HLS-based acceleration of the BIKE post-quantum
KEM on embedded-class heterogeneous SoCs

Andrea Galimberti
DEIB
Politecnico di Milano
Milano, Italy
andrea.galimberti @ polimi.it

Abstract—An effective transition to post-quantum cryptogra-
phy mandates its deployment on embedded-class devices, guar-
anteeing adequate performance while satisfying their strict area
constraints. This work accelerates BIKE, a QC-MDPC code-
based post-quantum KEM, through HLS on embedded-class het-
erogeneous SoCs that couple a CPU with FPGA programmable
logic. The proposed methodology implements HLS-generated
accelerators to compute the most time-consuming operations
of BIKE, identified by analyzing the software-only execution.
The mix of accelerators instantiated in hardware and operations
executed in software, as well as the configurable architectural
parameters of the former, are then determined, depending on
the resources available on the target SoC, to minimize BIKE’s
execution time. Experiments on AMD Zynq-7000 SoCs highlight
a speedup of up to 3.34 times compared to the reference software
execution and up to 1.98 times over state-of-the-art HW/SW
implementations targeting the same chips.

Index Terms—post-quantum cryptography, QC-MDPC code-
based cryptography, BIKE, embedded systems, heterogeneous
system-on-chip, hardware accelerators, HLS, FPGA

I. INTRODUCTION

Post-quantum cryptography (PQC) has emerged as a trend-
ing research topic due to the threat posed by quantum
computers, which are expected to break the currently de-
ployed public-key cryptography solutions. BIKE [1] is a key
encapsulation mechanism (KEM) that employs quasi-cyclic
moderate-density parity-check (QC-MDPC) codes in a variant
of the Neiderreiter scheme and that has the best performance
among the remaining candidates in the PQC standardization
process led by the USA’s National Institute of Standards and
Technology (NIST) [2].

The complexity of PQC solutions makes it paramount to
optimize their execution to guarantee proper performance
even on embedded devices at the edge [3]-[5]. The liter-
ature provides the official x86-64 software implementations
of BIKE [1], constant-time versions [6], and works targeting
other architectures [7], [8], while state-of-the-art hardware
implementations include the official FPGA-based one [9], that
instantiates the whole KEM in a unified accelerator, and an

This work was supported by the European Commission and the Italian
Ministry of Enterprises and Made in Italy (MIMIT) under the KDT JU
“ISOLDE” project (Grant No. 101112274).

©2023 IEEE
DOI 10.1109/ICECS58634.2023.10382918

Gabriele Montanaro

Politecnico di Milano
Milano, Italy
gabriele.montanaro @polimi.it

Davide Zoni
DEIB
Politecnico di Milano
Milano, Italy
davide.zoni @polimi.it

DEIB

FPGA-based architecture [10], split into two cores dedicated
to the KEM client and server nodes functionality.

While applications such as PQC get more complex and must
be deployed on constrained devices, heterogeneous platforms
featuring a CPU and programmable logic have emerged as
effective computing solutions in embedded scenarios. The two
parts suffer from constrasting drawbacks since the CPU does
not provide sufficient performance to execute such applications
entirely in software and the FPGA does not contain enough
resources to implement them fully in hardware, and ever-
tighter time-to-market deadlines must be met.

High-level synthesis (HLS) has emerged to this end as an
effective solution for the fast production of digital circuits,
although delivering less optimized hardware designs that suffer
from inefficient usage of the FPGA resources. Exploiting the
shorter design time of HLS and improving performance over
software execution within the limited resources of embedded
heterogeneous platforms requires thus a careful approach [11].

The lone state-of-the-art work mixing the software and
hardware execution of BIKE implements the whole three KEM
primitives, i.e., key generation, encapsulation, and decapsula-
tion, in hardware through HLS-generated accelerators [12]. Its
hardware-software (HW/SW) co-design approach is limited to
executing each primitive either in hardware on a dedicated
accelerator or in software on the CPU. Moreover, the results
cover only BIKE’s instance with AES-128-equivalent security.

Contributions

In this paper, we propose a methodology that, targeting
embedded heterogeneous SoCs that feature both a CPU and
programmable logic, leverages their limited FPGA resources
to implement in hardware, through HLS, solely the most
time-consuming operations of BIKE in order to maximize
the performance improvement for the overall post-quantum
KEM. Depending on the available resources, we select the
mix of accelerators to instantiate in hardware and operations
to execute in software, as well as the configurable architectural
parameters of the former, that minimize BIKE’s execution
time. The experimental results highlight performance improve-
ments over the state-of-the-art software and HW/SW solutions.

To our knowledge, this is the first work that applies an
HLS-based, fine-grained HW/SW approach to the BIKE post-

TABLE I: Breakdown of the execution times of BIKE, in
milliseconds and percentages, on a 32-bit ARM CPU. Mul-
tiplication and decoding operations are highlighted in bold.

NIST security level

KEM AES-128 AES-192
primitive Operation [ms] [%] [ms] [%]
Keygen SHAKE-based PRNG 0.9 0.1% 1.2 0.1%
Inversion 319.1 393% 883.0 41.1%
— Multiplication 2171 26.7% 696.3 32.4%
— Exponentiation 1019 12.6% 186.7 8.7%
Multiplication 12.8 1.6% 36.6 1.7%
3323 409% 9209 42.8%
Encaps SHAKE-based PRNG 0.9 0.1% 1.2 0.1%
Multiplication 12.8 1.6% 37.2 1.7%
SHA-3 hash function 0.6 0.1% 1.1 0.1%
SHA-3 hash function 02 <0.1% 03 <0.1%
14.7 1.8% 40.9 1.9%
Decaps Decoding 463.1 57.0% 1185.6 55.1%
SHA-3 hash function 0.6 0.1% 1.1 0.1%
SHAKE-based PRNG 0.9 0.1% 1.2 0.1%
SHA-3 hash function 0.2 <0.1% 03 <0.1%
4648 572% 11883 553%
Multiplication+Decoding 705.7 86.9% 1955.7 91.0%
Total ~ 812.0 100% 2150.1 100%

quantum KEM and provides results for multiple instances of
BIKE with different levels of security.

II. METHODOLOGY

The BIKE KEM can be split into three primitives. Key
generation produces a public-private key pair, encapsulation
generates a shared secret and encrypts it with the public
key, and decapsulation retrieves the shared secret with the
private key from the exchanged ciphertext. Due to its QC-
MDPC code-based nature, BIKE makes wide use of binary
polynomial arithmetic operations, preeminently multiplication,
exponentiation, and inversion, and of the bit-flipping decoding
procedure, in particular the Black-Gray-Flip decoding variant.

The proposed methodology is composed of three steps. Af-
ter identifying which operations to instantiate in hardware, we
generate and optimize the corresponding accelerators through
HLS, and finally we integrate them in the heterogeneous SoC
and make use of their functionality in the software code.

A. Performance profiling of BIKE software

The first step foresees identifying which portions of BIKE
to accelerate in hardware and which to execute in software.
Intuitively, we aim to find a small number of operations that
occupy a large share of execution time and implement those
operations in hardware to speed up their computation.

Table I depicts the performance profile of the execution of
the BIKE reference C99 software [1] on an ARM Cortex-A9
CPU. Notably, bit-flipping decoding and binary polynomial
inversion occupy up to 57.0% and 41.1% of the execution
time of the whole KEM, respectively. At a finer granularity,
binary polynomial inversion is computed as an iterative al-
gorithm composed of binary polynomial multiplications and
exponentiations and is primarily dominated by the former.
A binary polynomial multiplication also appears in the en-
capsulation primitive. Cumulatively, bit-flipping decoding and

binary polynomial multiplications take 86.9% and 91.0% of
the total execution time considering AES-128- and AES-192-
equivalent security instances of the BIKE KEM, respectively.

B. High-level synthesis of hardware accelerators

The large fraction of BIKE’s execution time covered by
Black-Gray-Flip decoding and binary polynomial multipli-
cation operations motivates the design choice to accelerate
them through HLS-generated accelerators while keeping the
computation of the rest of the KEM in software on the CPU.

Whereas the lone existing state-of-the-art HLS-based
HW/SW work designs accelerators that implement the whole
KEM primitives of BIKE [12], in this work the HLS effort
focuses solely on decoding and multiplication, leveraging all
the available FPGA resources for their acceleration.

Binary polynomial multiplication operates on factors with
sizes in the order of tens of thousands of bits. The design of
the binary polynomial multiplier starts from the C code of
a multiplication procedure that leverages the Karatsuba and
Comba multiplication algorithms. The Karatsuba multiplica-
tion formula is recursively applied a configurable number of
times, and, at the innermost level, it makes use of Comba
multiplication to compute its partial products. Finally, the
Comba multiplier executes its partial products between word-
size operands through a combinational multiplier. Configuring
the number of Karatsuba recursions enables exploiting the
area-performance trade-off. Moreover, unrolling directives in
the Comba multiplier allow for reducing latency by setting the
length of the combinational multiplier’s operands. On the area
side, we exploit storage binding and array partitioning HLS
directives to use the available resources efficiently, storing
the large polynomials to BRAM while reserving flip-flops for
variables with sizes up to a few hundred bits.

Black-Gray-Flip decoding is an iterative algorithm that
takes a syndrome and the private key as inputs and retrieves an
error vector. The complexity of decoding is given by the large
size of the code, which is in the order of tens of thousands
of bits. The decoding algorithm itself contains multiplications
between polynomials. Part of those operations are performed
in the Galois field of binary polynomials, while others treat the
coefficient of those polynomials as natural arithmetic integer
values. On the performance side, we optimize the decoding
latency by implementing such multiplications through the
same hybrid Karatsuba-Comba approach detailed in the pre-
vious paragraph. On the area side, the amount of used FPGA
resources is reduced by applying storage binding and array
partitioning directives.

C. Integration of hardware accelerators in heterogeneous SoC

Depending on the amount of available FPGA resources,
the accelerators to be implemented in the programmable
logic of the SoC are selected and parameterized to maximize
the performance of the BIKE execution, i.e., minimize the
aggregate execution time of the three KEM primitives.

3 gL M| AXIDMA |, > [T
AXI4 £ [axu | Controller |AxiStream
= |s M
= CPU Z e DI AX DMA > Multiplier
5 AXI4 Controller | AX14-Stream

f i

AXI4-Lite

P ble logi
SoC rogrammable logic

Fig. 1: Top view of the heterogeneous SoC architecture.
Legend: M AXI master, S AXI slave.

Hardware accelerators can be integrated within a heteroge-
neous SoC that features a CPU and programmable logic as de-
picted in Figure 1, which shows an example where the FPGA
part instantiates both HLS-generated accelerators for binary
polynomial multiplication and Black-Gray-Flip decoding.

Each accelerator exposes an AXI4-Stream interface, which
connects it to a dedicated DMA controller that provides high-
bandwidth access to the DDR memory. DMA controllers
are connected to memory through an AXI4 interface, while
the CPU accesses their initialization, status, and management
registers through AXI4-Lite.

III. EXPERIMENTAL RESULTS

In order to provide the fairest comparison, our experimental
evaluation adopts a similar setup to the one employed for the
reference state-of-the-art HW/SW implementation [12], target-
ing, as the experimental platform, AMD Zyng-7000 SoCs.

Zyng-7000 chips pack a 32-bit dual-core ARM Cortex-A9
processor, running at a 667MHz clock frequency, connected
to an external 512MB DDR3 memory and coupled with Artix-
7-class FPGA programmable logic. We target the Zyng-7010
SoC, i.e., the smallest Zyng-7000 chip, whose FPGA part
features 17600 look-up table (LUT), 35200 flip-flop (FF), 80
digital signal processing (DSP), and 120 block RAM (BRAM)
resources, and the larger Zyng-7015 one, with 46200 LUT,
92400 FF, 160 DSP, and 190 BRAM resources. AMD tools
are employed across the whole workflow, including the Peral-
inux 2022.1 OS running on the Zyng-7000 chips, Vitis HLS
2022.1 for HLS, Vivado ML 2022.1 for RTL synthesis and
implementation, and Vitis 2022.1 for programming.

The full AXI4 interface connecting the AXI interconnect
module to memory is mapped on the HPO high-performance
dedicated bus, while the AXI4-Lite channel between the AXI
DMA controller modules and the CPU is mapped on the GP0
general-purpose bus. The accelerators, interconnect, and DMA
controllers are implemented at a 100MHz clock frequency.

The executed software, enhanced by calls to the dedicated
hardware accelerators, is the reference C99 implementation
from the official BIKE NIST submission [1], which was also
employed as the initial source code within the HLS process.

We evaluate the proposed architecture in comparison
with the state-of-the-art HW/SW proposal, which works at
primitive-level granularity through either HLS-generated ac-

TABLE II: Breakdown of the FPGA resource utilization. Our
totals include the additional logic to integrate the accelerators
in the SoC. Legend: L LUT, F FF, D DSP, B BRAM.

KEM NIST security level
Design prim. AES-128 AES-192
(Target chip) or op. L F D B L F D B
Ref. HW/SW Keygen 13567 11621 0 40
(Zyng-7010) 13567 11621 0 40 VA NA NA NA
Ref, HW/SW Decaps 37160 38118 35 90
(Zyng-7015) 37760 38118 35 90 VA NA NA NA
Ref, HW/SW Keygen 13567 11621 0 40
(Zyng-7020) Decaps 37160 38118 35 90 N/A N/A N/A N/A
350727 49739 35 130
Our Decod. 12348 11897 14 76 14988 11165 14 125
(Zyng-7010) 12986 11977 14 76 15616 12250 14 125
Our Mult. 17967 16491 0 36 18760 13691 0 40
(Zyng-7015) Decod. 24165 21740 14 88 25134 19095 14 133
42777 39317 14 124 44520 33877 14 173

celerators or the CPU [12], and the state-of-the-art software
execution of BIKE on the CPU of Zyng-7000 chips [1].

The FPGA resource utilization of our solutions is obtained
after RTL implementation, while the execution times are
measured at run time, using the clock_gettime function to
collect the CPU time at the beginning and the end of the
software program or portions of the latter.

A. Area results

Table II details the utilization of the FPGA resources of
the proposed solutions and compares it to the reference ones,
listing the occupied resources by breaking them down in the
three KEM primitives or the HLS-instantiated operations.

Our designs vary to fit within the resources available on
the different chips. The Zyng-7010 instances implement only
the decoder, chosen over the multiplier due to its largest
reduction effect on the overall execution time. On the con-
trary, the Zyng-7015 instances implement both decoding and
multiplication accelerators, as in the architecture depicted in
Figure 1. The parameters of the HLS designs also differ from
each other. Less parallelism is exploited on the smaller Zyng-
7010 instances compared to the larger Zyng-7015 ones. More-
over, AES-128- and AES-192-equivalent security instances
on Zyng-7015 implement a different number of Karatsuba
recursions in the multiplier, five and four, respectively.

Our Zyng-7015 design occupies a similar number of LUTs
and FFs and less DSPs than the reference Zyng-7015 one, as
well as -16% LUT, -21% FF, -60% DSP, and -5% BRAM
resources compared to the reference Zyng-7020 one. Both our
Zyng-7010 and -7015 instances use more BRAM resources
than the corresponding reference ones, thus exploiting more
effectively the memories provided by the heterogeneous chips.

B. Performance results

Performance is measured as the execution time of BIKE,
i.e., the aggregate execution time of the three KEM primitives.
Table III compares the proposed solution to the reference
works, listing, for each design and each considered security
level of BIKE, the execution time in milliseconds of the whole

TABLE III: Breakdown of the execution times, reported in

milliseconds, at primitive granularity for the BIKE KEM.
Design KEM NIST security level
(Target chip) primitive AES-128 AES-192
Ref. SW [1] Keygen 332 921
(Zyng-7010/15/20) Encaps 15 41
Decaps 465 1188
Total 812 2 150
Ref. HW/SW [12] Keygen 138
(Zyng-7010) Encaps 15
Decaps 465 N/A
Total 617
Ref. HW/SW [12] Keygen 332
(Zyng-7015) Encaps 15
Decaps 135 N/A
Total 482
Ref. HW/SW [12] Keygen 138
(Zyng-7020) Encaps 15
Decaps 135 N/A
Total 288
Our Keygen 332 921
(Zynq-7010) Encaps 15 41
Decaps 138 484
Total 485 1 446
Our Keygen 145 423
(Zynq-7015) Encaps 5 12
Decaps 93 311
Total 243 747

BIKE KEM and the breakdown showing the execution times
of the three KEM primitives.

Figure 2 details the speedup of the reference and proposed
HW/SW solutions over software execution, i.e., the ratio
between the software execution time and the execution time of
each HW/SW instance. Compared to software AES-128- and
AES-192-equivalent security BIKE instances, our solutions
provide speedups of up to 3.34x and 2.88x, respectively.

Our Zyng-7010 solution provides a 1.27x speedup over
the reference HW/SW one targeting the same chip, while
our Zyng-7015 one results in a 1.98x speedup over the
corresponding state-of-the-art reference and a 1.18x speedup
over the Zyng-7020 one. In addition, the performance of the
proposed Zyng-7010 instance, which implements the decoding
operation in hardware, is almost equivalent to the reference
Zyng-7015 one, which instantiates the whole decapsulation
primitive, demonstrating the effectiveness of instantiating in
hardware solely the most time-consuming operations and dedi-
cating all the FPGA resources to improving their performance.

IV. CONCLUSIONS

This work proposed an approach aimed to support the
deployment and execution of a complex application such as
BIKE on embedded heterogeneous platforms featuring both a
CPU and FPGA logic, leveraging HLS to generate accelerators
for the operations that require the vast majority of BIKE’s
execution time, identified through a software profiling phase.

The proposed methodology finds the mix of accelerators to
instantiate in hardware and operations to execute in software,
as well as the configurable architectural parameters of the
former, that minimize the execution time while satisfying the
area constraints. Applying HLS to the most time-consuming

= 4 7 AES-128 ®AES-192

w

E‘ 3x 2.82x

8 2x 1.68% L67%) 495

S 1.32x

_§~ 1% 2 % \

3 Ref. HW/SW Ref. HW/SW Ref. HW/SW Our

& Z-7010 Z-7015 Z-7020 Z-7010 Z-7015

Design and target chip

Fig. 2: Speedup over the reference software execution.

operations and computing the other ones in software enabled
indeed an effective usage of the limited resources, resulting in
better performance than the existing HW/SW solutions.
Experiments targeting AMD Zyng-7000 SoCs demonstrated
a more efficient usage of FPGA resources compared to
the state-of-the-art HW/SW reference, which implemented in
hardware entire KEM primitives rather than solely the main
operations as proposed in this work. The efficient usage of
FPGA resources allowed, thus, extracting better performance
from the same target SoCs. The proposed solutions reduced the
execution time by up to 3.34x and 2.88x for AES-128- and
AES-192-equivalent security instances, respectively, compared
to the software reference and up to 1.98x compared to
reference HW/SW implementations targeting the same chips.

REFERENCES

[1] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, S. Gueron, T. Giineysu, C. A. Melchor,
R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, V. Vasseur, and
G. Zémor, “BIKE website,” https://www.bikesuite.org/, 2021.

[2] National Institute of Standards and Technology (NIST) - U.S. De-
partment of Commerce, “Nistir 8413, status report on the third
round of the nist post-quantum cryptography standardization process,”
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf, 2022.

[3] D. Zoni, A. Galimberti, and W. Fornaciari, “Flexible and scalable
fpga-oriented design of multipliers for large binary polynomials,” IEEE
Access, vol. 8, pp. 75809-75 821, 2020.

[4] ——, “Efficient and scalable fpga-oriented design of qc-ldpc bit-flipping
decoders for post-quantum cryptography,” IEEE Access, vol. 8, pp.
163419-163 433, 2020.

[5]1 A. Galimberti, G. Montanaro, and D. Zoni, “Efficient and scalable
fpga design of gf(2m) inversion for post-quantum cryptosystems,” I[EEE
Transactions on Computers, pp. 1-1, 2022.

[6] Amazon Web Services - Labs, “Additional implementation of bike (bit
flipping key encapsulation),” https://github.com/awslabs/bike-kem, 2020.

[71 M.-S. Chen, T. Chou, and M. Krausz, “Optimizing bike
for the intel haswell and arm cortex-m4,” IACR Transactions
on Cryptographic ~ Hardware and Embedded Systems, vol.
2021, no. 3, p. 97-124, Jul. 2021. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8969

[8] M.-S. Chen, T. Giineysu, M. Krausz, and J. P. Thoma, “Carry-less to bike
faster,” in Applied Cryptography and Network Security, G. Ateniese and
D. Venturi, Eds. Cham: Springer International Publishing, 2022, pp.
833-852.

[9] J. Richter-Brockmann, M.-S. Chen, S. Ghosh, and T. Giineysu, “Racing

bike: Improved polynomial multiplication and inversion in hardware,”

Cryptology ePrint Archive, Paper 2021/1344, 2021. [Online]. Available:

https://eprint.iacr.org/2021/1344

A. Galimberti, D. Galli, G. Montanaro, W. Fornaciari, and D. Zoni,

“Fpga implementation of bike for quantum-resistant tls,” in 2022 25th

Euromicro Conference on Digital System Design (DSD), 2022, pp. 539—

547.

[10]

[11] A. Galimberti, G. Montanaro, W. Fornaciari, and D. Zoni,
“An Evaluation of the State-Of-The-Art Software and Hardware
Implementations of BIKE,” in 14th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-Core Architectures
and 12th Workshop on Design Tools and Architectures for Multicore
Embedded Computing Platforms (PARMA-DITAM 2023), ser. Open
Access Series in Informatics (OASIcs), J. a. Bispo, H.-P. Charles,

[12]

S. Cherubin, and G. Massari, Eds., vol. 107. Dagstuhl, Germany:
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023, pp. 4:1-4:12.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2023/17724
G. Montanaro, A. Galimberti, E. Colizzi, and D. Zoni, “Hardware-
software co-design of bike with hls-generated accelerators,” in 2022 29th

IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2022, pp. 1-4.

