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Abstract

On the infinite dimensional space E of continuous paths from [0, 1] to R
n,

n ≥ 3, endowed with the Wiener measure µ, we construct a surface mea-
sure defined on level sets of the L2-norm of n-dimensional processes that
are solutions to a general class of stochastic differential equations, and
provide an integration by parts formula involving this surface measure.
We follow the approach to surface measures in Gaussian spaces proposed
via techniques of Malliavin calculus in [2].

1. Introduction

Let E = C([0, 1];Rn) denote the Banach space of continuous functions from [0, 1] to R
n,

endowed with the sup-norm ‖f‖∞ = sup
[0,1]

|f(x)|. We denote by E = B(E) the σ-field of

Borel measurable subsets of E. Also, we introduce the Hilbert space H = L2(0, 1;Rn) of
square integrable measurable functions.
Let us fix the notation we shall use in the sequel. The norm in R

n is denoted by |x| and the
scalar product as 〈x, x〉Rn . The (equivalent) L1-norm in R

n is |x|1 =
∑

|xi|. In the infinite
dimensional spaces E and H we denote the norm respectively by ‖x‖H , ‖x‖E . Finally, the
scalar product in H is 〈x, x〉H . By E∗ we we denote the dual of E.

http://arxiv.org/abs/1812.09556v1
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It is known that given a probability space (Ω,F,P), a process B = {B(t), t ∈ [0, 1]} is a
standard n-dimensional Brownian motion if it a centered Gaussian process with covariance
function E[〈B(t), B(s)〉] = (s∧ t)I, I being the identity matrix in R

n. This process induces
a Gaussian measure µ on the space of trajectories (E,E). This measure is known as the
Wiener measure; the process B(t)(x) = x(t) on the probability space (E,E, µ) will be
denoted the standard n-dimensional Brownian motion.

On the space E we introduce the Malliavin derivative D with domain D
1,p (that is the

closure in Lp(E,µ) of the class of smooth random variables) see for instance [18, 3, 9, 10].
In Section 2 below we explain its construction in more details. The adjoint operator of the
Malliavin derivative operator D having domain D

1,p is the divergence operator, denoted as
usual by δ, having domain Dq(δ), where q = p′ is the adjoint exponent of p. δ coincides
with the Skorohod integral with respect to the Brownian motion B.

In addition to the Sobolev spaces D1,p, we shall consider the spaces UCb(E) of uniformly
continuous and bounded functions1 from E to R and UC1

b (E), of uniformly continuous
and bounded functions which are Fréchet differentiable, with an uniformly continuous and
bounded derivative.
In the sequel, we simplify the notation to UCb, UC1

b , since no confusion may arise.

Let u ∈ Lp(E,µ;H) be a stochastic process, indexed by t ∈ [0, 1], taking values in R
n.

The simplest example of such processes is, obviously, the Brownian motion B:

B(t)(x) = x(t), x ∈ E, t ∈ [0, 1].

In this paper we introduce the functional g : Lp(E,µ;H) → R which associates to any such
process the random variable

g(u)(x) =
1

2
‖u(x)‖2H =

1

2

∫ 1

0
|u(x)(t)|2 dt.(1.1)

In case u = B, we shall simply write g(x) = g(B)(x) = 1
2‖x‖

2
H .

The aim of this paper is to construct the surface measure induced by µ on the level sets
{g = r} and provide an integration by parts formula involving this surface measure. We
shall mention here that, since the domain {g < r} is a convex open set in E, our construction
is related to that of the recent paper [1]. In particular, the integration by parts formula
that we obtain in Proposition 4.8 is related to formula (1) in [1]. Notice however that our
construction is quite different. For instance, they choose the measure σ on the level sets of
g by appealing to the construction of [14] to fix a reference surface measure to use in the
integration by parts formula. On the other hand, we construct the measure σ by following
the approach initiated by Airault and Malliavin [2].
Let X ∈ L1(E,µ) be a random variable (more stringent assumptions on X will be necessary,

1we use indifferently the terms function, functional or random variable to denote a measurable mapping
F : E → R
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compare Section 3). Then we define the function

FX(r) =

∫

{g(u)<r}
X(x)µ(dx), r ∈ R;(1.2)

if FX is differentiable at r, its derivative F ′
X(r) is candidate to be a surface integral

F ′
X(r) =

∫

{g(u)=r}
X(x)σr(dx),(1.3)

provided that there exists a measure σr, independent of X, such that (1.3) holds. Obviously,
one further needs to prove that σr is concentrated on {g = r}. This approach was followed,
among others, by [3, 10, 5, 6, 11]. The main result in this paper is given in the the following
theorem, whose proof is given in Section 4.

Theorem 1.1. Let B the standard n-dimensional Brownian motion defined on the Wiener
probability space (E,E, µ). Assume that the dimension n satisfies

(1.4) n ≥ 3.

Let g be the random variable defined above

g(x) = g(B)(x) =
1

2
‖x‖2H , x ∈ E,

and consider the function FX defined in (1.2). Then, for any r > 0 there exists a unique
Borel measure σr on E such that (1.3) holds for any X ∈ UCb ∪D

1,p and the support of σr
is concentrated on {g = r}.
Moreover, for fixed r > 0, for any X ∈ D

1,p and h ∈ H, the following integration by parts
formula holds

∫

{g<r}
〈DX,h〉H µ(dx) = −

∫

{g=r}
X〈Dg, h〉H σr(dx) +

∫

{g<r}
XW (h)µ(dx),

with W (h) the Gaussian random variable defined in (2.1).

It is necessary to emphasize that the main effort in the proof is required by proving
the following proposition, which states that the random variable g satisfies, in a suitable
sense, the local Malliavin condition, see [6]. Such condition was introduced by Nualart [18,
Definition 2.1.2] (in a slightly different formulation) in a related context, i.e., the analysis
of the density for the law of a random variable. In our construction the law of the random
variable g plays a crucial role since it provides an explicit characterization of the surface
measure σr (see (1.7)).

Proposition 1.2. [Malliavin condition on g] There exists a process u ∈ Lp(E,µ : H) and
a real valued random variable γ ∈ D

1,p, for any p > 1, such that the following identity holds

(1.5) 〈Dg, u〉H = γ

and u
γ belongs to Dq(δ) for every

(1.6) 1 < q < n
2 .
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The proof of this Proposition is given in Section 3. The proof of the main theorem, which
is given in Section 4, follows quite naturally by the ideas provided in [6, 11].

Our construction, in particular, leads to the following identity concerning the surface
measure σr:

(1.7) E[X | g = r] f1(r) =

∫

{g=r}
X(ξ)σr(dξ),

where f1 is the probability density function of the random variable g = g(B). Corollary 4.3
below assures that f1 is a bounded and continuous function and the identity above holds
for every r > 0.

In the last part of the paper we extend previous results to the analysis of the random
variables g(u), where we assume that u is the solution of a stochastic differential equation
of gradient form

(1.8) u(t) = −

∫ t

0
∇V (u(s)) ds+B(t).

This is the first step in considering processes whose image law is non Gaussian. In particular,
in Section 5 we prove the following result.

Theorem 1.3. Let u be the solution of equation (1.8), where V ∈ C3
b (R

n;Rn), n ≥ 3, and
g(u) be the random variable defined in (1.1).
Then g(u) defined on (E,E, µ), has a continuous and bounded density ϕ1 with respect to
the Lebesgue measure on R+. Moreover, there exists a surface measure θr concentrated on
{g(u) = r} that is the restriction of µ to the level set {g(u) = r} .

We notice that the probability density function ϕ1(r) of the random variable g(u) with
respect to the Lebesgue measure can be computed in terms of f1 as follows:

ϕ1(r) = E[ρ1(B)−1 | g(B) = r]f1(r),

where ρ1(B)−1 is a bounded function which is defined in terms of the coefficient V in (1.8).
Moreover, it follows that ϕ1(r) = θr({g(u) = r}). The proof is based on a Girsanov
transformation of the reference Gaussian measure and it exploits the results obtained in the
case u = B.

2. An introduction to Malliavin calculus

In literature different ways of introducing the Malliavin derivative are present. We work
here in the general framework given in [18]. This approach requires to fix a probability
space (Ω,F,P) and an isonormal Gaussian process which provides the Gaussian framework.
Here, as reference probability space, we consider the Wiener space (E,E, µ). The isonormal
Gaussian process is given by the family of Wiener integrals.

We denote, as before, by B(t)(x) = x(t), t ∈ [0, 1], x ∈ E, the standard n-dimensional
Brownian motion on the probability space (E,E, µ). Given this process, we may introduce
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the Wiener integral

W (h) =

∫ 1

0
〈h(s),dB(s)〉Rn , h ∈ H = L2(0, 1;Rn).(2.1)

For any h ∈ H, W (h) is a centered Gaussian random variable with variance ‖h‖2H . We shall
denote by H1 the following subspace of L2(E,µ), called the first Wiener chaos, defined by

H1 = {F ∈ L2(E,µ) : ∃h ∈ H, F = W (h)}.

The map W defines a linear isometry between H and H1. In particular, we have {B(t), t ∈
[0, 1]} = {W (111[0,t]), t ∈ [0, 1]}.

Remark 2.1. In the sequel, we shall use the probabilistic notation of expectation for the
integral over E

E[F ] =

∫

E
F (x)µ(dx),

for a measurable function (random variable) F : (E,E) → R. In particular,

E[W (h)] =

∫

E
W (h)(x)µ(dx) = 0, E[|W (h)|2] =

∫

E
|W (h)(x)|2 µ(dx) = ‖h‖2H .

Starting from the space H1 we construct the class of smooth random variables

S = {F : (E,E) → R : ∃ f ∈ C∞
P (Rd), h1, . . . , hd ∈ H, F = f(W (h1), . . . ,W (hd)},

where C∞
P (Rd) is the space of smooth functions on R

d with polynomial growth at infinity.
We see that S ⊂ Lp(E,µ) for any p ≥ 1. On the class S of smooth random variables we
consider a functional (actually, a family of functionals indexed by the order of integration
p)

D : S ⊂ Lp(E,µ) → Lp(E,µ;H)

by setting

DF =

d
∑

k=1

∂f

∂xk
(W (h1), . . . ,W (hd))hk.

Lemma 2.2. Let F ∈ S and h ∈ H. Then it holds

E[〈DF, h〉H ] = E[FW (h)].

For the proof we refer to [?]. As a consequence, it is possible to prove that the operator
D is closable from Lp(E,µ) to Lp(E,µ;H).

Definition 2.3. We define the norm

‖F‖p1,p = E[|F |p] + E[‖DF‖pH ], F ∈ S.

Then the domain of the Malliavin derivative D, denoted by D
1,p, is the closure of the class

S in Lp(E,µ) with respect to the norm ‖ · ‖1,p. We shall denote again by D this closure.
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H ✲W
H1 ⊂ S

❅
❅
❅
❅
❅
❅
❅
❅❘Lp(E,µ;H)

⊂

S
1,p

=

D
1,pLp(E,µ) ⊃

D
W
(h) =

h

✲D

Let us now introduce the divergence operator.
Fix 1 < q < ∞ with 1

p + 1
q = 1. By Dq(δ) we denote the domain of the diverge operator δ.

It consists of all v ∈ Lq(E,µ, ;H) for which there exits a Gv ∈ Lq(E,µ) such that

E [〈v,DF 〉H ] = E [GvF ] , F ∈ D
1,p.

The function Gv, if it exists, is uniquely determined. We set

δ(v) := Gv, v ∈ Dq(δ).

The divergence operator is easily seen to be closed and densely defined.
It is known that in the caseH = L2(0, 1;Rn), for a given F ∈ D

1,p, its Malliavin derivative
DF ∈ Lp(E,µ;H) can be interpreted as a stochastic process indexed by t ∈ [0, 1]. In this
case we can interpret the divergence operator as a stochastic integral, the Skorohod integral
and the following notation becomes significant:

δ(u) =

∫ 1

0
〈u(s), δB(s)〉Rn .

If the process u is adapted and Itô integrable then the Skorohod integral coincides with the
Itô integral. In the special case u = h ∈ H, we have δ(u) = W (u), with W (u) given by
(2.1).

We conclude this Section with the following proposition, that we will exploit to prove
our main result Theorem 1.1. It is an extension of [18, Proposition 1.3.3] and a proof can
be found in [17, Proposition 6.9].

Proposition 2.4. Let 1 < r, q < ∞ be such that 1
q = 1

p + 1
r . Assume that F ∈ D

1,p and

u ∈ Dr(δ). Then Fu ∈ Dq(δ) and

δ(Fu) = Fδ(u) − 〈u,DF 〉H .

3. Verification of the Malliavin condition

In this section we prove that the random variable

(3.1) g(x) =
1

2
‖x‖2H =

1

2

∫ 1

0
|x(t)|2 dt, x ∈ E,
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satisfies the Malliavin condition stated in Proposition 1.2. From a probabilistic point of
view, this random variable is strictly related to the Bessel process of order ν = n

2 − 1:

X(t) = |B(t)|2. Some results on g are given, for instance, in [7].
In the following proposition we state the construction that we aim to prove in order to

achieve the verification of the Malliavin condition.

Proposition 3.1. Assume that B is the n-dimensional standard Brownian motion with n ≥
3. The random variable g, defined in (3.1), satisfies the Malliavin condition in Proposition
1.2 with

(3.2) u(s) =
Dsg

|Dsg|
, γ =

∫ 1

0
|Dsg|ds.

Remark 3.2. As we shall see in the proof of Lemma 3.5, the condition on n stated in
Theorem 1.1 comes from the estimate of E[γ−1/p]. The condition n ≥ 3 is therefore sufficient
for our construction to hold. It remains open the problem of whether it is also necessary.
Notice that the existence of the probability density function f1 for the random variable g
holds (via different techniques) for every n ≥ 1.

The proof of Proposition 3.1 is based on a chain of four lemmas that we will prove in the
next Subsection.

3.1. Preliminary lemmas.

Lemma 3.3. Let {B(t), t ∈ [0, 1]} be the standard n-dimensional Brownian motion. The
function g = g(B) as defined in (3.1) belongs to the space D1,p for all p ≥ 1 and its derivative
(in the direction i) is given by

(3.3) Di
sg =

∫ 1

s
Bi(t) dt.

Proof. For every s ∈ [0, 1] we can compute the Malliavin derivative, in the direction ei, of
the function g as follows

(3.4) Di
sg := 〈Dsg, ei〉Rn =

∫ 1

0
Bi(t)Ds(B

i
s(t)) dt =

∫ 1

s
Bi(t) dt.

�

Lemma 3.4. Let {B(t), t ∈ [0, 1]} be the standard n-dimensional Brownian motion and let
γ be defined as in Proposition 3.1. Then for any 0 < η < 1 there exists a constant c such
that

(3.5) P (γ < η) ≤ c ηn.

Proof. We compute, for η ≪ 1,

P(γ < η) = P

(
∫ 1

0
|Dsg|ds < η

)

.



8 S. Bonaccorsi and L. Tubaro and M. Zanella

Notice that every two norms in R
n are equivalent, so there exists c such that

P(γ < η) = P

(∫ 1

0
|Dsg|1 ds < c η

)

.

Further, by Hölder’s inequality,

P(γ < η) ≤ P

(∣

∣

∣

∣

∫ 1

0
Dsg ds

∣

∣

∣

∣

1

< cη

)

and, using again the equivalence of norms, we find a different c such that

P(γ < η) ≤ P

(∣

∣

∣

∣

∫ 1

0
Dsg ds

∣

∣

∣

∣

< cη

)

Notice that
∫ 1

0
Di

sg ds =

∫ 1

0

∫ 1

0
1(0,t)(s)B

i(t) dt ds =

∫ 1

0

∫ 1

0
1(0,t)(s) dsB

i(t) dt

=

∫ 1

0
tBi(t) dt =

1

2

∫ 1

0
(1− t2) dBi(t) =: Zi

is a family of independent, identically distributed Gaussian random variables with zero

mean and variance σ2 =
∫ 1
0

(

(1−t2)
2

)2
dt. Therefore, for some constant c depending on σ,

P(γ < η) ≤ P

(

n
∑

i=1

(

1
σZi

)2
< cη2

)

.

Since Zi are independent random variables, the sum in the right-hand side is a χ2-distribution
with n degrees of freedom, hence the probability above is estimated by

P(γ < η) ≤ c
(

η2
)

n
2 = cηn.

�

Lemma 3.5. Let {B(t), t ∈ [0, 1]} be the standard n-dimensional Brownian motion and let

γ be defined as in Proposition 3.1. Then E

∣

∣

∣

1/γ

∣

∣

∣

p
< ∞ for every 1 < p < n.

Proof. Fixed p > 1, we need to show that E
∣

∣

∣

1/γ

∣

∣

∣

p
< ∞. We can write

E

∣

∣

∣

1/γ

∣

∣

∣

p
=

∫ ∞

0
P

(

1

γp
> θ

)

dθ =

∫ ∞

0
P

(

γ <
1

θ
1

p

)

dθ = p

∫ ∞

0
P

(

γ <
1

τ

)

τp−1 dτ

= p

∫ 1

0
P

(

γ <
1

τ

)

τp−1 dτ + p

∫ ∞

1
P

(

γ <
1

τ

)

τp−1 dτ.

The first integral in the last line of the above expression is finite since P is a probability
measure and thus P

(

γ < 1
τ

)

≤ 1. Thus it is sufficient to show the convergence of the second
integral.
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Thanks to Lemma 3.4 we immediately get
∫ ∞

1
P

(

γ <
1

τ

)

τp−1 dτ ≤ C

∫ ∞

1
τ−n+p−1 dτ,

which is finite provided n > p. �

Lemma 3.6. Let {B(t), t ∈ [0, 1]} be the standard n-dimensional Brownian motion and
let γ be defined as in Proposition 3.1. Then γ ∈ D

1,p for every p > 1 and its Malliavin
derivative (in the direction i) is

(3.6) Di
θγ =

∫ 1

0

1

|Dsg|

∫ 1

s
Bi(r) dr

∫ 1

s
1(0,t)(θ) dt ds.

Moreover 1/γ ∈ D
1,p for any 1 < p < n

2 and its Malliavin derivative is given by

(3.7) Di
θ

(

1/γ

)

= −
Di

θγ

γ2
.

Proof. By the chain rule and Lemma 3.3 we have that γ ∈ D
1,p for every p > 1 and

Di
θγ = Di

θ





∫ 1

0

(

n
∑

i=1

∣

∣

∣

∣

∫ 1

s
Bi(t) dt

∣

∣

∣

∣

2
)

1

2

ds



 =

∫ 1

0

1

|Dsg|

∫ 1

s
Bi(r) dr

∫ 1

s
1(0,t)(θ) dt ds.

Therefore, applying Hölder’s inequality, from (3.6) we get

|Dθγ|
2 =

n
∑

i=1

∣

∣

∣

∣

∫ 1

0

1

|Dsg|

∫ 1

s
Bi(r) dr

∫ 1

s
1(0,t)(θ) dt ds

∣

∣

∣

∣

2

≤

n
∑

i=1

∫ 1

0

1

|Dsg|2

∣

∣

∣

∣

∫ 1

s
Bi(r) dr

∫ 1

s
1(0,t)(θ) dt

∣

∣

∣

∣

2

ds,

taking the sum inside the integral we can simplify and we get

|Dθγ|
2 ≤ 1.(3.8)

Equality (3.7) is straightforward to prove. It remains to prove that 1
γ ∈ D

1,p. In view of

Lemma 3.5 it is sufficient to show that

(3.9) E

∥

∥

∥D
(

1/γ

)∥

∥

∥

p

H
< ∞.

By means of estimate (3.8) we get

E

∥

∥

∥

∥

D·

(

1

γ

)∥

∥

∥

∥

p

H

= E

∥

∥

∥

∥

(

D·γ

γ2

)∥

∥

∥

∥

p

H

= E

[

‖D·γ‖H
|γ|2

]p

≤ E

∣

∣

∣

1/γ

∣

∣

∣

2p
.

By Lemma 3.5, the term E

∣

∣

∣

1/γ

∣

∣

∣

2p
is finite provided that n ≥ 3p and this concludes the

proof. �
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We see that the condition on the dimension n appears in the statement of previous
proposition, since it is necessary that n

2 > 1, i.e., n ≥ 3 in order to have a non degenerate
interval for p.

We are now ready to prove Proposition 3.1.

3.2. Proof of Proposition 3.1. Thanks to Lemma 3.3 we know that g ∈ D
1,p, for every

p > 1. By definition, compare (3.2), we verify that

(3.10) 〈Dg, u〉H =

∫ 1

0
〈Dsg, u(s)〉Rn ds = γ.

It remains to prove that

u
γ ∈ Dq(δ) for all 1 < q < n

2 .

In order to factor out a scalar random variable from a Skorohod integral we can appeal to
Proposition 2.4. From Lemma 3.6 we know that 1

γ ∈ D
1,p for every 1 < p < n

2 ; we claim

that u ∈ Dr(δ) for every r > 1. Therefore, by previous proposition, we have u
γ ∈ Dq(δ) for

1
q = 1

p + 1
r and, since r is arbitrary and p < n

2 , we obtain that

u
γ ∈ Dq(δ) for all q < n

2 .

It remains to verify the claim. Since u is a process adapted to the future and |u| ≤ 1,
u is backward Itô integrable. Then, we can mimic the construction given in [18, Section
1.3.3] for square integrable, adapted processes to be Skorohod integrable, and prove that u
belongs to Dr(δ) for any r.

4. Proof of Theorem 1.1: existence of the surface measure for sets defined

by the Brownian motion

In this section, by mimicking the construction provided in [6] we construct the surface
measure induced by µ on the level sets {g = r}. Recall that g is the random variable
defined by

g(x) =
1

2
‖x‖2H , x ∈ E;

by construction, g ≥ 0. Moreover, thanks to Proposition 3.1, g satisfies the Malliavin
condition of Proposition 1.2.
As stated in the Introduction, we study the family of functions FX(r) indexed by (suitably
regular) random variables X, where

FX(r) = E[1{g≤r}X], r ≥ 0.

In this section, we first assume that X is a random variable in D
1,p, for some p > n

n−2 (as it

will be clear later on, this condition stems from the requirement n ≥ 3 in Proposition 3.1).
Let

φ(u) =

∫ u

0
1{y≤r} dy.
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φ is a Lipschitz continuous function, hence it is possible to compute the Malliavin derivative

Dφ(g) = φ′(g)Dg;(4.1)

scalar multiplying both sides of (4.1) with u and X implies, after a little algebra

X
〈

Dφ(g), uγ

〉

H
= φ′(g)X = X 1{g≤r};

thus, the duality relationship between Malliavin derivative and Skorohod integral leads to

FX(r) = E[X1{g≤r}] = E

[

X
〈

Dφ(g), uγ

〉

H

]

= E

[

δ
(

X u
γ

)

φ(g)
]

.(4.2)

Notice that in order for the last term in (4.2) to be well defined, we need to have X u
γ ∈ Dθ(δ)

for some θ. We postpone the verification of this fact to Subsection 4.2 and we start by
considering the special case X ≡ 1. This case allows us to study the probability density
function of g.

4.1. Existence of the probability density function for g. By taking X ≡ 1, the above
reasoning leads to the existence of a density for the cumulative distribution function of the
random variable g, as already proved by Nualart [18, Proposition 2.1.1]:

P(g ≤ r) = F1(r) =E

[

δ
(

u
γ

)

∫ r

0
1{y<g} dy

]

and, by an application of Fubini’s theorem, we get the following expression, which easily
led to the existence of a density:

F1(r) =

∫ r

0
E

[

δ
(

u
γ

)

1{g>y}

]

dy.(4.3)

Proposition 4.1. Assume that there exist u and γ such that Proposition 1.2 holds. Then
the mapping s 7→ F1(s) is continuous.

Proof. The integrand function G : y 7→ E

[

δ
(

u
γ

)

1{g>y}

]

, defined in (4.3), is measurable

and bounded, by assumption, hence the statement is obvious. �

As a consequence of previous proposition, the mapping G is also continuous, since

|G(y + ε)−G(y)| ≤E

[∣

∣

∣δ
(

u
γ

)∣

∣

∣
1{y<g<y+ε}

]

≤E

[∣

∣

∣
δ
(

u
γ

)∣

∣

∣

q]1/q
(F1(y + ε)− F1(y))

1/q′ ,

where q′ is the conjugate exponent of q; therefore, we can apply the integral mean value
theorem to get the following.

Proposition 4.2. There exists the derivative f1(r) = F ′
1(r) and it is equal to

F ′
1(r) = E

[

δ
(

u
γ

)

1{g>r}

]
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Proof. Since

1

ε
(F1(r + ε)− F1(r)) =

1

ε

∫ r+ε

r
G(y) dy

and the integrand function G is continuous, the thesis follows by letting ε → 0. �

Corollary 4.3. The random variable g has a probability density function f1(r) that is
continuous and bounded.

Actually, the existence of this density is already known in the literature, as well as the
explicit form of this function, see [7, Part II.4, formula (1.9.4), page 377].

4.2. Differentiability of FX .

Lemma 4.4. Let n ≥ 3. If X ∈ D
1,p, for some p > n

n−2 and u
γ ∈ Dq(δ), with q < n

2 (cfr.

Proposition 1.2) then X u
γ ∈ Dθ(δ) for some θ < np

n+2p .

Proof. By definition, this requires to show that for any smooth random variable Y
∣

∣

∣E

〈

DY,X u
γ

〉

H

∣

∣

∣ < cE[|Y |θ
′

]1/θ
′

,

with 1
θ +

1
θ′ = 1. Recall the integration by parts formula

(4.4) E

〈

DY,X u
γ

〉

H
= E

[〈

D(XY ), uγ

〉

H
−
〈

DX,Y u
γ

〉

H

]

= E

[

XY δ
(

u
γ

)

− Y
〈

DX, uγ

〉

H

]

;

it follows
∣

∣

∣E

〈

DY,X u
γ

〉

H

∣

∣

∣ ≤E

[

|Y |
∣

∣

∣X δ
(

u
γ

)

−
〈

DX, uγ

〉

H

∣

∣

∣

]

and by Hölder’s inequality (in the sequel we exploit the assumption θ > p′, that is equivalent
to θ′ < p)

≤cE[|Y |θ
′

]1/θ
′

(

[

E

∣

∣

∣
X δ

(

u
γ

)∣

∣

∣

θ
]1/θ

+

[

E

∣

∣

∣

〈

DX, uγ

〉

H

∣

∣

∣

θ
]1/θ

)

≤cE[|Y |θ
′

]1/θ
′



[E|X|p]1/p
[

E

∣

∣

∣δ
(

u
γ

)∣

∣

∣

pθ

p−θ

]

p−θ

pθ

+
[

E‖DX‖pH
]1/p

[

E

∥

∥

∥

u
γ

∥

∥

∥

pθ

p−θ

H

]

p−θ

pθ





≤cE[|Y |θ
′

]1/θ
′



‖X‖D1,p

∥

∥

∥

u
γ

∥

∥

∥

D pθ
p−θ

(δ)





Recall the bound in (1.6). Then we shall require

1 <
pθ

p− θ
<

n

2
⇔ θ <

np

n+ 2p
.

Notice that p > n
n−2 implies that np

n+2p > 1. �
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We return to formula (4.2). Previous lemma guarantees the well posedness of the last
term in (4.2). Proceeding now in the same way we did in previous subsection, an application
of Fubini’s theorem implies that

FX(r) =

∫ r

0
E

[

δ
(

X u
γ

)

1{g>y}

]

dy.

We can finally state the main result in this section.

Proposition 4.5. Let X belongs to D
1.p, p > n

n−2 . Then there exists the derivative fX(r) =

F ′
X(r) and it is equal to

F ′
X(r) = E

[

δ
(

X u
γ

)

1{g>r}

]

.(4.5)

Moreover, fX(r) is a continuous and bounded function and there exists a constant c > 0
such that

|F ′
X(r)| ≤ c‖X‖D1,p .(4.6)

Proof. The proof of the first part is a straightforward extension of the computation of
previous section, by taking into account the integrability of X u

γ provided in Lemma 4.2.

We consider further the estimate (4.6). By the integration by parts formula for Malliavin
derivative,

|F ′
X(r)| ≤ E

[(

|Xδ
(

u
γ

)

|+ |〈DX,
u

γ
〉H |

)

1{g>r}

]

and the thesis follows by Hölder’s inequality and Hypothesis 1.2. �

Actually, the existence of a continuous density for the functional g implies that we can
write formula (1.2) as follows (we use a probabilistic notation, since it seems more expressive)

FX(r) = E[X1{g<r}] =

∫ r

−∞
E[X | g = s]f1(s) ds(4.7)

Therefore, by comparing with the results in Proposition 4.5, we obtain that the identity

fX(s) = F ′
X(s) = E[X | g = s]f1(s)(4.8)

holds for almost every s and, since the left-hand side is continuous, we conclude that there
exists a continuous version of the function s 7→ E[X | g = s]f1(s).

Notice that expression (4.8) for F ′
X(r) is more significant than (4.5). In particular it

provides ”a candidate” to be the surface measure. As we will formally prove in what
follows this candidate is given by f1(r) dµ, where f1(r) is the density function of g. This
also highlight the dependence of the surface measure by the kind of functional g we consider.
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4.3. The surface measure. The results in this section mimic the construction in [11, 6]
and we shall skip some minor detail. Notice however that these papers only address the
Hilbert setting, while we work in the Banach space E.
Let us notice that on the probability space (E,E, µ), identity (4.8) formally reads

F ′
X(r) =

∫

{g=r}
X(x)f1(r)µ(dx).

We are interested in proving that there exists a surface measure σr on the boundary surface
{g = r} such that previous expression simplifies to

F ′
X(r) =

∫

{g=r}
X(x)σr(dx).

In order to achieve this results, we need to extend previous construction to the class of
functionals X ∈ UCb.

Since functions in UCb can be uniformly approximated by elements in UC1
b (see [13,

Section 2.2]), for every X ∈ UCb there exists a sequence Xn ∈ UC1
b such that Xn → X.

Moreover, since UC1
b ⊂ D

1,p for every p, results in previous section applies to the elements
of the approximating sequence.

Proposition 4.6. For every X ∈ UC1
b , FX(r) is continuously differentiable and there exists

a constant c > 0 such that

|fX(r)| ≤ c‖X‖∞, where ‖X‖∞ is the sup-norm in E.(4.9)

Proof. Only (4.9) needs to be proven. By (4.8) we get

|fX(r)| ≤ |E[X | g = r]| f1(r) ≤ E|X|f1(r) ≤ c ‖X‖∞

since we know, by Corollary 4.3, that f1 is a continuous and bounded function. �

By an approximation argument we obtain that the same result holds for X ∈ UCb.

Proposition 4.7. For any X ∈ UCb the functional FX(r) is continuously differentiable
and there exists a constant c > 0 such that

|fX(r)| ≤ c‖X‖∞.(4.10)

We are finally in the position to conclude the proof of the main result of Theorem 1.1.
For fixed r, consider a sequence εn → 0 and define the family of measures

σn :=
1

εn
1{r<g≤r+εn}µ.

For any X ∈ UCb we have
∫

E
X(x)σn(dx) =

∫

E

1

εn
1{r<g≤r+εn}X(x)µ(dx) =

1

εn
[FX(r + εn)− FX(r)] ;

thanks to Proposition 4.7 we can pass to the limit in the above formula to get

lim
n→∞

∫

E
X(x)σn(dx) = F ′

X(r).
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By an application of the Prokhorov’s theorem (see [4, Corollary 8.6.3]) we finally obtain
that the sequence σn converges to a measure σr such that

F ′
X(r) =

∫

E
X(x)σr(dx).

Finally, by taking suitable approximations of X = 1{|g−r|>δ} we check that σr is concen-
trated on {g = r} and the proof is complete.

4.4. The integration by parts formula. In this section we discuss the integration by
parts formula on the level sets of the mapping g. Similar results have been obtained by
[8, 1] with different techniques, see also [6, Section 4].

Proposition 4.8. Let r > 0 be fixed. For any X ∈ D
1,p and h ∈ H it holds

(4.11)

∫

{g=r}
X〈Dg, h〉H σr(dx) =

∫

{g<r}
[XW (h)− 〈DX,h〉H ] µ(dx)

where W (h) is the Gaussian random variable defined in (2.1).

Proof. The starting point is the integration by parts formula (compare (4.4))

E [X 〈DY, h〉H ] = E [XY δ (h)− Y 〈DX,h〉H ] ;(4.12)

which holds for random variables X and Y in the domain D
1,p of the Malliavin derivative

and h ∈ H.
In a sense, we aim to apply this formula to the random variable Y = 1{g<r}, but this cannot
be obtained directly due to the lack of regularity of this mapping. We thus approximate Y
by the following procedure.

Let

θε(a) =
1

ε

∫ +∞

a
1(r−ε,r)(s) ds, a > 0;

θε is a Lipschitz continuous function, hence the mapping Yε = θε(g) is a smooth approxi-
mation of Y , in the sense that Yε → Y = 1{g≤r} in L2(E,µ).

The right hand side of (4.12), with Yε instead of Y , converges as ε ↓ 0 to
∫

{g<r}
[XW (h)− 〈DX,h〉H ] µ(dx).

On the other hand, we have

DYε = θ′ε(g)Dg =
1

ε
1(r−ε,r)(g)Dg

hence

E [X 〈DYε, h〉H ] =
1

ε

∫

H
X 1(r−ε,r)(g)〈Dg, h〉H µ(dx).

Proceeding as in Section 4.3 we notice that 1
ε1(r−ε,r)(g)µ converges to the measure σr

concentrated on {g = r}. We have thus proved the thesis. �
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Remark 4.9. In the special case X = 1, formula (4.11) reads

FW (h)(r) =

∫

{g<r}
W (h)µ(dx) =

∫

{g=r}
〈Dg, h〉H σr(dx), h ∈ H.

This is a sort of divergence theorem (in infinite dimensions) for the vector h; we remark that
similar results are already present in the literature, compare for instance [15].

Remark 4.10. Let us further notice that Dg is explicitly known (see formula (3.4)), hence

〈Dg, h〉H =
n
∑

i=1

∫ 1

0
hi(s)

∫ 1

s
Bi(t) dt ds

Let us define

h̃(t) =

∫ 1

0
(1− t ∨ r)h(r) dr, t ∈ (0, 1).

Then it holds

〈Dg, h〉H = W (h̃).

5. Existence of the surface measure for sets defined by the solution of

gradient systems

In this section we extend previous results to cover the case of a (multidimensional) gra-
dient system SDE (see [16]). Let V : Rn → R be a potential energy function; we assume
that

(5.1) V ∈ C3
b (R

n),

i.e., it is continuous and bounded together with its first three derivatives.
Then we define u to be the solution of the following equation:

du(t) = −∇V (u(t)) dt+ dB(t), u0 = 0 ∈ R
n(5.2)

Under our assumptions, the solution u belongs to L2(E,µ;E) (notice that we can solve the
equation in a pathwise sense).

Recall from Corollary 4.3 that g(B) has a density function f1(r) that is continuous and
bounded for r > 0. In this section we aim to study the same property for the random
variable g(u), where u is the solution of the equation (5.2).

Theorem 5.1. Let n ≥ 3. The cumulative distribution function of g(u) admits a probability
density function

ϕ1(r) =

∫

{g(B)=r}
ρ1(B)−1 σr(dx)

where for every process h ∈ L2(E,µ;E) we let ρ1(h) be the Girsanov’s density defined by

ρ1(h) = exp

(
∫ 1

0
〈∇V (h(s)),dB(s)〉 −

1

2

∫ 1

0
|∇V (h(s))|2 ds

)

,(5.3)

and the support of σr is concentrated on {g(B) = r}.
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5.1. Change of measure. First, we notice that our assumptions on V implies that

sup
t∈[0,1]

E
(

exp
(

|∇V (u(t))|2
))

< +∞,

therefore by [12, Theorem 10.14 & Proposition 10.17] we get that the process

u(t) = B(t)−

∫ t

0
∇V (u(s)) ds

is a Brownian motion in (E,E, ν), where ν is a centered Gaussian measure such that

dν = ρ1(·) dµ.

Let F : E → R be a bounded and Borel function; then we have that

Eν[F (u)] = Eµ[F (B)].

Lemma 5.2. The following representation of ρ1(u) holds:

(5.4) ρ1(u) = exp

(

V (u(1)) +
1

2

∫ 1

0
|∇V (u(t))|2 dt−

1

2

∫ 1

0
Tr(∇2V (u(t))) dt

)

.

Proof. Let us compute the Itô differential of V (u):

dV (u(t)) = 〈∇V (u(t)), [−∇V (u(t)) dt+ dB(t)]〉+
1

2
Tr(∇2V (u(t))) dt

Therefore, using the integral form of previous differential and recalling that u(0) = 0, we
get

V (u(1)) = −

∫ 1

0
|∇V (u(t))|2 dt+

∫ 1

0
〈∇V (u(s)),dB(s)〉+

1

2

∫ 1

0
Tr(∇2V (u(t))) dt

We substitute this expression in (5.3) to get the thesis. �

Proposition 5.3. The mapping x 7→ ρ1(B)−1(x) belongs to UCb.

Proof. By lemma 5.2 we can write

ρ1(B)−1 = exp

[

−

(

V (B(1)) +
1

2

∫ 1

0
|∇V (B(t))|2 dt−

1

2

∫ 1

0
Tr(∇2V (B(t))) dt

)]

.

Then the assumption that V ∈ C3
b (R

n) implies that ρ1(B)−1 is bounded. Now, we exploit
that B is the canonical Brownian motion on the Wiener space (E,E, µ), hence

B(t)(x)−B(t)(y) = x(t)− y(t);

notice again that the assumption on V implies that the mappings on E defined by

x 7→ V (x(1)), x →

∫ 1

0
Tr[∇2V (x(t))] dt, x →

∫ 1

0
|∇V (x(t))|2 dt

are Lipschitz continuous. Therefore, if ‖x − y‖∞ < δ, then
∣

∣ρ1(B)−1(x)− ρ1(B)−1(y)
∣

∣ ≤

e3Lδ and the proof is complete. �
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5.2. The main result. We have now all the ingredients to prove Theorem 5.1. The proof
of the existence of the density for g(u) can be obtained as a corollary to the results of
Section 4.2. To see this, we propose the following computation.
Using Girsanov’s transform we have

µ(g(u) ≤ r) =Eµ[1{g(u)≤r}] = Eν [1{g(u)≤r} ρ1(u)
−1]

=Eµ[1{g(B)≤r} ρ1(B)−1].

More generally, it holds

ΦX(r) =

∫

{g(u)≤r}
X(x)µ(dx) = FXρ(B)−1(r).

Lemma 5.4. The random variable g(u), defined on the space (E,E, µ) with values in R,
admits a probability density function with respect to the Lebesgue measure that is continuous
and bounded.

Proof. Using Proposition 5.3 we are able to apply Theorem 1.1 to obtain that the distribu-
tion function Φ1(r) of g(u) admits a derivative

ϕ1(r) = fρ1(B)−1(r) =

∫

E
ρ1(B)−1 σr(dx)

where, as stated in Theorem 1.1 the support of the measure σr is concentrated on {g(B) =
r}. Now, the thesis follows from Proposition 4.5. �

Next, we prove that there exists a surface measure on {g(u) = r} for r > 0 that is the
restriction of the Gaussian measure µ to the given surface. Proceeding as in Section 4 we
obtain that

1

ǫn
[ΦX(r + ǫn)− Φ(r)] =

∫

E
X(x)

1

ǫn
1{r<g(u)≤r+ǫn} µ(dx)

and we can pass to the limit in previous formula, since the left hand side converges to
Φ′
X(r) = F ′

Xρ1(B)−1(r) by Proposition 4.7.

Therefore, by mimicking the procedure in Section 4 we get that the sequence of measures

θn :=
1

ǫn
1{r<g(u)≤r+ǫn} µ(dx)

converges to a measure θr and this measure is concentrated on {g(u) = r}.
In particular,

ϕ1(r) =

∫

{g(u)=r}
θr(dx) = θr({g(u) = r}).
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