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Abstract. This paper deals with the problem of structural health monitoring of tie-

rods, which undergo to large changes of eigenfrequencies when temperature changes 

because of the consequent change of the axial load. An approach for shortening the 

training period of the monitoring algorithm is proposed, relying on principal 

component analysis. This new method is compared to a state-of-the-art algorithm to 

evidence its strengths. 
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1. Introduction  

Structures are inherently susceptible to degradation and material wear over time, which can 

ultimately lead to critical damage. When the integrity of a structure is compromised, this can 

have detrimental effects on both present and future performance of the system. Therefore, 

the ability to identify signs of damage at an early stage is paramount in order to facilitate 

timely maintenance interventions, thereby mitigating the risk of structural failure. This aspect 

holds significant importance not only in terms of ensuring the safety of users but also from 

an economic perspective. Implementing effective maintenance strategies that are activated 

only when necessary enables the optimal allocation and utilization of maintenance resources, 

thus maximizing their efficiency and efficacy. 

Structural health monitoring (SHM), focused on devising automated strategies for 

damage detection, is a major area of research [1]. Thanks to advancements in sensing 

technologies, data acquisition methodologies, computational capabilities, and data 

management systems, these strategies predominantly rely on data-driven methodologies. 

They harness data captured by sensors connected to the structure under observation. 

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rti

cl
e:

ht
tp

s:
//w

w
w

.n
dt

.n
et

/?
id

=2
95

90
e-Journal of Nondestructive Testing - ISSN 1435-4934 - www.ndt.net

https://doi.org/10.58286/29590

https://creativecommons.org/licenses/by/4.0/


2 

However, since no device directly measures damage, a key point is the extraction of damage 

sensitive quantities, or damage features, from the signals collected by means of sensors [2]. 

Vibration-based techniques stand out and have undergone extensive study in the 

literature (e.g., [3–7]). These methodologies extract damage-sensitive parameters from the 

dynamic responses of the monitored structure, employing techniques such as time series 

models [8–10] or modal analysis [11]. Fundamentally, they operate on the hypothesis that a 

damage induces alterations in structural properties (e.g., mass, stiffness, constraint 

characteristics), which in turn manifest as changes in modal parameters (i.e., 

eigenfrequencies, mode shapes, and damping coefficients) [12]. One of the main challenges 

in SHM, and also for vibration-based methods, is to detect damages at an early stage, 

distinguishing them from the effects of environmental changes. 

Tie-rods are axially-loaded slender metallic beams counterbalancing lateral forces in 

civil structures such as arches and vaults. They exhibit notable vibration levels during 

operation and, consequently, vibration-based SHM techniques find wide applicability in 

monitoring tie-rods. However, real-world tie-rods are affected by substantial uncertainties 

stemming from geometric and material properties, loading conditions, and constraint 

characteristics. Furthermore, the main problem in deploying unsupervised learning 

methodologies in real-world structures lies in the large influence of environmental factors 

[13], with specific reference to temperature variations. Fluctuations in temperature cause 

changes of vibration behaviour because the characteristics of the beams change (e.g., 

Young’s modulus). However, in the case of tie-rods, the effect of temperature changes is 

even amplified because they cause changes in the axial load, leading to large variations of 

the modal parameters and, consequently, of the vibration behaviour [14,15] able to mask the 

effects of damages. 

Some methods have been proposed in the literature to overcome this large influence 

of temperature (e.g., [16,17]). A method which proved good performances is based on the 

monitoring of a set of eigenfrequencies and the application of Mahalanobis square distance 

(MSD). This method (described below) requires to collect training data for a lot of time in 

order to describe as many temperature values as possible. This implies that at least a seasonal 

cycle must be collected for training. 

This paper proposes a new approach aimed at largely reduce the amount of time 

required for training when assessing structural integrity by measuring eigenfrequencies. The 

use of eigenfrequencies allows having even a single sensor to measure tie-rod vibrations and 

employing operational modal analysis (OMA) without any need of an external excitation 

(i.e., environmental excitation is exploited). 

The paper is structured as follows: Section 2 presents the reference method which 

already showed to be able to successfully evidence the presence of damages in tie-rods, then 

Section 3 describes the new method aimed at shortening the training period and, finally, 

Section 4 discusses some analyses which confirm that the newly proposed approach largely 

decrease the needed training time.  

2. The reference method  

The reference method is deeply discussed in [15,18] and requires to identify with OMA a 

given number of tie-rod eigenfrequencies (e.g., from the second to the fifth). More generally, 

these eigenfrequencies are indicated here as 𝑓1, 𝑓2, , … , 𝑓𝑚. These eigenfrequencies are 

organized into a vector 𝐟 = [𝑓1, 𝑓2, … , 𝑓𝑚]T, where the superscript T indicates the transposed 

vector/matrix. Doing this for a large amount of time, a baseline can be obtained, constituting 

the training set: 
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𝐅0 =
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T

𝐟2
T

⋮
𝐟𝑟
T]
 
 
 

 

 

Then, for each new observation of the eigenfrequencies 𝐟∗, the MSD between 𝐟∗ and 𝐅0 can 

be calculated. The MSD value proved to be a reliable feature to detect the presence of a 

damage [15,18].  

3. The newly proposed method  

In this approach, again, OMA is used to collect a set of eigenfrequencies, and repeating this 

task many times, a baseline 𝐅0 is obtained. Then, this training set undergoes a principal 

component analysis (PCA) which allows extracting the principal components (PC): 

𝐙0 = 𝐂0𝐑 

where 𝐑 is the rotation matrix and 𝐂0 is the centered version of 𝐅0. Finally, 𝐙0 contains the 

PCs. From this new set, the first PCs are discarded because they depend on thermal effects. 

Usually, the first PC is discarded but, in case also other PCs (e.g., the second) shows long 

trends related to environmental effects, they are discarded as well. Therefore a new matrix 

�̂�0 is extracted from 𝐙0. 

When new observations are available (in the case of this paper a number of 

observations equal to the number of observations contained in the training set), they are joint 

to the training set, obtaining a new set: 

                                                     𝐅0∗ = [𝐅
0

𝐅∗]  

Following the same steps previously described for 𝐅0, the matrix 𝐅0∗ is centred and the 

principal component analysis is applied obtaining 𝐙0∗. Then, the first PCs are removed, 

obtaining the matrix �̂�0∗. Finally, the MSD is calculated between �̂�0 and �̂�0∗. 

This MSD becomes the damage index in which thermal effects are discarded. The 

detailed description of the mathematical procedure of the newly proposed approach based on 

PCs is available in [19]. 

4. Comparison of the methods  

This section discusses comparisons carried out with both simulated and experimental data. 

In both the cases, more details can be found in [19]. Furthermore, the same reference 

discusses many other comparison tests. 

4.1 Comparison with simulated data 

Here, the trend of the eigenfrequencies generated by a bi-harmonic temperature trend (with 

the addition of noise) is generated by means of finite element simulations of a tie-rod. 

Furthermore, a damage is simulated at a given time by introducing a reduction of 10% of the 

beam Young’s modulus in a given section of the tie-rod. 

Figure 1a shows the time trend of the temperature 𝑇 (shown as a variation with respect 

to a reference temperature 𝑇0) where the dotted black vertical line shows where the training 

stop and the dash-dotted red vertical line indicates the damage introduction. Figure 2 presents 

the results for the two methods (d indicates the damage index), showing that the removal of 

the PCs related to environmental effects (the first in this case) allows increasing the 
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sensitivity to damage. It is noticed that the damage indexes for both the methods are 

normalised so that the damage threshold is at 1. Furthermore, the PC-based method is 

characterised by a threshold range and not by a single value, in order to account also for 

uncertainty.  

 

Fig. 1. 𝑇 − 𝑇0 simulated trend for the first (a) and second simulation (b) and measured trend of 𝑇 during the 

experiments (c). 

Then, a more complicated temperature trend was considered (Figure 1b). It is evident 

that the training set covers only some values of the temperature trend (i.e., only the largest 

temperature values). The damage was a Young’s modulus reduction of 30% at midspan. 

Figure 3 shows the results and it is evident that the PC-based approach allows filtering out 

the temperature effects, while the traditional reference method highlights a damage before it 

actually occurs and this is due to temperature effects. 

 
 

Fig. 2. Trends of the two damage indexes d for the PC-based and the reference method (referred here to as 

MSD) for the T trend in Figure 1a. 
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Fig. 3. Trends of the two damage indexes d for the PC-based and the reference method (referred here to as 

MSD) for the T trend in Figure 1b. 

 

4.2 Comparison with experimental data 

Here, a lab tie-rod [15] with length of approximately 4 m is used. Eigenfrequencies were 

extracted through OMA. The trend of 𝑇 in the baseline is shown in Figure 1c. The damage 

was obtained by adding a concentrated mass (of 1% of the total mass of the tie-rod) close to 

one of the two fixed ends. 

Figure 4 shows the results for the two methods. evidencing that the newly proposed 

approach highlights the presence of the damage at the correct time while the reference 

method is not fully able to point out the presence of a damage. 

 

Fig. 4. Trends of the two damage indexes d for the PC-based and the reference method (referred here to as 

MSD) for the T trend in Figure 1c. 
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5. Conclusion  

The paper has introduced an approach for shortening the training time when SHM of tie-rods 

is performed. These beams are critical because temperature changes generate large effects of 

beam dynamics because of the consequent change of axial load. The new proposed method, 

based on principal component analysis, is successfully compared to state-of-the-art methods 

through both simulated and real data. This new method is widely described and tested in [19]. 
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