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Abstract 

This paper examines the impact of COVID-19 

confinement on the simulation of energy needs and uses 

of residential buildings in Milan. Data-driven schedules 

for electricity use before and during lockdown, derived 

from smart metering data, are applied to an urban building 

energy model to analyze their effects on energy needs for 

heating and cooling and the energy use for lighting and 

for other services. Electricity uses, heating and cooling 

needs, and total primary energy (TOE) are compared for 

pre-COVID and during-COVID cases. Electricity 

increases by 8%, while heating decreases by 10%, and 

cooling increases by 26%. The 5% decrease in TOE is 

mainly due to the decrease in heating. The study uses heat 

maps to display the coefficient of variation of root mean 

square error (CVRMSE) at different temporal and spatial 

aggregations, indicating significant differences between 

pre- and during-COVID cases. The CVRMSE for 

electricity consumption is highest at the hourly level for 

single buildings, reaching a maximum of 44, and 

decreases at higher levels of aggregation. The CVRMSE 

for TOE is highest at the hourly level for single buildings, 

reaching a maximum of 230. A scenario is created by 

combining during-COVID and pre-COVID schedules for 

a hybrid work model, called post-COVID. The post-

COVID scenario results indicate a significant impact of 

remote work on energy consumption patterns.  

Practical implications 

The data-driven schedules derived from electric metering 

data in Milan can be directly used in energy models for 

pre-COVID, during-COVID, and post-COVID case 

studies in locations with similar characteristics. This 

study compares energy consumption before and during 

the COVID-19 pandemic. Electricity increased by 8%, 

heating decreased by 10%, and cooling increased by 26%. 

Heat maps show significant differences in energy 

consumption between the two periods, with higher 

discrepancies at lower temporal and spatial levels. The 

post-COVID scenario shows a significant impact of 

remote work on energy consumption patterns. The 

scenario created in the study provides a useful tool for 

policymakers and energy planners to develop targeted 

energy management strategies to reduce energy 

consumption and manage the impacts of remote working. 

 

Highlights 

• Generation of data-driven occupants-related 

schedules for the lockdown period with k-means 

clustering for UBEM applications 

• Assessment of the impact of these schedules on 

UBEM results in a neighborhood in Milan 

• Effects observed on hourly and daily energy 

consumption patterns 

• Creation and analysis of scenarios featuring a mix of 

remote working and normal office work 

Introduction 

Building simulation is being used to optimize energy 

consumption in buildings. In particular, urban building 

energy modelling (UBEM) allows for the modelling of 

numerous buildings at once using multizone dynamic 

thermal simulation models (Ferrando et al., 2020). 

Among the different options (Wang et al., 2022), UBEMs 

typically use archetypes to define buildings, which 

include fixed schedules to describe Occupant Behaviour 

(OB), leading to unrealistic energy outcomes (Carnieletto 

et al., 2021). Modelling OB in UBEMs is an open topic 

due to the lack of data regarding occupants at the urban 

scale (Ferrando et al., 2022). In this scenario, smart meter 

readings are being used to improve large-scale building 

models, including schedule creation. In particular, 

clustering analysis of smart meter registrations is a widely 

used methodology to derive schedules for both electricity 

and occupancy(Ferrando et al., 2022). In this paper 

electricity use schedules are exctracted from a smart 

meter dataset and used in the running of energy 

simulations. 

The COVID-19 pandemic has led to profound changes, 

including shifts in consumption habits. Lockdown and 

remote working arrangements have caused an alteration 

in energy consumption patterns in households, with 

increased use of electronic devices, appliances, and 

lighting during the day. Even after the lockdown phase, 

many people continue to work from home, thus, there is a 

need to update standard profiles to be used by simulation 

tools,  to reflect new trends and behaviours. The impacts 

of these changes must also be assessed. So far, only a 

limited number of studies have analyzed the impact of the 

COVID-19 pandemic on energy consumption in 

buildings, with most of them highlighting an overall 

increase in residential energy use (Abdeen et al., 2021). 

These studies have also looked at changes in usage 



patterns and peak hours (Ku et al., 2022). However, there 

is a lack of studies on the topic, especially those that are 

integrated with urban building energy models (UBEM). 

This study aims to address this gap in research by 

conducting a two-step comparison. Firstly, it compares 

the data-driven schedules derived by a pre-COVID and a 

during-COVID smart meter database. Secondly, it 

integrates the schedules into an energy model to analyze 

their effects on energy consumption simulation. An 

innovative method using heat maps based on coefficients 

of variation of the root mean square error (CVRMSE), as 

defined in the ASHRAE Guideline 14 (ASHRAE, 2014), 

is used to compare the energy results (Ferrando et al., 

2022). The heat maps provide a clear visualization of the 

differences in the energy needs for heating and cooling 

and the energy use for lighting and for other services 

between the pre-COVID and during-COVID schedules 

and the schedules, based on temporal and spatial 

aggregation. Finally, a scenario that combines remote 

working and normal office work is created by mixing the 

during-COVID schedules with the pre-COVID schedules. 

The novelty of this study lies in the structure of the 

methodology, sincethe creation of schedules from smart 

meter data for UBEM applications is not yet standardized. 

This methodology is a proposal for researchers working 

on UBEM. The paper is meant to understand its potential, 

limitations, and possible developments and integration in 

simulation tools. 

Methodology 

Workflow 

The objective of this research is to evaluate the effects of 

various OB schedules derived from smart meter databases 

registered before and during the COVID-19 pandemic. 

These schedules are implemented in the urban model of 

Chiaravalle, a residential neighbourhood in Milan, Italy. 

The study consists of three phases: (I) the construction of 

an urban building energy model utilizing standard 

archetypes (Carnieletto et al., 2021), (II) the generation of 

schedules scenarios based on smart meter data collected 

before and during the pandemic (Ferrando et al., 2022), 

and (III) a comparison of the UBEM cases with different 

schedules’ scenarios. Figure 1 illustrates the workflow of 

the research process.  

The first phase of this research involves the creation of a 

model using one of the UBEM tools available in the 

literature (Ferrando et al., 2020). In the present study, the 

geographic information system (GIS)  data provided by 

the Municipality of Milan was combined with the 

archetypes created for the Northern region of Italy 

(Carnieletto et al., 2021) using version 3.0 of umi, one of 

the main bottom-up physics base UBEM tool based on 

EnergyPlus™ (Reinhart et al., 2013). It also gives the 

possibility to change the schedules for each building in a 

relatively simple way compared to other similar tools. A 

detailed description of the model is presented in “The case 

study” Section. 

 

Figure 1: Workflow of the research process. 

The second phase of the research aims at generating 

electric load schedules that accurately reflect the energy 

use of the buildings, for whom the first step is to obtain a 

series of smart meter readings from energy operators. 

These readings comprise a yearly dataset of electric 

energy use and are typically provided in anonymized 

form, with a 15-minute registration time step and no gaps 

or errors. If any errors are detected, data processing 

should be performed to enhance the accuracy of the 

results (Liguori et al., 2021). The process followed to 

generate the schedules is described in detail in the “The 

schedules’ development” Section, while the smart meter 

dataset used in the study is detailed in “The case study” 

Section. In this study, daily patterns in the dataset are 

clustered to generate profiles according to the approach 

proposed in previous works (Ferrando et al., 2022). The 

dataset was normalized and divided into two groups: 

“workdays” (Monday to Friday) and “weekends” 

(Saturday, Sunday, and national holidays). To provide 

variability to the schedules, a minimum of three clusters 

was intended to be significant, but the final number was 

chosen based on the Davies-Bouldin Index (DBI). The k-

means method is used for the actual clustering step (Piech 

Chris, 2013), being one of the main algorithm used for 

similar purposes and one of the fastest (Gianniou et al., 

2018; Viegas et al., 2015; Yilmaz et al., 2019).  The 

resulting cluster centroid is used as a normalized schedule 

in the energy model. In particular, the registrations of 

2019 are used to generate schedules for the before-

COVID case, a typical year in which people went 

regularly to work out of the house and spent time also 

outdoors during weekends. Smart meters from the 

lockdown period of 2020 (March and April) are used to 

generate schedules regarding the during-COVID case, in 

which remote working was implemented for almost all 

workers, consequently, people stayed at home for work 

and also during their free time. Lastly, a combination of 

the resulting schedules of these two periods is used to 

generate the post-COVID case, half of the buildings in the 

model are characterized with the pre-COVID schedules 

(simulating the normal office work) and half with the 

during-COVID schedules (simulating the remote working 

still left as an option for several workers till nowadays). 

The weekend schedules are left to be the ones related to 



the pre-COVID case, simulating the fact that the free time 

is now spent normally as before COVID. 

The final phase is the creation of the cases and runs of 

them that are then compared against one another. The 

smart meter readings are not used to validate or calibrate 

the energy results, but they are integrated in the process 

in the creation of the schedules by clustering. The pre-

COVID case is the hourly run with the assignment for 

workdays and weekends of the pre-COVID schedules. 

The during-COVID case is the hourly run with all during-

COVID schedules assigned. Lastly, the post-COVID case 

is the one in which the two previous scenarios are mixed. 

The simulation run is for an entire year, assuming that 

these behaviours are ideally maintained for 12 months.  

To perform the comparisons, the study considers the Total 

Operational Energy (TOE), cooling energy needs, heating 

energy needs, and electric energy use as determined by 

the umi energy results (in kWh). TOE is the sum of energy 

needs for cooling, heating, domestic hot water, and 

electric energy use (including lighting and appliances). 

The results are further analysed using the CVRMSE, as 

defined by ASHRAE Guideline 14 (ASHRAE, 2014). In 

this paper, the CVRMSE is used to compare the energy 

outputs of pre-COVID to the scenario characterized by 

during-COVID schedules. The analyses are conducted at 

various temporal scales (hourly, daily, weekly, monthly, 

and yearly) and spatial scales (single buildings, groups of 

5, 10, 20 buildings, and the entire neighbourhood). The 

cases are compared in terms of energy needs for heating 

and cooling and the energy use for lighting and for other 

services, as defined by ISO 52000-1:2017 (European 

commitee for standardization, 2017). 

The case study 

The neighbourhood 

Chiaravalle is a residential district located in the south-

eastern part of Milan, Italy, and comprises 49 multi-

family residential buildings. For this study, a UBEM was 

constructed to include these 49 buildings, with a total 

gross floor area of 56787 m2. The heights of the buildings 

range from 3.5 to 16 m, with a minimum of one and a 

maximum of five floors. The model assumed a fixed 

average window-to-wall ratio of 10% for vertical 

surfaces, while the floor-to-floor height was fixed at 3 m, 

based on building descriptions and on-site visits (Breda, 

2016). The model also takes into account the shading 

effects of surrounding buildings that are no longer in use, 

abandoned, or under renovation. All buildings in the 

district are residential and were constructed between 1960 

and 2010, according to the land registries of Milan.  

The archetypes 

After the creation of the geometry (in this case, solved by 

extruding the building footprints from the GIS provided 

by the Municipality), the second step is characterizing the 

buildings to create the energy model via archetypes. They 

include construction materials and thicknesses of walls, 

floors, and roofs, the glazing properties, the HVAC 

system, the lighting system, the ventilation properties, and 

the occupant-related schedule, fixed by default but 

modified with data-driven ones in this case study. Thus, 

the geometry of the buildings, created in Rhinoceros©, is 

imported into umi (Reinhart et al., 2013), and then the 

building properties are defined with archetypes developed 

for the North of Italy (Carnieletto et al., 2021).  

Of the 16 existing residential archetypes (Carnieletto et 

al., 2021), 6 are used for this study (Figure 2). Based on 

visual inspections and available documentation from the 

Municipality of Milan, an archetype is assigned to each 

building based on its construction year and type (i.e., 

traditional or prefabricated). The archetypes already 

include schedules for electric appliances, lighting, and 

occupancy, which are derived from standards like 

EN 16798-1 (European Committee for Standardization-

CEN, 2019) and ISO 18523-1 (International Standard 

Organisation - ISO, 2016) but, in this case study, the 

electric loads' schedules are modified based on real smart 

metering data and their analysis. The same is done for 

average density values for lighting and appliances per 

square meter, originally based on standards (European 

Committee for Standardization-CEN, 2019, 2017). 

 

 

Figure 2: Chiaravalle neighbourhood coloured based on 

the assigned archetype. 

To analyse the energy needs for heating and cooling of the 

buildings, we assume that the efficiency of the systems is 

100%, and their capacities are infinite (European 

Committee for Standardization-CEN, 2017). We use a 

natural gas-based heating system with a setpoint of 20°C 

for each building, which is activated from mid-October to 

mid-April. Cooling is activated from mid-April to mid-

October with a setpoint of 26 °C (Carnieletto et al., 2021). 

The lighting density levels (in Wh/m2) are set based on 

the smart meter database knowing the floor area of the 

buildings for which the registration was available. By 

assuming infinite system capacities, the simulation results 

correspond to the energy needs required to maintain 

setpoint conditions. 

The weather dataset  

The Milano-Linate weather file, provided by the U.S. 

Department of Energy’s (DOE) Building Technologies 

Office (BTO), is utilized in this study. This weather file is 

based on 20 years of recording (1951-1970) and 



represents the weather conditions for the location with 

latitude 45°26’, longitude 9°17’, and an elevation of 

103 m. The weather station is located less than 4 km away 

from the neighbourhood. The average annual temperature 

in this location is 11.6 °C, with the highest monthly 

average occurring in July at 23 °C, and the lowest average 

in January at 0 °C. The maximum hourly global 

horizontal irradiation varies from 194 Wh/m2 in 

December to 965 Wh/m2 in June.  

Although the weather conditions used in this study are 

based on old registrations, they are still widely used as 

weather files in building modelling. It is important to note 

that the main objective of the study is to compare the 

energy results rather than to analyse the accuracy of the 

weather data used or climate change effects. 

The smart meter database 

The electric energy metering data used for the study was 

obtained from a dataset that comprised 21 multi-family 

residential buildings located in southeast Milan. The 

dataset covers the period of the year 2019 and a few 

months of 2020 (from January to April), with data being 

registered at a frequency of 15 minutes. In addition, the 

electric data captured a wide range of electric uses within 

each apartment, including lighting, electric appliances, 

small space cooling or heating devices, and plug loads. 

To generate the clustering for the pre-COVID period, the 

entire database of 2019 registrations was utilized, whereas 

the clustering for the during-COVID period was obtained 

using only the data for March and April 2020. These two 

months corresponded to the period when a full lockdown 

was implemented in Milan, resulting in most of the 

population staying at home. As such, the results obtained 

during the during-COVID period were expected to be 

highly representative of the changes in electric energy 

consumption resulting from the lockdown.  

The schedules’ development 

The dataset provides valuable information for energy 

modellers who want to study energy consumption patterns 

in multi-family residential buildings in Milan. It includes 

electric energy metering for 21 buildings for the year 2019 

and a few months of 2020, with a registration time step of 

15 minutes with no gaps. The dataset is completely 

anonymous, so no information is available on the tenants' 

behaviour or characteristics. The average building gross 

area is around 3500 m2, but there is a wide range of 

building sizes, with the maximum being 9322 m2 and the 

minimum being 702 m2. The mean registered value of 

electric energy use in the database is around 5 Wh/m2 

during the pre-COVID period, and around 5.6 Wh/m2 

during the COVID lockdown, but some buildings show 

relatively high electric load per square meter, especially 

during summertime, possibly due to the use of fans and 

small cooling devices.  

The dataset also includes buildings situated up to a 

maximum distance of 10 km from Chiaravalle, all 

residential multi-family buildings located in Milan as the 

ones in the modelled area. The data in this study was 

categorized into workdays and weekends and were 

normalized and clustered using the k-means algorithm 

and the DBI to determine the optimal number of clusters.  

For the pre-COVID data, four clusters were identified as 

optimal for both workdays and weekends (Figure 3), and 

the centroids of these clusters were used as normalized 

schedules in the pre-COVID model. The k-means 

clustering also provided the percentage distribution of 

each cluster in the database, which was used to randomly 

assign schedules to the buildings in the model. The 

distributions of the weekend clusters were as follows: 

Cluster 1 (19%), Cluster 2 (38%), Cluster 3 (22%), and 

Cluster 4 (21%). For workdays, the distributions were 

Cluster 1 (22%), Cluster 2 (20%), Cluster 3 (44%), and 

Cluster 4 (15%). The combination of these clusters 

developed 15 different schedule scenarios among the 49 

buildings of the model. 

 

Figure 3: Clusters of centroids that can be used as 

normalized schedules for the pre-COVID period for the 

electric usage in the buildings 

For the during-COVID data, ten clusters were identified 

as optimal using the DBI, and the centroids of these 

clusters are shown in Figure 4. The distributions of the 

clusters for weekends were Cluster 1 (16%), Cluster 2 

(10%), Cluster 3 (19%), Cluster 4 (5%), Cluster 5 (17%), 

Cluster 6 (11%), Cluster 7 (6%), Cluster 8 (3%), Cluster 

9 (9%), and Cluster 10 (4%). For workdays, the 

distributions were Cluster 1 (3%), Cluster 2 (23%), 

Cluster 3 (14%), Cluster 4 (9%), Cluster 5 (4%), Cluster 

6 (7%), Cluster 7 (14%), Cluster 8 (11%), Cluster 9 (7%), 

and Cluster 10 (8%). The combination of these clusters 

developed 39 different schedule scenarios among the 49 

buildings of the model. 



 

Figure 4: Clusters centroids that can be used as 

normalized schedules for the during-COVID period or in 

general as “remote working” days 

The findings of the study demonstrate that during the 

COVID-19 pandemic, there was a noticeable shift in the 

morning peak and a significant increase in the usage of 

electricity during the central hours of the day, as indicated 

by the patterns of the centroids shown in Figure 5.  

 

Figure 5: Average schedules multiplied by the density 

level (i.e., 5 for pre-COVID and 5.6 for during-COVID) 

Moreover, electric use during the workdays was higher 

throughout the day in the during-COVID period, and the 

evening peak was increased but still aligned with the pre-

COVID time (around 20:00). Similarly, the higher 

electricity usage during the weekend as compared to the 

pre-COVID period, can be attributed to the fact that a 

larger number of people stayed at home during the 

pandemic. These findings reveal the impact of the 

COVID-19 pandemic on electricity usage patterns and 

emphasize the importance of studying such changes to 

understand their implications for the energy sector. 

The shift in electric consumption observed in the data 

analysis will be reflected in the Chiaravalle 

neighbourhood. However, to fully understand the impact 

of these changes on the neighbourhood's energy 

consumption, it will be necessary to further investigate the 

effects on heating, cooling, and TOE with the energy 

model. 

Results and discussions 

To provide a comprehensive overview of the changes in 

energy consumption during the COVID-19 pandemic, the 

study first plots the annual total electricity, heating and 

cooling needs, and TOE for both the pre-COVID and 

during-COVID cases. The resulting graph, depicted in 

Figure 6, serves as a useful visual aid in highlighting the 

significant differences between the two periods. 

It is possible to observe how the electric usage patterns of 

occupants can have such a significant impact on the 

overall energy needs for heating and cooling and the 

energy use for lighting and for other services of a 

neighbourhood. The total electricity use increases by 8% 

due to the change in schedules and electricity density 

levels. On the other hand, the heating decreases by 10%  

due to occupants increasing the internal loads of the 

building by using more electric devices. As a result, the 

demand for heating was reduced, leading to a subsequent 

increase in cooling by 26% to maintain a comfortable 

indoor temperature. The 5% decrease in TOE is mainly 

due to the decrease in heating, although it is important to 

note that the analysis does not take into account the 

possible increase in temperature setpoint due to occupants 

spending more time at home.  

This study highlights the importance of finding 

sustainable solutions for energy production and 

consumption, particularly given the significant impact of 

occupant behaviour on neighbourhood energy 

consumptions. It is crucial to promote energy-efficient 

building designs, as well as educate occupants on energy-

saving practices to reduce the overall energy demand and 

promote sustainable energy consumption. 

To provide a comprehensive understanding of the 

differences between the two cases, the study utilizes heat 

maps to display the CVRMSE at different temporal and 

spatial aggregations. This approach offers both visual and 

numerical insights into the degree of discrepancy between 

the cases. It is worth noting that a threshold of 30% and 

15% is used for hourly and monthly values, respectively, 

to classify a single building model as "calibrated" in 

ASHRAE 14 (ASHRAE, 2014). In this specific case 

study, the CVRMSE is not utilized as a calibration 

criterion for the model, but rather to compare between the 

different cases. The CVRMSE values are computed at 

various temporal scales, including hourly, daily, weekly, 

monthly, and yearly, as well as different spatial scales, 

ranging from single buildings to groups of five, ten, 

twenty, and the entire neighbourhood. The results for 



electricity and TOE are presented in a heat map (Figure 

7) that enables the visualization and quantification of the 

maximum CVRMSE that is observed across the different 

scales for the cases of pre-COVID and during-COVID.  

 

Figure 6: Annual total electricity, heating and cooling 

needs, and TOE for both the pre-COVID and during-

COVID cases. 

The analysis of the CVRMSE for electricity consumption 

in this case study reveals interesting insights. While the 

minimum CVRMSE value of 7.4 for the overall 

neighbourhood on a yearly basis suggests small 

differences between the two cases, there are variations in 

the CVRMSE at different temporal and spatial 

aggregations. 

At the lowest level of aggregation, i.e., considering 

electricity consumption for a single building on an hourly 

basis, the CVRMSE value reaches a maximum of 44, 

indicating significant discrepancies. However, as we 

move to higher levels of aggregation in terms of time and 

space, such as daily, weekly, monthly, and yearly, the 

CVRMSE values tend to decrease. This suggests that the 

differences in consumption at lower levels of aggregation 

are smoothed out at higher levels. It is worth noting that 

the high CVRMSE values at low levels of aggregation are 

in this case indicative of the model performance. They 

reflect the inherent variability in occupant behaviour and 

electricity consumption patterns, which can vary 

significantly at shorter temporal and spatial scales. 

 

 

Figure 7: CVRMSE values related to the electrical energy 

use and TOE difference between pre-COVID and during-

COVID cases, with the different spatial (horizontally) and 

temporal (vertically) aggregations. 

Although the overall minimum CVRMSE for the TOE 

needs is 4.6 at the yearly scale for the entire 

neighbourhood, the values increase significantly for 

smaller temporal and spatial aggregations. The highest 

CVRMSE is recorded at the hourly scale for single 

buildings, with a value of 230. The discrepancy for TOE 

needs is higher than for electricity, which highlights the 

complexity of a dynamic energy model like UBEM. The 

results indicate that spatial aggregations have a greater 

impact on reducing pre- and during-COVID discrepancies 

compared to temporal aggregations. This is because 

spatial aggregation considers the varying schedules across 



different buildings, which helps to mitigate errors. In 

contrast, temporal aggregation considers the same 

schedules across the same buildings. Although the 

leverage of errors is present, the impact is less prominent 

due to the consistency in the schedules considered. These 

results show the importance of considering different 

temporal and spatial scales when analysing energy 

consumption data and using appropriate statistical metrics 

to evaluate the accuracy of the model. 

Overall, the analysis of the CVRMSE for electricity and 

TOE needs highlights the importance of understanding 

the spatial and temporal variability of energy 

consumption patterns and the need at an urban scale.  

Post-COVID scenario 

The COVID-19 pandemic has caused significant changes 

to work patterns, with remote work becoming more 

common even after the pandemic has subsided. To model 

this shift, the post-COVID scenario was created by 

combining the pre-COVID and during-COVID data-

driven schedules in the model. In particular, for workdays, 

the during-COVID schedules were assigned to 50% of the 

buildings chosen randomly, effectively modelling the 

remote working scenario. 

The post-COVID scenario yielded interesting results 

regarding the hourly average daily patterns for both 

electricity and TOE, as shown in Figure 8.  

 

Figure 8: Hourly average daily pattern of electricity and 

TOE uses for the entire neighbourhood of Chiaravalle. 

As expected, the post-COVID scenario is a combination 

of the pre-COVID and during-COVID cases for 

electricity usage. For electricity, the morning peak is 

reached around noon and gradually increases since 6:00. 

During the day, there is a slight decrease in consumption, 

followed by another peak at 19:00, likely due to dinner 

time. On the other hand, for the TOE, the maximum 

occurs at around 8:00 and a second peak is registered 

around 19:00. It is worth noting that the post-COVID 

TOE pattern is more similar to the pre-COVID pattern 

than an average between the pre- and during-COVID 

cases as for the electricity, since it is influenced by several 

other variables (e.g., domestic hot water, heating, and 

cooling patterns). However, the post-COVID electricity 

pattern exhibits a more evident peak at noon than the pre-

COVID pattern and a general increase in electricity use. 

These findings suggest that the shift towards remote work 

has a significant impact on energy consumption patterns 

and that modelling the post-COVID scenario is essential 

for accurately predicting future energy demands. As 

remote work becomes more prevalent, it will be important 

to continue monitoring and analysing energy 

consumption patterns to ensure that energy management 

strategies remain effective and targeted. 

Conclusions 

This study addresses a gap in research by conducting a 

two-step comparison of data-driven schedules and 

integrating them into an energy model to analyze the 

effects of the pandemic on energy consumption. The 

schedules derived from electric smart metering data in 

Milan can be directly used in energy models for pre-

COVID and during-COVID case studies in locations with 

similar characteristics to Milan, such as climate and 

building typologies. However, it is important to note that 

the schedules may not be directly applicable to different 

contexts without appropriate adjustments, such as 

differences in climate or building characteristics. 

The innovative method of heat maps based on CVRMSE, 

as defined in the ASHRAE Guideline 14 (ASHRAE, 

2014), is used to compare the energy results. The heat 

maps provide a clear visualization of the differences in 

energy needs for heating and cooling and the energy use 

for lighting and for other services between the pre-

COVID-19 schedules and the schedules during the 

confinement period, based on temporal and spatial 

aggregation. The analysis of the CVRMSE highlights the 

importance of understanding the spatial and temporal 

variability of energy consumption patterns, which has 

been overlooked in previous studies. The results show that 

at low temporal and spatial aggregations, there can be 

high differences in energy consumption patterns. 

However, these differences are smoothed out at higher 

temporal and spatial aggregations, demonstrating the need 

for comprehensive and accurate energy models that can 

capture the spatial and temporal variability of energy 

consumption patterns at an urban scale. Finally, the study 

creates a scenario that combines remote working and 

normal office work by mixing the during-COVID 

schedules with the pre-COVID schedules. The study 

highlights the significant impact of remote work on 

energy consumption patterns, emphasizing the 

importance of modelling post-COVID scenarios to 

predict future energy demands accurately. Ongoing 

monitoring and analysis of energy consumption patterns 

are necessary to ensure the effectiveness and targeting of 

energy management strategies in response to the 



increasing prevalence of remote work. The study is 

limited to residential buildings located in a specific area 

of Milan, and the assumption is made that the available 

dataset is representative of the simulated buildings in the 

same area of the city. However, the update of an Italian 

Time Use Survey could enable a more generalized 

approach in the future. Furthermore, Time Use Surveys 

can be utilized to validate or expand the occupants' model 

by including other activities besides electricity usage. 

In conclusion, the study provides valuable insights into 

the complexity of energy consumption patterns at 

different spatial and temporal scales and highlights the 

need for comprehensive and accurate energy models to 

capture these patterns. The schedules derived from smart 

meter data in Milan can be directly used in energy models 

for pre-COVID and during-COVID case studies in 

locations with similar characteristics, but caution should 

be exercised when using them in different contexts. The 

scenario created in the study provides a useful tool for 

policymakers and energy planners to develop targeted 

energy management strategies to reduce energy 

consumption and manage the impacts of remote working. 
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