
TrueFloat: a templatized arithmetic library for
HLS floating-point operators⋆

Michele Fiorito, Serena Curzel, Fabrizio Ferrandi

Politecnico di Milano, Piazza Leonardo da Vinci 32 20133 Milano, Italy
michele.fiorito@polimi.it, serena.curzel@polimi.it,

fabrizio.ferrandi@polimi.it

Abstract. Hardware designers working on FPGA accelerators are free
to explore ad-hoc value representations that differ from the IEEE 754
floating-point standard, significantly reducing resource utilization and
latency. In fact, while some applications are amenable to fixed-point
quantization, others may require a wider dynamic range of values, bet-
ter represented through a customized floating-point encoding. TrueFloat
automates the process of designing accelerators with custom floating-
point representations by introducing a methodology for the generation
of customized floating-point units within a state-of-the-art High-Level
Synthesis tool, providing high performance and fast prototyping. With
TrueFloat, it is possible to translate a software description with standard
floating-point calculations into an optimized hardware design featuring
any number of different value encodings. Generated floating-point units
are competitive with respect to state-of-the-art templatized libraries.

Keywords: High-Level Synthesis · FPGA · Custom data types.

1 Introduction

When a software description is translated into a hardware accelerator for Field
Programmable Gate Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs), developers have the opportunity to customize data types to balance la-
tency, power consumption, and computational precision. If the accelerator is
designed in Verilog/VHDL, floating-point calculations can be manually trans-
formed into fixed-point (quantization) or into floating-point formats tailored to
the specific application. With High-Level Synthesis (HLS), developers have the
opportunity to describe the accelerators at a higher level of abstraction (C/C++
code) and increase their productivity; however, experiments with custom data
types are limited by the back-end libraries supported by the HLS tool, which
are mostly focused on fixed-point types.

In this paper, we present TrueFloat: an extensible framework for the ex-
ploration of custom floating-point data types and the automated synthesis of

⋆ This research was partially supported by the HERMES project - European Union’s
Horizon 2020 research and innovation programme, grant agreement N. 101004203.

2 Michele Fiorito, Serena Curzel, Fabrizio Ferrandi

corresponding optimized arithmetic units. TrueFloat is embedded into the open-
source HLS tool Bambu [3], and it provides effortless translation between differ-
ent floating-point encodings through simple command-line options, integration
with other optimization techniques present in the HLS flow, and the possibility of
generating multi-precision accelerators where different floating-point encodings
are used in different parts of the design.

2 State of the art

VFLOAT [7] is a VHDL library containing variable-precision floating-point cores
for basic arithmetic operations, along with conversion operators to and from
fixed-point representations; the components are parametrized, but they can-
not be adapted to different frequency domains or different target FPGAs. The
FloPoCo framework [2] provides a wide range of features to generate, optimize,
and test complex arithmetic functions for low-level accelerator design; it can
generate templatized VHDL cores for integer, fixed-point, floating-point, and
complex types, which can be further optimized for a specific FPGA and fre-
quency target. When dealing with floating-point data types, FloPoCo uses a
proprietary encoding, different from the IEEE standard, and optimized to allow
easier exception handling. Both approaches require the user to integrate each
RTL core in the accelerator design manually.

If the customization of floating-point computation is available at a higher
level of abstraction, the user can write a software description and feed it to an
HLS tool. Proprietary libraries exist offering a C++ API to replace standard
numerical types in the high-level software description before it is passed to their
HLS tools, mapping C++ types onto a back-end RTL library during the synthesis
process. This is the case of the Mentor Graphics Algorithmic C Datatypes [5],
providing arbitrary precision integer, fixed-point, and floating-point types. A
similar library, Template HLS [6], provides a unique implementation used for
both simulation and synthesis.

The main strength of TrueFloat is the integration with an HLS tool, which
unlocks new optimization opportunities and the possibility of generating an
equivalent representation at a higher level of abstraction. Existing approaches
based on libraries of functional units cannot access such opportunities, and they
require significant code rewriting, while TrueFloat users can write their appli-
cations with standard floating-point operations and the tool will automatically
generate the requested custom units.

3 Proposed approach

TrueFloat integrates the customization of floating-point representations into the
HLS flow of Bambu; it is not required to use custom data types in the input code,
as standard floating-point operations and types will be replaced with custom rep-
resentations during the HLS flow, according to user-defined constraints expressed

TrueFloat: a templatized arithmetic library for HLS floating-point operators 3

Fig. 1: TrueFloat synthesis methodology.

as command-line options. Offloading the replacement from the application de-
scription phase to the HLS flow turns an error-prone, complex procedure into a
reliable process that autonomously handles types replacement, conversions, and
custom arithmetic units generation. We introduced floating-point manipulation
as a new compiler step within the HLS flow, called FPBlender, so that it can
exploit information generated during previous analysis steps on the intermedi-
ate representation of the input program and apply more accurate optimizations
after the custom floating-point implementation has been applied (Figure 1).

TrueFloat features a fully templatized IEEE 754-like floating-point repre-
sentation, which allows the definition of any bitwidth for both mantissa and
exponent, provided that together with an optional sign bit the new data type
can fit into a 64-bit word. It is also possible to arbitrarily define the exponent
bias, allowing accurate centering of the representation over the range of values
that need to be encoded; fixed-point values can thus also be encoded by forcing
a zero-bit exponent and using the bias value to set the decimal point. It is pos-
sible to encode both standard and subnormal values, but also standard-only or
subnormal-only values. Exception encoding is customizable, allowing to choose
between standard IEEE 754 exceptions and a representation where floating-
point operators will simply avoid exception handling; such a configuration is
useful when the application is not expected to fall into exceptional behaviors at
runtime. Finally, it is possible to switch from round to nearest even to a simpler
truncation rounding mode when small errors are acceptable.

The floating-point lowering pass FPBlender translates each floating-point
variable or operation present in the input code into its customized counterpart
operating on the intermediate representation of the HLS tool. FPBlender gen-
erates ad-hoc functional units exploiting the TrueFloat library of templatized
components, which currently contains implementations for basic arithmetic oper-
ators (addition, subtraction, multiplication, division, and comparison) and bidi-
rectional type conversion operators (floating-point to integer, integer to floating-
point, and floating-point to floating-point). The floating-point functions in the
TrueFloat library are soft-float implementations built from basic integer oper-
ations; input and output parameters are defined as unsigned integers as well.

4 Michele Fiorito, Serena Curzel, Fabrizio Ferrandi

After the modifications are applied, the intermediate representation no longer
contains floating-point types, and floating-point operations are replaced with
calls to corresponding functions from the TrueFloat library.

One key feature of TrueFloat is the ability to exploit optimizations both dur-
ing the front-end compilation phase and the back-end synthesis flow. Before the
execution of FPBlender, the intermediate representation contains floating-point
operations as single instructions, simplifying data flow analysis and value range
analysis. After the lowering has been applied, several HLS passes can be ex-
ploited to optimize the intermediate representation; inter-procedural analysis to
propagate function parameters and return values is particularly effective during
this phase as floating-point operations have been replaced with function calls.

Finally, TrueFloat can generate a C equivalent of the HLS intermediate rep-
resentation along with the final RTL design. The C output is a one-to-one equiv-
alent of the intermediate representation converted into RTL code, and thus it can
be exploited to perform fast and accurate software simulations of the customized
floating-point operations.

4 Implementation

4.1 FPBlender step

FPBlender generates custom floating-point arithmetic operators and integrates
them into the Bambu intermediate representation, adding all necessary interfaces
with the rest of the design; it has been implemented as a function scope transfor-
mation so that different data types can be specified for each function in the input
application. The first phase in the FPBlender lowering process analyzes the call
graph of the application, propagating information about custom floating-point
types and understanding where type conversions are required. Subsequently, each
function body is analyzed and annotated to identify variables that will be con-
verted into custom types, while floating-point instructions are replaced with
calls to templatized functions from the library. The actual arithmetic cores are
generated through a versioning process where the function from the library re-
ceives a set of specialization arguments and a new name formed appending the
specialization string to its base name. Finally, a second function-scope transfor-
mation is applied where annotated variables are converted to unsigned integer
types with the exact bitwidth needed to contain the custom floating-point encod-
ing, and conversion operators are inserted where necessary. At this point, the
lowering is completed: all floating-point types and arithmetic operations have
been replaced by bit manipulation and integer arithmetic instructions, and the
subsequent HLS analysis and optimizations passes are executed on the updated
intermediate representation.

4.2 TrueFloat arithmetic library

The TrueFloat library is composed of three types of operators (arithmetic oper-
ators, comparators, and converters) implemented in C following a custom IEEE

TrueFloat: a templatized arithmetic library for HLS floating-point operators 5

1 float myAdd(float a, float b)

2 {

3 unsigned long long _a = __float_to_e6m12b_63noh (*((

unsigned int*)&a), spec);

4 unsigned long long _b = __float_to_e6m12b_63noh (*((

unsigned int*)&b), spec);

5 unsigned long long _res = __adde6m12b_63noh(_a, _b, spec);

6 unsigned int _out = __to_e8m23b_127nih(_res , spec);

7 reutrn *((float *)&_out);

8 }

Fig. 2: C equivalent of the intermediate representation after FPBlender.

754 encoding class and pre-compiled inside the Bambu distribution package. All
functions have arguments representing standard operands followed by a set of
eight specialization arguments to indicate the number of exponent bits, frac-
tional bits, the exponent bias, the rounding mode, the exception mode, whether
hidden one is enabled, whether subnormals are enabled, and the sign mode.

4.3 HLS transformations

TrueFloat takes advantage of the Bambu HLS engine to perform constant prop-
agation, function versioning, function inlining, and cyclic inter-procedural anal-
ysis. The core transformation which is necessary for the specialization of True-
Float functions is constant propagation: after a library function is versioned by
the FPBlender transformation step, it is always called with the same set of spe-
cialization arguments, so all sub-expressions involving specialization arguments
can be resolved at compile-time and unnecessary instructions can be removed.

Bambu also features inter-procedural optimizations; the most effective ones
for the TrueFloat flow are bit-value inference [1] and value range analysis [4].
Inter-procedural analysis may be able to detect that an operator is never fed
with values encoding exceptions, like NaN or infinity, so Bambu may remove the
related checks from the final operator resulting in a faster and smaller design.

Finally, the standard HLS steps of scheduling, resource allocation, and mod-
ule binding are applied. Unlike approaches based on libraries of black-box com-
ponents, TrueFloat generates functional units that go through the full HLS flow,
granting Bambu an accurate timing model of each component and the possibility
of applying retiming techniques to remove input/output registers.

4.4 Example

We will now show a simple example of the TrueFloat conversion flow assum-
ing that the function to be synthesized returns the sum of two floating point
values, and that a specialization string is applied to indicate that we require 6
bits for the exponent, 16 bits for the mantissa, a bias of -63, round to nearest
even rounding mode, no exception handling, and hidden-one representation.

6 Michele Fiorito, Serena Curzel, Fabrizio Ferrandi

1 unsigned long long __float_adde6m12b_63noh(

2 unsigned long long a, unsigned long long b,

3 .bits8 exp_bits , bits8 frac_bits ,

4 .int32 exp_bias , bits8 rnd , bits8 exc ,

5 .flag one , flag subnorm , bits8 sign)

6 {

7 ...

8 .if(rnd == RND_NEVEN)

9 .{

10 LSB_bit = (RSig0 >> 3) & 1;

11 Guard_bit = (RSig0 >> 2) & 1;

12 Round_bit = (RSig0 >> 1) & 1;

13 Sticky_bit = (RSig0 & 1) | sb;

14 round = Guard_bit & (LSB_bit | Round_bit | Sticky_bit);

15 .}

16 ...

17 .if(rnd)

18 Rrounded = RExp0RSig1 + round;

19 .else

20 .Rrounded = RExp0RSig1;

21 ...

Fig. 3: Partial implementation of the floating-point addition operator with un-
necessary code eliminated after constant propagation.

After the FPBlender step, the intermediate representation looks as shown
in Figure 2 (a C description is used for clarity, and specialization arguments
have been collapsed into one): the standard floating-point addition has been re-
placed by its equivalent, versioned function call from the templatized library.
Two conversion operators are added to convert the top function parameters
from the standard floating-point encoding to the internal one, and the opposite
is done for the return value. Inter-procedural optimizations then start to prop-
agate specialization arguments from each function call to the functional units.
Constant propagation removes conditional statements and the specialization ar-
guments themselves are removed from the function signature, as shown in Figure
3, which represents a code snippet from the implementation of rounding after
the mantissa addition.

5 Experimental results

We present experimental results that compare arithmetic operators generated
by TrueFloat with the ones generated by FloPoCo [2] and Template HLS [6].
Figure 4 reports the latency (in terms of clock cycles) and resources consumption
(in terms of number of slices) of floating-point addition and multiplication units
synthesized for a Virtex7 FPGA with 400 MHz frequency target. Five differ-
ent floating-point encodings are explored: 11-bits exponent and 52-bits mantissa

TrueFloat: a templatized arithmetic library for HLS floating-point operators 7

50 100 150 200 250 300 350
Slices

4

6

8

10

12

14

16

18

20

Cl
oc

k
cy

cle
s

e11m52
e9m38

e8m23

e5m10e3m4

e11m52e9m38

e8m23

e5m10
e3m4

e11m52
e9m38e8m23

e5m10
e3m4

TrueFloat
FloPoCo
TemplateHLS

(a) FPAdd

25 50 75 100 125 150 175 200 225
Slices

4

6

8

10

12

14

16

Cl
oc

k
cy

cle
s

e9m38

e8m23

e9m38
e8m23

e5m10

e9m38e8m23
e5m10

e3m4

e3m4

TrueFloat
FloPoCo
TemplateHLS

(b) FPMult

Fig. 4: Comparison between TrueFloat arithmetic units and state-of-the-art li-
braries in terms of clock cycles and slices consumption.

Table 1: Synthesis of TrueFloat operators with different configurations.

FPAdd FPMult
Spec Cycles Slices LUTs Registers Cycles Slices LUTs DSPs Registers
nih 11 280 750 961 12 216 447 10 927
nihs 12 383 979 1219 13 210 448 10 936
noh 11 259 723 869 12 206 400 10 964
tih 9 218 632 763 10 167 370 10 607
toh 9 221 610 676 10 150 316 10 674

(IEEE 754 double precision), 9-bits exponent and 38-bits mantissa, 8-bits ex-
ponent and 23-bits mantissa (IEEE 754 single precision), 5-bits exponent and
10-bits mantissa, 3-bits exponent and 4-bits mantissa. As can be seen in the
plots, TrueFloat consistently delivers performance and resource usage that are
competitive with respect to FloPoCo and Template HLS, especially consider-
ing that both FloPoCo and Template HLS often generate designs with half the
requested frequency.

Table 1 shows double precision floating-point operators synthesized with dif-
ferent configurations: round to nearest even n or truncation t, IEEE compliant
exception handling i or overflow o, and support for subnormal numbers (s). The
target is a Zynq FPGA with a frequency of 200 MHz. Picking the nih configura-
tion as the default, we can observe how adding support for subnormal numbers
is expensive both in terms of resource usage and number of cycles, while moving
from round to nearest even to truncation significantly reduces latency and area.
(Note that the TrueFloat addition operation does not require any DSPs.)

We also used a larger application containing multiple IEEE 754 single preci-
sion floating-point operations (2mm kernel from the PolyBench suite) to compare
TrueFloat against commercial tool Vitis HLS. Targeting a Zynq FPGA at 100

8 Michele Fiorito, Serena Curzel, Fabrizio Ferrandi

Table 2: Synthesis of the same kernel with TrueFloat (Bambu) and Vitis HLS.

PolyBench 2mm
HLS tool Cycles Slices DSPs LUTs Registers

Bambu 65250 422 2 1022 891
Vitis HLS 76708 413 14 908 1220

MHz, the accelerator generated by Bambu has a better performance because
the TrueFloat functional units allow Bambu to remove registers before and after
floating-point units and save clock cycles for each operation, while Vitis HLS
treats them as black boxes and cannot apply further optimizations.

6 Conclusions

The TrueFloat framework provides an automated approach to the design of
multi-precision floating-point applications with customizable data types. The
proposed flow can fully exploit HLS optimizations thanks to its integration
within the synthesis flow, leading to improved performance and resource con-
sumption. The compiler step and operators library are available in open source
at https://github.com/ferrandi/PandA-bambu.

References

1. Budiu, M., Sakr, M., Walker, K., Goldstein, S.C.: BitValue Inference: Detecting
and Exploiting Narrow Bitwidth Computations. In: Proceedings from the 6th In-
ternational Euro-Par Conference on Parallel Processing (Euro-Par ’00). p. 969–979
(2000)

2. de Dinechin, F., Pasca, B.: Designing Custom Arithmetic Data Paths with FloPoCo.
IEEE Design & Test of Computers 28(4), 18–27 (2011)

3. Ferrandi, F., Castellana, V.G., Curzel, S., Fezzardi, P., Fiorito, M., et al.: Bambu:
an Open-Source Research Framework for the High-Level Synthesis of Complex Ap-
plications. In: Proceedings of the 58th ACM/IEEE Design Automation Conference
(DAC). pp. 1327–1330 (2021)

4. Rodrigues, R., Campos, V., Pereira, F.: A fast and low-overhead technique to se-
cure programs against integer overflows. In: Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). pp. 1–11
(2013)

5. Siemens Digital Industries Software: HLS Libs (2021), https://hlslibs.org/
6. Thomas, D.B.: Templatised Soft Floating-Point for High-Level Synthesis. In: 2019

IEEE 27th Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM). pp. 227–235 (2019)

7. Wang, X., Leeser, M.: VFloat: A Variable Precision Fixed- and Floating-Point Li-
brary for Reconfigurable Hardware. ACM Trans. Reconfigurable Technol. Syst. 3(3)
(2010)

