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The ionomer film and its transport resistances for oxygen are considered to be an important aspect for PEMFC performance.
Ionomer film sub-models are therefore frequently used in PEMFC modeling to account for this effect. Mathematically these are
expressed by a non-linear equation for the oxygen concentration, which depending on the reaction order cannot be solved
analytically. Typically, a numerical solution of this equation, e.g., using the Newton-method is needed. Here, we derive a highly
accurate approximate analytical solution for the ionomer film model. This enables faster computation, which is particularly
important for computationally demanding higher dimensional PEMFC models.
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In PEMFC, oxygen needed for the ORR at the cathode has to be
transported from the gas channels to the catalyst surface. Thereby,
several transport resistances arise in the layered electrode structure
(Fig. 1) due to multi-component diffusion within the GDL, Knudsen-
diffusion within MPL and CL and diffusion through the ionomer film
covering the platinum catalyst on the carbon support. In the literature
the importance of the oxygen transport resistance due to the ionomer
film has been reported by various authors, in particular for low
platinum loadings1–4 and in the course of catalyst degradation.5,6

A model describing the effect of the ionomer film on oxygen
transport had been proposed by Secanell et al.7,8 and later in a different
form by Hao et al.9 The ionomer film transport resistance can be caused
by the diffusion through the ionomer film as well as additional
resistances at the film interfaces.8 For now, we do not specify the
concrete form of this resistance, to stay as general as possible. In the
discussion below, specific examples are provided. Calling the lumped
total film resistance Rfilm the oxygen flux into the ionomer film covered
carbon particle per platinum surface area can be written as
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Here, the equilibrium concentration within the ionomer at the
ionomer-gas interface is given by Henry’s law
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In steady state this flux has to be equal to the amount of oxygen
consumed by the ORR at the platinum surface according to
Faraday’s law
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Depending on the used model for the ORR kinetics, the specific
current at the catalyst surface j ,ORR that depends on the local oxygen
concentration at the catalyst active site (cO

Pt
2
), can be quite complex,

e.g., when using a multi-step kinetics model.10–12 In this case
multiple intermediate species (e.g. Oad, OHad) have to be taken
into account whose coverages also depend on the oxygen concen-
tration. However, Pant and Weber13 have established a method to fit

such a dependence to an effective kinetics with reaction order γ, i.e.,

= ˜ = [ ]γj Fr Fka4 4 4ORR Pt

where r̃ is the specific reaction rate per catalyst active surface and
the reaction rate constant k may include potential and temperature
dependencies, dependencies on platinum oxide coverage etc. and the

oxygen activity at the platinum surface is defined as =a
c

C
.Pt

O
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Equating 1 and 3 using 4 yields the ionomer film equation,
relating the oxygen concentration at the platinum surface with the
equilibrium concentration

+ ( − ) = [ ]γka a a
C

R
0. 5Pt Pt eq

ref

film

In order to calculate the ORR reaction rate (4), Eq. 5 has to be
solved for the oxygen concentration at the platinum interface a .Pt
In the general case, i.e., for arbitrary γ this cannot be done
analytically. Instead (5) is usually solved numerically, e.g.,
using the Newton method. Such an iterative numerical method
however leads to a higher computational cost, in particular in 2D
or 3D models with complex geometries and up to several
millions of grid points where this solution has to be obtained
at every point within the cathode catalyst layer.14 In the
following, we derive an approximate analytical solution for the
ionomer film model which yields high accuracy for arbitrary
reaction orders in the range 0.5–1 as typically used in PEMFC
models.

Theoretical.—We solve the problem in three steps: First, we
propose a simple approximate solution for (5) which is exact in the
two limiting cases →R 0film and → ∞k . Second, we calculate the
maximum relative error of this first approximation. Finally, we
construct a second improved approximation by introducing an
appropriate correction term to the first approximation.

Equation 5 can be rewritten as equation for the reaction rate:
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Again, this equation generally cannot be solved analytically,
except for a few particular choices of the reaction order γ.zE-mail: thomas.jahnke@dlr.de
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In case of γ = 1 we get the solution
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+
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with the dimensionless parameter =A: C

k R
ref

film
which represents the

ratio between the kinetic and the thin film resistance.

For convenience we define = ˜
r

r

k
: , i.e., in the following r denotes

the reaction rate divided by the rate constant. Accordingly, we define

= ˜
r :

r
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approx for the approximate solution.

For arbitrary reaction order γ we propose the first approximate
solution
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It can be easily seen that Eq. 8 gives the correct solution in the
limiting cases, i.e., for →R 0film we get ˜ = γr kaeq and for → ∞k we

get the correct limiting reaction rate =r .
a C
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Furthermore, for

γ = 1 Eq. 8 reduces to Eq. 7.
As next step, we derive an upper bound for the relative error of

the approximate solution (8) in the general case.
From the definition of the relative error we get
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First, we calculate the derivative of the reaction rate with respect to A
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Using (9) we have
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At the point of maximum relative error Δ =
A

r
d

d
0, i.e., the last

term vanishes. Thus, for the maximum relative error Eq. 11 can be
rewritten as
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Substituting the approximate reaction rate as defined in (8) and its
derivative
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into Eq. 12 leads to
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Solving for the maximum relative error yields
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Using (15) we can calculate the reaction rate at the point of
maximum relative error
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Note, that this value only depends on the parameters aeq and γ,
while it is independent of A.

Next, we have to derive the relation between A and aeq for which
this maximum is reached. For this we evaluate the condition that the
first derivative of Δr with respect to A has to vanish at Δ = Δr r :max
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Figure 1. Graphical representation of the local oxygen transport resistance
in the ionomer thin film that covers the supported platinum nanoparticles.
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Substituting (8), (15) and (16) in (17) and solving for A yields
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Inserting (18) into (15) yields the final result for the maximum
relative error of the first approximation
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Note, that this maximum error is independent of any parameters
except for the reaction order γ.

Based on the calculation of the maximum error we can now
propose the improved approximation
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It can be easily seen that this kinetics still gives the correct solution in
the limiting cases discussed above, i.e., for →R 0film and for → ∞k .

Furthermore, it is constructed such that at = ΔA A rmax where the
first approximation had the highest error the new approximation now
gives the correct value

⎛

⎝
⎜

⎞

⎠
⎟

˜ ( = ) =

+ ( − Δ )

= ˜ ( = ) [ ]

γ

γΔ −

Δ

Δ

r A A k
a

a

A
r

r A A

1 1

. 22

r

r

r

approx,2
eq

eq
1

max

max

max

max

The parameter b controls the width of the correction term. It can be
shown (cf Supplementary Material) that the first and second
derivative of the improved approximation at = ΔA A rmax are also
identical to those of the exact solution if we choose
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The correct first and second derivatives ensure that the approx-
imation remains accurate over the whole parameter range of A.

Results and Discussion.—Equation 21 allows to calculate the
reaction rate for the ionomer film model very efficiently. It should be
noted that even though Eqs. 20 and 23 for the parameters Δrmax and
b are quite complex they only depend on the reaction order and
therefore only have to be calculated once at beginning of the
simulation and can be considered as constants afterwards if the
reaction order is constant. If the reaction order varies (e.g. with
potential) our method is still applicable. In this case however to
reduce the computational cost it might be beneficial to replace
Eqs. 20 and 23 by the respective polynomial fits

γ γΔ ≈ − + [ ]r 0.0731865 0.508666 0.435727; 25max
2

γ γ γ≈ − + − + [ ]b 0.42726 1.32779 1.6024 1.59543. 263 2

The proposed approximation (21) has a very high accuracy with
its relative error being significantly lower compared to the first
approximation (8) as shown in Fig. 2b. In the range of reaction

Figure 2. (a): Comparison of simulated polarization curves obtained from the exact numerical solution (symbol) and the derived analytical approximation (line)

for reaction orders between 0.5 and 1. Other parameters used: =c 13O
mol

m2 3 (corresponding to air at 2.3 bar and 100% RH); =T K353.15 ;4 = · −k 7.72 10 ;mol

m s
8

Pt
2

= ·E 42 10 ;act
J

mol
3 α = 1; =E V1.18 ;0 =R 1200 ;film

s

m
=C 34.51ref

mol

m3 (b) Maximum relative error, i.e., deviation from the numerically exact solution of the first

approximation (8) (red symbols) and the improved approximation (21) (black symbols) depending on the reaction order.
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orders typically considered in PEMFC models this maximum
relative error is about 0.1% and only depends on the reaction order.

Up to now we kept the discussion as general as possible and did
not specify the actual form of Rfilm. The film resistance Rfilm can be
calculated depending on the involved processes and the considered
geometry. For example, for a planar ionomer film of thickness δ and
taking into account diffusion through the film as well as interfacial
resistances at the gas-ionomer and platinum-ionomer interfaces, we
could write

⎛
⎝

⎞
⎠

δ= + + [ ]R R
D

R 27film ext int

Instead, following7 for spherical ionomer film covered carbon
particles of radius r with finite oxygen dissolution kinetics kO2 and
oxygen diffusion through the ionomer film we obtain
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28
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where APt is the platinum active surface area over a single carbon
particle.

To demonstrate the accuracy of the derived approximation in a
concrete example, Fig. 2a shows a comparison of the polarization
curves obtained from solving Eq. 5 numerically and using the
analytical approximation (21), where the specific current densities
are calculated from the respective reaction rates according to Eq. 4
and the reaction kinetics in this example is defined as

( )= [ ]
α ϕ− − − (Δ − )

k k e e . 29
E
R T K

F E
RT0

1 1
353.15

act 0

A very good agreement between numerical and analytical
solutions is obtained, demonstrating that for all practical purposes
the approximation is basically indistinguishable from the numeri-
cally exact solution. A Matlab script with an implementation of the
analytical solution is provided as Supplement to the article.

Conclusions.—We have derived an approximate analytical
solution for the ionomer film model with high accuracy. The
analytical solution allows for a fast calculation of the reaction
kinetics in the presence of an ionomer film resistance, which can be
very beneficial especially in higher dimensional PEMFC models,
where the ionomer film equation has to be solved locally at every
point within the catalyst layer and coupled with all other relevant
mechanisms such as two-phase, charge and energy transport. Having
an analytical expression in this case can reduce significantly the

computational cost compared to the alternative of numerically
solving the respective ionomer film model equation. The presented
solution is independent of the concrete formulation of the ORR
kinetics or of the involved transport resistances of the ionomer film
and therefore can be applied for a wide range of PEMFC models.
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