε · ∇φ = 1

Zε

∫
∂�ε

φ(uε · ν) = 0 ∀ε ∈ I∗ ,

since uε vanishes on ∂Kε and so does φ on ∂�. Then, along the subsequences (2.32), the weak 
convergence in (2.32)1 yields∫

�

û · ∇φ = −
∫
�

φ(∇ · û) = 0 ∀φ ∈ C∞
0 (�;R) ,

and so ∇ · û = 0 a. e. in �, that is, ̂u ∈ V(�). Secondly, given any vector field ϕ ∈ C∞
0 (�) (not 

necessarily divergence-free) and the relative capacity potential φε ∈ H 2(�ε) (see Lemma 2.1), 
we multiply both sides of the first identity in (2.17)1 by (1 − φε)ϕ, and integrate by parts in �ε, 
each term separately, in the following way:

−
∫
�ε

�uε · (1 − φε)ϕ =
∫
�ε

∇uε · ∇ϕ −
∫
�ε

∇uε · (∇φε ⊗ ϕ + φε∇ϕ) . (2.34)

Concerning the nonlinear term, we simply put
14
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∫
�ε

E(uε)uε · (1 − φε)ϕ =
∫
�

E(ũε)ũε · ϕ −
∫
�

E(ũε)ũε · φεϕ . (2.35)

Regarding the pressure term, from (2.17)3-(2.17)4 and the properties of φε and ϕ, we infer

∫
�ε

∇�ε · (1 − φε)ϕ = −
∫
�ε

�ε(∇ · ϕ) +
∫
�ε

�ε [φε(∇ · ϕ) + ∇φε · ϕ] . (2.36)

By adding the identities (2.34)-(2.35)-(2.36), and then dividing the result by Z2
ε , we obtain

η

Zε

∫
�

∇ûε · ∇ϕ +
∫
�

E(ûε)ûε · ϕ −
∫
�

E(ûε)ûε · φεϕ −
∫
�

�̂ε(∇ · ϕ)

− η

Zε

∫
�

∇ûε · (∇φε ⊗ ϕ + φε∇ϕ) +
∫
�

�̂ε [φε(∇ · ϕ) + ∇φε · ϕ] = 1

Z2
ε

∫
�ε

f · (1 − φε)ϕ ,

(2.37)
for every ε ∈ I∗, along the subsequences (2.32). The weak convergences in (2.32)1-(2.32)2 give

lim
ε→0+

η

Zε

∫
�

∇ûε · ∇ϕ = 0 and lim
ε→0+

∫
�

�̂ε(∇ · ϕ) =
∫
�

�̂(∇ · ϕ) . (2.38)

In order to handle the nonlinear terms appearing in (2.37), we write

∫
�

E(ûε)ûε · ϕ =
∫
�

E(ûε)̂u · ϕ +
∫
�

E(ûε)(ûε − û) · ϕ ∀ε ∈ I∗ . (2.39)

On one hand, for a fixed ϕ ∈ C∞
0 (�), we have that the application

ψ ∈ S�(�) �−→
∫
�

E(ψ)̂u · ϕ

clearly defines a continuous functional on S�(�), so that the weak convergence in (2.32)1 implies

lim
ε→0+

∫
�

E(ûε)̂u · ϕ =
∫
�

E (̂u)̂u · ϕ . (2.40)

On the other hand, applying Hölder and Sobolev inequalities in �, from (2.3) we notice that
15
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∣∣∣∣∣∣
∫
�

E(ûε)(ûε − û) · ϕ
∣∣∣∣∣∣≤ 2‖∇ûε‖L2(�)‖ûε − û‖L4(�)‖ϕ‖L4(�) ∀ε ∈ I∗ ,

∣∣∣∣∣∣
∫
�

E(ûε)ûε · φεϕ

∣∣∣∣∣∣≤ C‖∇ûε‖L2(�)‖ûε‖L4(�)‖ϕ‖L∞(�) ε
α−3

2 ∀ε ∈ I∗ ,

∣∣∣∣∣∣
∫
�

�̂ε [φε(∇ · ϕ) + ∇φε · ϕ]

∣∣∣∣∣∣≤ C‖�̂ε‖L2(�)‖ϕ‖W 1,∞(�) ε
α−3

2 ∀ε ∈ I∗ ,

∣∣∣∣∣∣
∫
�

∇ûε · (∇φε ⊗ ϕ + φε∇ϕ)

∣∣∣∣∣∣≤ C‖∇ûε‖L2(�)‖ϕ‖W 1,∞(�) ε
α−3

2 ∀ε ∈ I∗ ,

∣∣∣∣∣∣∣
∫
�ε

f · (1 − φε)ϕ

∣∣∣∣∣∣∣≤ C‖f ‖L2(�)‖ϕ‖L∞(�) ∀ε ∈ I∗ ,

(2.41)

so that the strong convergence in (2.32)1 yields

lim
ε→0+

∫
�

E(ûε)(ûε − û) · ϕ = 0 . (2.42)

Observing (2.38)-(2.39)-(2.40)-(2.41)-(2.42), one can take the limit as ε → 0+ in (2.37) and 
deduce that ∫

�

E (̂u)̂u · ϕ −
∫
�

�̂(∇ · ϕ) = 0 ∀ϕ ∈ C∞
0 (�;R3) ,

that is, the pair (̂u, ̂�) ∈ V(�) × L2(�) satisfies in distributional form the following Euler-type 
equation: [

∇û − (∇û)�
]
û + ∇�̂ = 0 , ∇ · û = 0 in �. (2.43)

Since E (̂u)̂u ∈ L3/2(�) (by Sobolev embedding), (2.43) proves that actually �̂ ∈ W 1,3/2(�). We 
set �̂0

.= �̂ − |̂u|2/2, so that the pair (̂u, ̂�0) ∈ V(�) × W 1,3/2(�) satisfies in strong form the 
Euler equation

(̂u · ∇ )̂u + ∇�̂0 = 0 , ∇ · û = 0 in �.

Since ̂u = 0 on L, the Bernoulli law [29, Lemma 4] (see [5, Theorem 2.2] and [30, Theorem 1]
as well) states that �̂0 must be constant on L. Then, there exists p̂L ∈ R such that �̂ = p̂L on L.
Now, in view of the embedding H 1(�ε) ⊂ L6(�ε), observe that f − E(uε)uε ∈ L3/2(�ε), so 
from the Hölder and Sobolev inequalities in � we estimate
16
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‖f − E(uε)uε‖L3/2(�ε)
≤ ‖f ‖L3/2(�) + ‖E(uε)‖L2(�ε)

‖uε‖L6(�ε)

= ‖f ‖L3/2(�) + ‖E(ũε)‖L2(�)‖ũε‖L6(�)

≤ ‖f ‖L3/2(�) + C‖E(ũε)‖L2(�)‖∇ũε‖L2(�)

≤ C
(
‖f ‖L3/2(�) + ‖∇uε‖2

L2(�ε)

)
.

(2.44)

We introduce the following subdomains of �:

�I
.= {ξ ∈ � | − h < z < −h + δ3 } and �O

.= {ξ ∈ � | h − δ3 < z < h } .

Observe that the pair (uε, �ε) ∈ W 2,3/2(�ε) ×W 1,3/2(�ε) is also a strong solution to the Stokes 
system (2.17)1 in �ε , with a right-hand side given by f − E(uε)uε . If we apply the same ex-
tension argument of [46, Theorem 3.2], we can then invoke the usual local regularity results for 
the Stokes equations (see [10, Teorema, page 311] or [26, Theorem IV.4.1]) and the estimates 
(2.30)-(2.44) to yield

‖uε‖W 2,3/2(�I ) + ‖�ε‖W 1,3/2(�I ) ≤ C
(‖f − E(uε)uε‖L3/2(�ε)

+ ‖∇uε‖L3/2(�ε)
+ ‖�ε‖L3/2(�ε)

)
≤ C

(
1 + ‖f ‖L2(�) + ‖∇uε‖2

L2(�ε)
+ ‖∇uε‖L2(�ε)

)
.

(2.45)
In the same way we derive

‖uε‖W 2,3/2(�O) +‖�ε‖W 1,3/2(�O) ≤ C
(

1 + ‖f ‖L2(�) + ‖∇uε‖2
L2(�ε)

+ ‖∇uε‖L2(�ε)

)
. (2.46)

We emphasize that, in view of assumption (2.15), the constant C > 0 entering (2.45)-(2.46) is 
independent of ε ∈ I∗, since the strips �I and �O do not contain any holes. Along the weakly 
convergent subsequence (2.32)2, and in the light of (2.45)-(2.46), we infer that the sequences 
(�̂ε)ε∈I∗ ⊂ W 1,3/2(�I ) and (�̂ε)ε∈I∗ ⊂ W 1,3/2(�O) are uniformly bounded. Therefore, there 
exist �̂I ∈ W 1,3/2(�I ) and �̂O ∈ W 1,3/2(�O) such that the following convergences hold as
ε → 0+:

�̂ε ⇀ �̂I weakly in W 1,3/2(�I ) ; �̂ε ⇀ �̂O weakly in W 1,3/2(�O) ;
�̂ε → �̂I strongly in L2(�I ) ; �̂ε → �̂O strongly in L2(�O) ;
�̂ε → �̂I strongly in L1(∂�I ) ; �̂ε → �̂O strongly in L1(∂�O) ,

(2.47)

along subsequences that are not being relabeled, see also [42, Theorem 6.2]. In view of 
(2.17)3-(2.17)4, the strong convergences in (2.47)3 imply that �̂I = 0 on �I and �̂O = p̂ on 
�O . But since we also have that �̂ε ⇀ �I weakly in L2(�I ) and �̂ε ⇀ �O weakly in L2(�O)

as ε → 0+, by uniqueness of the weak limit there must hold �̂ = �̂I in �I and �̂ = �̂O in �O . 
Therefore, since �̂ ∈ W 1,3/2(�),

�̂ = 0 on �I ; �̂ = p̂ on �O . (2.48)

In view of (2.48), for almost every (ρ, θ, z) ∈ (0, R) × [0, 2π] × (0, h) we may write
17
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p̂ − �̂(ρ, θ, z) = �̂(ρ, θ,h) − �̂(ρ, θ, z) =
h∫

z

∂�̂

∂z0
(ρ, θ, z0) dz0 .

Integrating this last equality with respect to (θ, z) ∈ [0, 2π] × (0, h) gives us

ρ

h∫
0

2π∫
0

|p̂ − �̂(ρ, θ, z)|dθ dz ≤ ρ

h∫
0

2π∫
0

h∫
z

|∇�̂(ρ, θ, z0)|dz0 dθ dz

≤ ρh

h∫
0

2π∫
0

|∇�̂(ρ, θ, z0)|dθ dz0 . (2.49)

Since ∇�̂ ∈ L1(�), given any integer j ≥ 1, the Mean Value Theorem for Lebesgue integrals 
can be applied to deduce that

∣∣∣∣∣∣
⎧⎨⎩ρ ∈

(
R − 1

j
,R

) ∣∣∣∣∣ ρ

h∫
0

2π∫
0

|∇�̂(ρ, θ, z0)|dθ dz0 ≤ j‖∇�̂‖L1(�j )

⎫⎬⎭
∣∣∣∣∣∣> 0 ,

where �j
.=
{
ξ ∈ � | R − 1

j
< ρ < R

}
for every integer j ≥ 1. Therefore, we can find a se-

quence of numbers (ρ+
j )j≥1 ⊂ (0, R) such that ρ+

j → R as j → ∞ and

ρ+
j

h∫
0

2π∫
0

|∇�̂(ρ+
j , θ, z0)|dθ dz0 ≤ j‖∇�̂‖L1(�j ) ∀j ≥ 1 . (2.50)

In view of the Euler-type equation (2.43), Hölder’s and Poincaré’s inequality we have

‖∇�̂‖L1(�j ) = ‖(̂u · ∇ )̂u − (∇û)�û‖L1(�j ) ≤ 2‖∇û‖L2(�j )‖û‖L2(�j ) ≤ C

j
‖∇û‖2

L2(�j )
,

(with some constant C > 0 independent of j ≥ 1) which, once inserted into (2.50), gives

ρ+
j

h∫
0

2π∫
0

|∇�̂(ρ+
j , θ, z0)|dθ dz0 ≤ C‖∇û‖2

L2(�j )
∀j ≥ 1 .

Since ∇û ∈ L2(�) and |�j | → 0 as j → ∞, the last inequality and (2.49) imply that

lim
j→∞

h∫ 2π∫
|p̂ − �̂(ρ+

j , θ, z)|dθ dz = 0 . (2.51)
0 0

18
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Similarly we can prove the existence of a sequence (ρ−
j )j≥1 ⊂ (0, R) such that ρ−

j → R as 
j → ∞ and

lim
j→∞

0∫
−h

2π∫
0

|�̂(ρ−
j , θ, z)|dθ dz = 0 . (2.52)

On the other hand, since �̂ = p̂L on L, for almost every (ρ, θ, z) ∈ (0, R) × [0, 2π] × (−h, h)

we have

p̂L − �̂(ρ, θ, z) = �̂(R, θ, z) − �̂(ρ, θ, z) =
R∫

ρ

∂�̂

∂ρ0
(ρ0, θ, z) dρ0 ,

so that

ρ

h∫
−h

2π∫
0

|�̂(ρ, θ, z) − p̂L|dθ dz ≤ ρ

h∫
−h

2π∫
0

R∫
ρ

|∇�̂(ρ0, θ, z)|dρ0 dθ dz

≤
h∫

−h

2π∫
0

R∫
ρ

ρ0|∇�̂(ρ0, θ, z)|dρ0 dθ dz ,

and since ∇�̂ ∈ L1(�), the last inequality implies that

lim
ρ→R

h∫
−h

2π∫
0

|�̂(ρ, θ, z) − p̂L|dθ dz = 0 . (2.53)

Given any integer j ≥ 1 and (θ, z) ∈ [0, 2π] × (0, h) we can therefore write

|p̂L − p̂| ≤ |p̂L − �̂(ρ+
j , θ, z)| + |�̂(ρ+

j , θ, z) − p̂| .

By integrating this last inequality for (θ, z) ∈ [0, 2π] × (0, h) we obtain

|p̂L − p̂| ≤ 1

2πh

⎛⎝ h∫
0

2π∫
0

|p̂L − �̂(ρ+
j , θ, z)|dθ dz +

h∫
0

2π∫
0

|�̂(ρ+
j , θ, z) − p̂ |dθ dz

⎞⎠

≤ 1

2πh

⎛⎝ h∫
−h

2π∫
0

|p̂L − �̂(ρ+
j , θ, z)|dθ dz +

h∫
0

2π∫
0

|�̂(ρ+
j , θ, z) − p̂ |dθ dz

⎞⎠ ,

so that, by taking the limit as j → ∞ in the last inequality and observing (2.51)-(2.53) we deduce 
that p̂L = p̂. In a similar fashion, as a consequence of (2.52)-(2.53) we obtain p̂L = 0. Therefore, 
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p̂ = 0 and a contradiction is reached in (2.33), so that the norms ‖∇uε‖L2(�ε)
are uniformly 

bounded with respect to ε ∈ I∗. Combined with (2.25)-(2.30), this concludes the proof. �
Theorem 2.1 deserves some remarks and observations:

Remark 2.1. The additional assumption (2.15), which requires the existence of thin strips near 
�I and �O that are never perforated in the process as ε → 0+, is only invoked to specify the 
boundary values of the limit Bernoulli pressure �̂ ∈ W 1,3/2(�) on �I and �O . Such information 
cannot be directly extracted from the weak convergence �̂ε ⇀ �̂ in L2(�) as ε → 0+, while it 
does not seem straightforward to build a W 1,3/2(�)-uniform extension for the Bernoulli pressure 
�ε inside the holes; in fact, following the approach of [39, Lemma 1.7] (based on local regularity 
estimates for the Stokes problem) one obtains

‖uε‖W 2,3/2(�ε)
+ ‖�ε‖W 1,3/2(�ε)

≤ C

εα

(
1 + ‖f ‖L2(�) + ‖∇uε‖2

L2(�ε)

)
∀ε ∈ I∗ ,

for some constant C > 0 independent of ε ∈ I∗. It is left open the possibility of recovering the 
result of Theorem 2.1 without hypothesis (2.15).

Remark 2.2. Looking into the proof of Theorem 2.1, we notice that

p+
ε = 1

πR2

∫
�O

�ε ∀ε ∈ I∗ ,

in view of (2.17)4. As a direct consequence of the trace inequality (applied in �O) and (2.46), 
we can easily derive the estimate (2.25). However, we did not proceed in this way in order to 
highlight the precise and only point in which the additional assumption (2.15) is required, as 
described in Remark 2.1.

Remark 2.3. The uniform bound obtained in Theorem 2.1 can be easily achieved under a small-
ness assumption on the data. More precisely, it follows from (2.12)-(2.13) and [46, Theorem 3.4]
the existence of a constant δ∗ > 0 (depending only on �, η, and {δi}2

i=0, independent of ε ∈ I∗) 
such that, if

|F | + ‖f ‖L2(�) < δ∗ ,

then problem (1.7) has a unique weak solution uε ∈ V(�ε) which, moreover, admits the bound

‖∇uε‖L2(�ε)
≤ C∗ ,

for some constant C∗ > 0 that depends on �, η, F , f and {δi}2
i=0 (independent of ε ∈ I∗).

The second main result of this section provides uniform bounds (with respect to ε ∈ I∗) for 
the solutions of the prescribed pressure drop problem (1.8). Compared to Theorem 2.1, in this 
case the additional assumption (2.15) is not required and the corresponding proof is considerably 
simpler.
20



G. Sperone Journal of Differential Equations 375 (2023) 1–29
Theorem 2.2. Let �ε be as in (1.2). For any p± ∈ R and f ∈ L2(�), there exists at least one 
weak solution uε ∈ H 2(�ε) ∩ V(�ε) of the prescribed pressure drop problem (1.8) and an as-
sociated Bernoulli pressure �ε ∈ H 1(�ε) ∩ L2

0(�ε) such that the pair (uε, �ε) satisfies (1.8) in 
strong form. Moreover, the uniform bound

sup
ε∈I∗

(‖∇uε‖L2(�ε)
+ ‖�ε‖L2(�ε)

)≤ C∗ ,

holds for some constant C∗ > 0 that depends on �, η, f , p± and {δi}2
i=0, but is independent of 

ε ∈ I∗.

Proof. In what follows, C > 0 will always denote a generic constant that depends on �, η, p±
and {δi}2

i=0 (independently of ε ∈ I∗), but that may change from line to line.
Given any p± ∈ R, f ∈ L2(�) and ε ∈ I∗, [32, Theorem 3.2] ensures the existence of at 

least one weak solution uε ∈ V(�ε) of problem (1.8). Then, the same argument of [46, Theorem 
3.2] can be applied to deduce uε ∈ H 2(�ε) ∩ V(�) and the existence of an associated pressure 
�ε ∈ H 1(�ε) ∩ L2

0(�ε) satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− η�uε + E(uε)uε + ∇�ε = f , ∇ · uε = 0 in �ε ,

uε = 0 on �ε
W ,

uε × ν = 0 , �ε = p− on �I ,

uε × ν = 0 , �ε = p+ on �O ,

(2.54)

in strong form, see also [32, Section 2]. As in the proof of Theorem 2.1, notice that �̃ε ∈ L2
0(�), 

and ũε ∈ S�(�) is divergence-free separately in �ε and Kε , see (2.18). By taking ϕ = uε in the 
weak formulation (2.14) and setting p∗

.= p+ − p− we obtain

η‖∇uε‖2
L2(�ε)

+ p∗
∫

�O

uε · k̂ =
∫
�

f · ũε . (2.55)

An application of Poincaré’s inequality in � yields∣∣∣∣∣∣
∫
�

f · ũε

∣∣∣∣∣∣≤ C‖f ‖L2(�)‖∇uε‖L2(�ε)
. (2.56)

On the other hand, the trace inequality (applied in �) gives us∣∣∣∣∣∣∣
∫

�O

uε · k̂

∣∣∣∣∣∣∣≤ ‖ũε‖L1(�O) ≤ √
πR‖ũε‖L2(�O) ≤ C‖∇uε‖L2(�ε)

. (2.57)

After plugging (2.56)-(2.57) into (2.55) we obtain

‖∇uε‖L2(� ) ≤ C
(‖f ‖L2(�) + 1

)
. (2.58)
ε
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Concerning the Bernoulli pressure, since �ε ∈ L2
0(�ε), there exists Xε ∈ H 1

0 (�ε) such that

∇ · Xε = �ε in �ε and ‖∇Xε‖L2(�ε)
≤ C‖�ε‖L2(�ε)

,

see [9] and [17, Theorem 2.3] again. If we multiply the first identity in (2.54)1 by Xε and integrate 
by parts in �ε , arguing exactly as in (2.27)-(2.28)-(2.29) we derive the bound

‖�ε‖L2(�ε)
≤ C

(
‖∇uε‖L2(�ε)

+ ‖∇uε‖2
L2(�ε)

+ ‖f ‖L2(�)

)
. (2.59)

A combination of (2.58)-(2.59) concludes the proof. �
3. Asymptotic behavior as ε → 0+: homogenized equations

By employing the renowned energy method of Tartar [45, Appendix] (see also [49, Chapter 
15]), in this section we derive the effective (or homogenized) equations satisfied by the solutions 
of problems (1.7)-(1.8) as ε → 0+. We start with the prescribed flux problem (1.7).

Theorem 3.1. Let (�ε)ε∈I∗ be the family of perforated domains verifying (1.1)-(2.15). Given any 
F ∈ R and f ∈ L2(�), let (uε, �ε) ∈ V(�ε) × L2(�ε) be a weak solution of (1.7). Then, up to 
the extraction of a subsequence, the sequence {(ũε, ̃�ε)}ε∈I∗ ⊂ V(�) ×L2(�) converges strongly 
to a weak solution (u, �) ∈ V(�) × L2(�) of problem (1.7) in � as ε → 0+. Furthermore, 
(u, �) ∈ H 2(�) × H 1(�) and it satisfies in strong form the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η�u + (u · ∇)u − (∇u)�u + ∇� = f , ∇ · u = 0 in �,

u = 0 on L ,

u × ν = 0 , � = 0 on �I ,

u × ν = 0 , � = p+ on �O ,∫
�(s)

u · k̂ = F ∀s ∈ [−h,h] ,

for some (unknown) constant p+ ∈R.

Proof. In what follows, C > 0 will always denote a generic constant that depends on �, η, F
and {δi}3

i=0 (independently of ε ∈ I∗), but that may change from line to line.
Given any F ∈ R, f ∈ L2(�) and ε ∈ I∗, let (uε, �ε) ∈ V(�ε) × L2(�ε) be a weak solution 

of (1.7). From Theorem 2.1 we know that (uε, �ε) ∈ H 2(�ε) ×H 1(�ε) satisfies (2.17) in strong 
form (for some unknown constant p+

ε ∈ R) and that {(ũε, ̃�ε)}ε∈I∗ ⊂ S�(�) ×L2(�), see (2.18). 
Now, given any scalar function φ ∈ C∞

0 (�), an integration by parts and the divergence-free con-
dition in (2.17)1 imply that

−
∫

φ(∇ · ũε) =
∫

ũε · ∇φ =
∫

uε · ∇φ =
∫

φ(uε · ν) = 0 ∀ε ∈ I∗ ,
� � �ε ∂�ε
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since uε vanishes on ∂Kε and so does φ on ∂�. This proves ∇ · ũε = 0 almost everywhere 
in �, that is, ũε ∈ V(�) for every ε ∈ I∗. Moreover, (2.16)-(2.19) ensure that the sequences 
(ũε)ε∈I∗ ⊂ V(�), (�̃ε)ε∈I∗ ⊂ L2(�), (p+

ε )ε∈I∗ ⊂ R are all uniformly bounded, so there exist 
u ∈ V(�), � ∈ L2(�) and p+ ∈R such that the following convergences hold as ε → 0+:

ũε ⇀ u weakly in V(�) ; ũε → u strongly in Lq(�) for every q ∈ [1,6) ;
ũε → u strongly in L1(∂�) ; �̃ε ⇀ � weakly in L2(�) ; p+

ε → p+ in R ,
(3.1)

along subsequences that are not being relabeled. From (2.17)5 we also deduce∫
�I

ũε · k̂ = F ∀ε ∈ I∗ ,

so that the strong convergence in (3.1)2 gives∣∣∣∣∣∣∣
∫
�I

u · k̂ − F

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫
�I

(u − ũε) · k̂

∣∣∣∣∣∣∣≤ ‖ũε − u‖L1(�I ) ≤ ‖ũε − u‖L1(∂�) → 0 as ε → 0+ .

Since u ∈ V(�), the previous computation combined with the Divergence Theorem allow us to 
conclude ∫

�(s)

u · k̂ = F ∀s ∈ [−h,h] , (3.2)

see again (1.6). On the other hand, given any ϕ ∈ V∗(�) ∩ C∞(�; R3) and the relative capacity 
potential φε ∈ H 2(�ε) (see Lemma 2.1), we multiply both sides of the first identity in (2.17)1 by 
(1 − φε)ϕ and integrate by parts in �ε (following the path of (2.34)-(2.35)-(2.36)) to obtain

η

∫
�

∇ũε · ∇ϕ +
∫
�

E(ũε)ũε · ϕ −
∫
�

E(ũε)ũε · φεϕ − η

∫
�

∇ũε · (∇φε ⊗ ϕ + φε∇ϕ)

+
∫
�

�̃ε [φε(∇ · ϕ) + ∇φε · ϕ] =
∫
�ε

f · (1 − φε)ϕ ,

(3.3)

for every ε ∈ I∗, along the subsequences (3.1). With the help of both convergences in (3.1)1 (see 
again (2.38)-(2.39)-(2.40)-(2.41)-(2.42)) we can easily prove that

lim
ε→0+

∫
�

∇ũε · ∇ϕ =
∫
�

∇u · ∇ϕ , lim
ε→0+

∫
�

E(ũε)ũε · ϕ =
∫
�

E(u)u · ϕ ,

lim
ε→0+

⎛⎝∣∣∣∣∣∣
∫

∇ũε · ∇(φεϕ)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

E(ũε)ũε · φεϕ

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

�̃ε[∇ · (φεϕ)]
∣∣∣∣∣∣
⎞⎠= 0 . (3.4)
� � �
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Also, observing (2.3), notice that∣∣∣∣∣∣∣
∫
�ε

f · (1 − φε) −
∫
�

f · ϕ

∣∣∣∣∣∣∣≤
∣∣∣∣∣∣∣
∫
Kε

f · ϕ

∣∣∣∣∣∣∣+ C‖f ‖L2(�) ε
α−3

2 → 0 as ε → 0+ , (3.5)

because f · ϕ ∈ L1(�) and |Kε| → 0 as ε → 0+. In view of (3.4)-(3.5), we then take the limit as 
ε → 0+ in (3.3) to deduce

η

∫
�

∇u · ∇ϕ +
∫
�

E(u)u · ϕ =
∫
�

f · ϕ ∀ϕ ∈ V∗(�) ∩ C∞(�;R3) ,

so that, by density (see [18, Theorem 1]), u ∈ V(�) is a weak solution of (1.7) in � (recall (3.2)). 
Then, [46, Theorem 3.2] ensures that u ∈ H 2(�) and the existence of a pressure � ∈ H 1(�)

satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− η�u + (u · ∇)u − (∇u)�u + ∇� = f , ∇ · u = 0 in �,

u = 0 on L ,

u × ν = 0 , � = p−∗ on �I ,

u × ν = 0 , � = p+∗ on �O ,∫
�(s)

u · k̂ = F ∀s ∈ [−h,h] ,

(3.6)

in strong form, for some (unknown) constants p±∗ ∈ R. Then, the argument of Theorem 2.1
concerning the thin strips near �I and �O allows us to infer that p−∗ = 0 and p+∗ = p+. In order 
to show the strong convergence in V(�) × L2(�), in view of the weak convergences in (3.1), it 
clearly suffices to show that

lim
ε→0+ ‖∇ũε‖L2(�) = ‖∇u‖L2(�) and lim

ε→0+ ‖�̃ε‖L2(�) = ‖�‖L2(�) . (3.7)

Multiplying the first identity in (3.6)1 by u and integrating by parts in � we obtain

η‖∇u‖2
L2(�)

= −Fp+ +
∫
�

f · u . (3.8)

Given ε ∈ I∗, exactly as in the proof of Theorem 2.1 we obtain identity (2.24), that is

η‖∇uε‖2
L2(�ε)

= −Fp+
ε +

∫
�

f · ũε ∀ε ∈ I∗ . (3.9)

In view of (3.1)-(3.8), by taking the limit in (3.9) as ε → 0+ we get the first equality in (3.7), 
that is, ũε → u strongly in V(�) as ε → 0+. Now, in view of Lemma 2.2, let Jε ∈ H 1(�ε) be 
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a vector field verifying (2.26). Observing then that the sequence (J̃ε)ε∈I∗ ⊂ H 1(�) is uniformly 
bounded, we deduce the existence of J ∈ H 1(�) such that

J = 0 on �O ∪L ; J × ν = 0 on �I ;
J̃ε ⇀ J weakly in H 1(�) ; J̃ε → J strongly in Lq(�) for every q ∈ [1,6) ,

(3.10)

as ε → 0+, along a (not relabeled) subsequence. Given any scalar function φ ∈ C∞
0 (�), since 

∇ · Jε = �ε in �ε and Jε vanishes on ∂Kε for any ε ∈ I∗, an integration by parts gives us∫
�

J̃ε · ∇φ =
∫
�ε

Jε · ∇φ = −
∫
�ε

φ �ε = −
∫
�

φ �̃ε ∀ε ∈ I∗ .

We take the limit in this last identity as ε → 0+, observing (3.1)-(3.10), to obtain∫
�

J · ∇φ = −
∫
�

φ � ∀φ ∈ C∞
0 (�;R) ,

that is, ∇ · J = � in �. Multiplying the first identity in (3.6)1 by J and integrating by parts in �
we get

‖�‖2
L2(�)

= η

∫
�

∇u · ∇J +
∫
�

E(u)u · J −
∫
�

f · J . (3.11)

Given ε ∈ I∗, we multiply the first identity in (2.17)1 by Jε and, integrating by parts in �ε , we 
reach the first identity in (2.29):

‖�̃ε‖2
L2(�)

= η

∫
�

∇ũε · ∇J̃ε +
∫
�

E(ũε)ũε · J̃ε −
∫
�

f · J̃ε ∀ε ∈ I∗ . (3.12)

Knowing that ũε → u strongly in V(�) as ε → 0+ and using (3.10) we deduce that

lim
ε→0+

∫
�

∇ũε · ∇J̃ε =
∫
�

∇u · ∇J and lim
ε→0+

∫
�

f · J̃ε =
∫
�

f · J , (3.13)

and also, from the Hölder and Sobolev inequalities in � we infer∣∣∣∣∣∣
∫
�

E(ũε)ũε · J̃ε −
∫
�

E(u)u · J
∣∣∣∣∣∣

≤
∣∣∣∣∣∣
∫
�

(E(ũε) − E(u))ũε · J̃ε

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

E(u)(ũε − u) · J̃ε

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
�

E(u)u · (J̃ε − J )

∣∣∣∣∣∣
≤ C

(‖∇ũ − ∇u‖ 2 + ‖ũ − u‖ 4 + ‖J̃ − J‖ 4

)→ 0 as ε → 0+ .

(3.14)
ε L (�) ε L (�) ε L (�)

25



G. Sperone Journal of Differential Equations 375 (2023) 1–29
In view of (3.11)-(3.13)-(3.14), by taking the limit in (3.12) as ε → 0+ we get the second equality 
in (3.7), that is, �̃ε → � strongly in L2(�) as ε → 0+. This concludes the proof. �
Remark 3.1. Let (�ε)ε∈I∗ be the family of perforated domains verifying (1.1) (the addi-
tional assumption (2.15) is not required here). Given any F ∈ R, [46, Theorem 3.1] ensures 
the existence of a vector field �ε ∈ H 2(�ε) satisfying (2.12)-(2.13). Therefore, the sequence 
(�̃ε)ε∈I∗ ⊂ S�(�) is uniformly bounded, and there exists � ∈ S�(�) for which the following 
convergences hold as ε → 0+:

�̃ε ⇀ � weakly in S�(�) ; �̃ε → � strongly in Lq(�) for every q ∈ [1,6) ;
�̃ε → � strongly in Lq(∂�) for every q ∈ [1,4) ,

along a (not relabeled) subsequence. As in the proof of Theorem 3.1 we can show that � ∈ V(�)

and ∫
�(s)

� · k̂ = F ∀s ∈ [−h,h] ,

so that � is a flux carrier of F in �, in the sense of Definition 2.1.

Concerning the prescribed pressure drop problem (1.8), we have the following result, analo-
gous to Theorem 3.1, whose proof is omitted (for the sake of brevity, since it is very similar to 
the proof of Theorem 3.1 with obvious minor modifications):

Theorem 3.2. Let (�ε)ε∈I∗ be the family of perforated domains verifying (1.1). For any given 
p± ∈ R and f ∈ L2(�), let (uε, �ε) ∈ V(�ε) × L2

0(�ε) be a weak solution of (1.8). Then, up to 
the extraction of a subsequence, the sequence {(ũε, ̃�ε)}ε∈I∗ ⊂ V(�) ×L2

0(�) converges strongly 
to a weak solution (u, �) ∈ V(�) × L2

0(�) of problem (1.8) in � as ε → 0+. Furthermore, 
(u, �) ∈ H 2(�) × H 1(�) and it satisfies in strong form the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− η�u + (u · ∇)u − (∇u)�u + ∇� = f , ∇ · u = 0 in �,

u = 0 on L ,

u × ν = 0 , � = p− on �I ,

u × ν = 0 , � = p+ on �O .

Remark 3.2. All the results presented in this paper remain valid if, instead of a circular tube, we 
consider a container of arbitrary cross-section, that is, if we set

� =
{
(x, y, z) ∈ R3 | (x, y) ∈ �, −h < z < h

}
,

with � ⊂ R2 being any open bounded domain having a smooth boundary. In this case, the cor-
responding Hagen-Poiseuille flow (2.6) is defined as (we use Cartesian coordinates):

U0(x, y, z) = F
v0(x, y)̂k ∀(x, y, z) ∈ �,
�0
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where v0 ∈ H 1
0 (�; R) is a weak solution of the following torsion problem:

−�v0 = 1 in �, v0 = 0 on ∂�,

and

�0
.=
∫
�

v0 =
∫
�

|∇v0|2 
= 0 .

Furthermore, adapting our techniques, we point out that similar results to the ones presented in 
this manuscript hold whenever the container � is a finite, smooth and distorted pipe, that is, if 
we set (possibly in different coordinate systems)

� =
{
(x, y, z) ∈ R3 | (x, y) ∈ �1 , −h < z < 0

}
∪ �c

∪
{
(x, y, z) ∈ R3 | (x, y) ∈ �2 , 0 < z < h

}
,

for some smooth bounded domains �1, �2 ⊂ R2, �c = � \ (�1 ∪ �2) being an open, bounded, 
smooth and simply connected set; see also [4] or [26, Chapter XIII].
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[44] M. Pokorný, E. Skříšovský, Homogenization of the evolutionary compressible Navier–Stokes–Fourier system in 

domains with tiny holes, J. Elliptic Parabolic Equ. 7 (2) (2021) 361–391.
[45] E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-

Verlag, 1980.
[46] G. Sperone, Steady-state Navier-Stokes flow in an obstructed pipe under mixed boundary conditions and with a 

prescribed transversal flux rate, Calc. Var. Partial Differ. Equ. (2023), in press.
[47] G. Sperone, On the steady motion of Navier–Stokes flows past a fixed obstacle in a three-dimensional channel under 

mixed boundary conditions, Ann. Mat. Pura Appl. (1923-) 200 (5) (2021) 1961–1985.
[48] L. Tartar, Homogénéisation en hydrodynamique, in: Singular Perturbations and Boundary Layer Theory: Proceed-

ings of the Conference Held at the École Centrale de Lyon, December 8–10, 1976, Springer, 1976, pp. 474–481.
[49] L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione 

Matematica Italiana., vol. 7, Springer Science & Business Media, 2009.
29

http://refhub.elsevier.com/S0022-0396(23)00574-0/bib7AEBFA51B2F49FDCD9E72826ABD33AC4s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib7AEBFA51B2F49FDCD9E72826ABD33AC4s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib76402B985545F9A6873B79C748A063B2s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib76402B985545F9A6873B79C748A063B2s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibD462CF740AA7383A4CAB1842949CE72Fs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibD462CF740AA7383A4CAB1842949CE72Fs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibBE56DEC1583BBD603913321A6264245Bs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibBE56DEC1583BBD603913321A6264245Bs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib80301349C6CD28BCDE69C525760744B2s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib2DE0D33DDB749E3E9575003C6571216Ds1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib2DE0D33DDB749E3E9575003C6571216Ds1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibA139024E0D4A6CB6F371922930DF2586s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibA139024E0D4A6CB6F371922930DF2586s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibF75F32097662A4F2E1B0B7A0596B42EFs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bibF75F32097662A4F2E1B0B7A0596B42EFs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib8B990B77D364CFE0D1E18E24A7656617s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib8B990B77D364CFE0D1E18E24A7656617s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib080E5F5E7DB87555E553F525E1777BDEs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib080E5F5E7DB87555E553F525E1777BDEs1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib24FA6EFFCBCAE6BA50698E75304655B7s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib24FA6EFFCBCAE6BA50698E75304655B7s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib6CBA4F2524BD86EA553B0CB376A3A463s1
http://refhub.elsevier.com/S0022-0396(23)00574-0/bib6CBA4F2524BD86EA553B0CB376A3A463s1

	Homogenization of the steady-state Navier-Stokes equations with prescribed flux rate or pressure drop in a perforated pipe
	1 Introduction and presentation of the problem
	2 Mixed boundary-value problems at the ε-level: uniform bounds
	3 Asymptotic behavior as ε→0+: homogenized equations
	Data availability
	Acknowledgments
	References


