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A B S T R A C T

Elastic metamaterials made of locally resonant arrays have been developed as effective ways to create band
gaps for elastic or acoustic travelling waves. They work by implementing stationary states in the structure
that localise and partially reflect waves. A different, simpler, way of obtaining band gaps is using phononic
crystals, where the generated band gaps come from the periodic reflection and phase cancellation of travelling
waves. In this work a different metamaterial structure that generates band gaps by means of coupling two
contra-propagating modes is reported. This metamaterial, as it will be shown numerically and experimentally,
generates larger band gaps with lower added mass, providing benefits for lighter structures.
1. Introduction

In the last decades, the study and development of metamaterials
both in the photonic [1,2] and phononic [3–5] community has be-
come an interesting topic for researchers. The curiosity for these novel
structures comes from their intrinsic wave manipulation abilities even
when the wavelength interacting with the structure is much larger
than the lattice size. This enables novel properties for vibration at-
tenuation [6–9], focusing and rerouting [10,11], non-reciprocity [12],
or wave amplification for energy harvesting [13–15]. On the topic
of vibration attenuation, numerous works have shown the potential
and the advantages of using local resonators [16–21]. These structures
generally consist of a main waveguide, that can be 1D (a beam) 2D (a
plate) or 3D (a bulk solid), inside of which are placed local resonators.
These resonators are capable of interacting with travelling waves by
means of confining the traversing energy and creating a band gap at the
frequency associated with their own resonance. It has been shown also,
with analytical evaluations, that the extent of the band gap generated
by these local structures mainly depends on the mass ratio between
the locally resonant system (generally peripheral attachments) and
the mass of the main waveguide structure. Moreover, the attenuation
efficiency is heavily dependent on the number of cells employed as
well as the relative stiffness between the resonators and the main struc-
ture [14,19,22]; the latter feature can also enable selective filtering
of waves in metaframes [23]. The development of new metamaterial
beams that implement exotic wave manipulation capabilities is very
important for the creation of novel smart structures. New manipulation
effects can modify the strength, the width and even the nature of
band gaps that are introduced, granting tools for developing ever more
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efficient systems that can repel, localise or even damp out unwanted
external or internal vibrations.

In this work, a metamaterial beam that can generate a band gap
employing the so called locking effect [24–28] is proposed and eval-
uated. This different physical phenomenon, if properly implemented,
can give new advantages for specific structures. For example, as it will
be shown, the band gap can be greatly enlarged with respect to the
simple local resonance counterpart, while reducing the added lateral
mass. In the proposed design the band gap analysed is generated by
the coupling of two contra-propagating modes (flexural and torsional)
that interact thanks to a shift in position of the lateral resonators. This
structure can significantly cut costs with regards to adding mass to the
structure, giving also the benefit of having lighter metamaterial beams.
This phenomenon can also be looked at from a different perspective: by
considering an effective modification of inertial properties given by the
rotation of the waveguide, that is slightly different with respect to what
is commonly referred to as inertia amplification [29–34]. As a matter
of fact, while for the local resonance structure the inertia is driven
by translational motion due to flexure, this is enhanced in the case
of locking by the rotational contribution introduced by torsion. The
main difference with respect to classical inertial amplification systems
is that the inertia amplification here considered is not just a geometrical
effect, but a real augmentation of participating mass that comes from
the motion of the main waveguide that participates in the resonators
displacement. In the locking case we actually increase the mass by
means of making not only the lateral resonators move but also part
of the waveguide itself, which rotates with the resonators, increasing
again the inertia.
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Fig. 1. Geometries analysed in this work: local resonance geometry (a) and locking
geometry (b), with their respective vertical elevation. The thickness of both systems is
ℎ = 2 mm.

2. Analytical model

As stated above, the band gap developed for this metamaterial stems
from the implementation of the locking effect in the main waveguide
beam. Locking effect is the physical phenomenon that arises from the
coupling of two contra-propagating waves with different polarisation.
The coupling is responsible for the generation of at least one point of
zero group velocity inside the first Brillouin zone and a band gap. The
band gap is obtained through the looped energy conversion between
one wave mode into another with opposite propagating direction.
What is meant by ‘‘contra-propagating waves’’ is the existence of two
distinct branches that have respectively a positive and a negative group
velocity. This can be achieved by means of creating periodic arrays
that, for the properties of periodic lattices, generate a certain wave
periodicity that mirrors the branches thanks to the properties of the
Brillouin zone. By just tuning the dimension of the periodic cell and
the geometric and material properties one can engineer where two
distinct branches have a point in common in the frequency-wavevector
space. Under normal circumstances (when there is a preservation of
symmetry in the structure) the two branches maintain a single point
of accidental degeneracy, but when the symmetry is revoked the de-
generacy gets lifted and a locking band gap is generated. This lifted
degeneracy generates always two points of zero group velocity that can
be either inside or, in rare cases, at the boundary of the IBZ. The lift in
degeneracy and the band gap can be achieved only when the geometry
of the structure allows one wave mode to interact with a different
mode, in our case we achieve this by breaking symmetry and allowing
flexural and torsional wave to interact thanks to the unbalanced motion
of the resonators. The looped energy conversion, this refers to the
fact that the two modes start to pass energy to one another during
propagation in the beam, but, given the opposite propagation direction,
the energy is somewhat trapped in the structure. This determines a
complete reflection of the propagating wave energy if the frequency is
higher than the one associated to the zero group velocity point [26,28].
The conventional local resonance, which is at the base of the commonly
engineered passive metamaterials, on the other hand, arises from the
coupling between a propagating mode and a stationary mode. In this
paper, we compare two similar devices that show the aforementioned
2

physical phenomena. In both cases, the waveguide is represented by an
Euler–Bernoulli beam, on which resonators are attached in the form of
cantilever beams. To achieve classical local resonance, the resonators
are located in a symmetric fashion with respect to the beam’s axis,
see Fig. 1(a); conversely, wave locking can be achieved by introducing
alternate resonators on a single side of each cell, see Fig. 1(b). In the
analytical model we assume, for the sake of simplicity, that the motion
of the resonator is dominated by the first eigenmode of the cantilever;
this allows to adopt a spring–mass idealisation [28,35]. Consequently,
the dynamic equilibrium of each resonator is established in terms of
the equivalent bending stiffness 𝑘 and the participating mass 𝑚. The
reaction force 𝐹𝑛 and the reaction moment 𝑀𝑛 at the attachment point
of each resonator are given by:

𝐹𝑛 = 𝑘
[

𝜓𝑛 −
(

𝑤𝑛 + (−1)𝑛𝜃𝑛
𝑏 + �̂�
2

)]

𝑀𝑛 = 𝐹𝑛
�̂�
2
,

(1)

where: 𝜓𝑛 = 𝜓𝑛(𝑡) is the degree of freedom that describes the motion
of the 𝑛th resonator; 𝑤𝑛 = 𝑤(𝑛𝑑, 𝑡) is the transverse displacement of
the waveguide in correspondence of the 𝑛th resonator; 𝜃𝑛 = 𝜃(𝑛𝑑, 𝑡)
is the torsional rotation of the waveguide in correspondence of the
𝑛th resonator; 𝑏 is the width of the beam while �̂� is the length of the
resonator. The equation of motion for each resonator is written as:

𝜕2𝜓𝑛
𝜕𝑡2

+ 𝜔2
0

[

𝜓𝑛 −
(

𝑤𝑛 + (−1)𝑛𝜃𝑛
𝑏 + �̂�
2

)]

= 0. (2)

The eigenfrequency of the resonator is denoted by 𝜔0 =
√

𝑘∕𝑚.
The equation of motion of the waveguide is written in different form

for the two devices. For the case of classic local resonance, in view
of the symmetric distribution of resonators, the torsional rotation is
null, whereas the equilibrium in the transverse direction contains the
contribution of the two resonators in each cell:

𝐸𝐼 𝜕
4𝑤
𝜕𝑥4

+ 𝜌𝐴𝜕
2𝑤
𝜕𝑡2

=
𝑛=+∞
∑

𝑛=−∞
2𝐹𝑛𝛿(𝑥 − 𝑛𝑑)

𝜃 = 0.

(3)

In the above equation, 𝐸 is the Young’s modulus and 𝜌 is the mass
density of the material of the waveguide; 𝐴 and 𝐼 represent the area and
the moment of inertia of its cross-section, respectively; 𝛿 is the Dirac’s
delta.

In the case of wave locking, the asymmetric configuration entails
the coupling with torsional behaviour, so that the equations of motion
read:

𝐸𝐼 𝜕
4𝑤
𝜕𝑥4

+ 𝜌𝐴𝜕
2𝑤
𝜕𝑡2

=
𝑛=+∞
∑

𝑛=−∞
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𝜕𝑡2

= −
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∑

𝑛=−∞
(−1)𝑛𝐹𝑛

𝑏 + �̂�
2

𝛿(𝑥 − 𝑛𝑑).

(4)

where: 𝐺 is the tangential modulus of the material; 𝐼𝑝 and 𝐽 are the
polar moment of inertia and the (primary) torsional stiffness of the
cross-section, respectively.

The systems of Eqs. (1), (2), (3) and (1), (2), (4) can be solved
by adopting the plane-wave expansion method (PWEM), as explained
in [28]. The analytical solution is useful in order to design the devices
with the same opening frequency of band gap. As shown in Fig. 1, we
assume the same cross-section, 6 × 2 mm2, for the waveguide and the
same dimension, 𝑑 = 9 mm, of the unit cell. The cross-section of the
lateral resonators is also the same, but their length is different. We
assume a predefined value, 𝐿𝑏 = 7 mm, for the system that shows wave
locking and, by examining the analytical dispersion curve, we obtain
the value 𝐿𝑎 = 10.16 mm, in order to match the band gap opening
frequency. As a result, we obtain that for wave locking the resonators
are 31.10% shorter than the classical resonance case.
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Fig. 2. (a) Dispersion relation for the local resonance geometry. (b) Dispersion relation for the locking geometry. The opening and closing of the band gaps are reported as dashed
coloured lines, while in light grey the band gap zone is highlighted. (c) Reports of the eigensolutions associated to the highlighted frequencies. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Evaluation of the attenuation granted by the two metamaterials in the band gap region, varying the number of cells considered. (a) and (b) report the locally resonant
case and the locking case, respectively. Dashed black horizontal lines report the theoretical opening and closing of the band gaps.
Fig. 4. Picture of the experimental setup: (I) marks one of the three heads of the
vibrometer, (II) is the locking specimen, while (III) is the local resonance specimen.

3. Numerical analyses and results

The numerical analyses now reported are all conducted using the
commercial software COMSOL Multiphysics, with the 3-dimensional
modelling of the devices shown in Fig. 1. The material used for both
configurations is aluminum (𝐸 = 70 GPa, 𝜌 = 2710 kg/m3, 𝜈 = 0.33).
The elements used are second order hexahedrons with at least 4 el-
ements on the shortest dimension (in our case the thickness of the
main beam and resonators). The analyses performed numerically are:
(1) eigenfrequency with Bloch–Floquet boundary conditions to obtain
3

the dispersion relations and (2) frequency domain analyses to get the
steady state response of the structures.

Fig. 2 reports the dispersion relation for the two geometries. In
the locking case there is a clear coupling between the first flexural
mode and the first torsional mode and this in turns generates the
band gap. The coupling is granted by the shift in position of the
resonators breaking the symmetry of the cell. The locking effect is more
complicated to engineer with respect to conventional local resonance
or Bragg scattering in a phononic crystal, because of the need to tailor
the cell geometry (the resonator, the length of the cell and so on) so
that in the reciprocal space there is a liftable accidental degeneracy of
two contra propagating modes. This is particularly difficult to obtain
at low frequencies. The dispersion shows that the opening frequency
for the band gap of the two geometries is the same (10 156 Hz) while
the closing frequency is very different: for the local resonance geometry
the closing frequency is 15 012 Hz, while for the locking geometry it
closes at 18 788 Hz. The gap-mid gap ratio is then evaluated to obtain
a non-dimensional parameter that avoids frequency dependence. The
formula is:

𝐵𝐺 =
2(𝑓𝑡𝑜𝑝 − 𝑓𝑏𝑜𝑡)
𝑓𝑡𝑜𝑝 + 𝑓𝑏𝑜𝑡

⋅ 100% (5)

where 𝑓𝑏𝑜𝑡 and 𝑓𝑡𝑜𝑝 are the frequencies that delimit the band gap.
From Eq. (5) it is obtained that the local resonance case has a gap-
mid gap ratio of 38.56%, while for the locking it is 59.65%. Given
that the overall added mass per cell is reduced by 31.10% this is an
improvement in the effectiveness at creating bigger band gaps, reducing
the added mass to the structure. These results may be explained by
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Fig. 5. Evaluation of the transmission in dB for the two structures subjected to the same sweep in frequency. We reported both the experimental outcomes solutions and the
numerical results obtained with the finite element methods. (a) and (b) are respectively the results for local resonance and locking systems.
considering that the actual resonant masses in the two systems are dif-
ferent. The local resonance has just the lateral resonators as participants
of the resonant motion, effectively being the only resonant masses of
the modes. The locking case, on the other hand, employs not only the
mass of the lateral resonators, but also the entire structure in the motion
of the evaluated modes.

Fig. 3 now reports the analyses conducted to evaluate the effec-
tiveness of the band gap. The attenuation capability given by the
metamaterial at different frequencies is evaluated by means of a fre-
quency sweep in the frequency domain analysis. Combining it with a
second sweep of the number of cells provides us a clear indication on
both where the band gap is and how many cells are needed to obtain
an effective attenuation. We conclude that the attenuation capability
of the locally resonant material is significantly higher with respect to
the locking case for the same number of cells. This means that even
though the band gap may be bigger, the attenuation is less efficient. As
stated in previous research [19], for a small number of cells the band
gap is larger with respect to the one defined by the dispersion relation
(even though the attenuation is almost negligible), then, increasing the
number of cells, the band gap shrinks and its opening and closing fre-
quencies become defined. This is also true for the locking configuration,
but it seems that the number of cells required for the stability of the
band gap is lower, given that the boundaries are well defined already
at eight cells.

To test the results obtained though finite element simulations, ex-
periments with real specimens are also performed. The specimens are
fabricated by means of laser cutting an aluminum plate of the desired
thickness. The number of elementary cells that are sufficient for the
desired properties is six. This was done analysing the preliminary
numerical results. The experimental setup is as follows: the specimens
are hanged from vertical supports to have free ended boundary con-
ditions. A piezoelectric patch PZT-5H (𝐸𝑝 = 61 GPa, 𝜈𝑝 = 0.31, 𝜌𝑝 =
7800 kg/m3 with dielectric constant 𝜖𝑇33∕𝜖0 = 3500 and piezoelectric
coefficient 𝜖31 = −9.2 C/m2) is attached to one end and it is used to
supply the flexural excitation. The attenuation is then evaluated by
extracting the out-of-plane velocity of the points at the centre line of
the metamaterial beam thanks to a Polytec 3D Scanner Laser Doppler
Vibrometer (SLDV). Fig. 4 shows the setup of the laboratory and the
specimens. The results are reported in Fig. 5 for both metamaterial
beams correlated with their respective finite element simulations. It
is clear that the band gaps predicted by the numerical simulations
are also present in the specimens produced. The band gaps reported
both numerically and experimentally are not covering fully the regions
predicted, meaning that there are some frequencies that are less or not
at all attenuated. This is due to the boundary conditions and to the
nature of the finite system that generate structural modes that are in the
band gap. Furthermore we assess again that the local resonance band
4

gap is more efficient in damping even in the experiment with respect
to the locking band gap. Overall, it seems that the numerical results
describe accurately the systems, the locking case seems to have some
more not predicated global resonances but it could be expected given
the more complicated phenomenon that can be perturbed by the not
perfect boundary conditions.

4. Conclusions

In conclusion, a design concept for a vibration isolation meta-beam
has been reported. With it, the analyses have shown that the subtraction
of mass and the breaking of the symmetry in the position of the
resonators grants the creation of larger, but slightly less efficient band
gaps. This works even for structures that employ a limited number of
cells. The downside of this lower attenuation capability is given by
the significantly lower added mass. Furthermore the cell geometry is
more limiting with respect to the local resonance case given the need
of bigger cells and the more complicated engineering of the modes that
have to be bent in the right way in order to obtain the locking effect
and consequentially the band gap. Further studies of these locking
designs could lead to new generations of metalattices and metaframes
for further advancements of vibration isolation frames.
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