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Abstract—The increased complexity and intelligence of
automation systems require the development of intelligent fault
diagnosis (IFD) methodologies. By relying on the concept of a
suspected space, this study develops explainable data-driven IFD
approaches for nonlinear dynamic systems. More specifically,
we parameterize nonlinear systems through a generalized kernel
representation for system modeling and the associated fault
diagnosis. An important result obtained is a unified form of kernel
representations, applicable to both unsupervised and super-
vised learning. More importantly, through a rigorous theoretical
analysis, we discover the existence of a bridge (i.e., a bijective
mapping) between some supervised and unsupervised learning-
based entities. Notably, the designed IFD approaches achieve the
same performance with the use of this bridge. In order to have a
better understanding of the results obtained, both unsupervised
and supervised neural networks are chosen as the learning tools
to identify the generalized kernel representations and design the
IFD schemes; an invertible neural network is then employed
to build the bridge between them. This article is a perspective
article, whose contribution lies in proposing and formalizing
the fundamental concepts for explainable intelligent learning
methods, contributing to system modeling and data-driven IFD
designs for nonlinear dynamic systems.

Index Terms— Intelligent fault diagnosis (IFD), neural net-
works, nonlinear dynamic systems, supervised learning, bridge,
unsupervised learning.

I. INTRODUCTION

VER the past three decades, fault diagnosis has
undergone tremendous development [1], [2], [3], [4],
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[51, [6], [7]. Due to the increasing demands of safe and
economic operations, it is playing an essential role in system
performance evaluation and maintenance [1]. Fault diagnosis
has a broad spectrum of applications, for instance, ranging
from chemical processes [8], electrical systems [9], intelligent
transportation [10], and aerospace engineering [11] to medical
imaging [12].

Fault diagnosis techniques have undergone a dramatic evo-
Iution with the development of control theory, computer
science, big data, sensor technology, machine learning, and so
on [13]. They are becoming more intelligent and diversified.
A unified description of these developments is so-called intel-
ligent fault diagnosis (IFD), which can be model-based [14],
signal processing-based [15], and data-driven [16].

The success of deep learning has further promoted fault
diagnosis through neural networks. These IFD approaches,
as mentioned in [1], can accomplish tasks similar to what a
human can do. Deep neural networks have the ability to extract
helpful features so that distinguishing faulty conditions from
normal conditions becomes simpler. The accompanying prob-
lem is an additional demand for sufficient labeled data [13].
Furthermore, neural networks have also been a popular tool in
adaptive dynamic programming that is a novel approximate
optimal control strategy for nonlinear systems [17], [18],
[19]. Following the idea of value and policy iterations [20],
Song et al. [21] proposed an off-policy reinforcement learning
algorithm for nonlinear systems with completely unknown
dynamics. Recently, these strategies were introduced into
fault-tolerant control [22] to enhance the system operation
performance in faulty conditions through online optimization.

Depending on the operating range, neural networks-based
IFD approaches can be divided into static and dynamic meth-
ods. In [23], a recurrent neural network was used to detect
and identify faults of railway track circuits. In order to diag-
nose incipient interturn faults, a probabilistic neural network
was adopted in [24] with consideration of the network size.
By using a deep convolutional neural network, Liu et al. [25]
proposed a diagnosis method for the loose strands of the
isoelectric line. Taking the topological structure of system
data into account, a graph convolutional network was devel-
oped in [26] to diagnose machine faults. Most recently,
Chen et al. [27] proposed two fault detection schemes, where
the first design is based on the finite impulse response filter
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using a fully connected neural network and the second one
constructs a recursive residual generator using a recurrent
neural network.

Despite the aforementioned achievements, much of the
inherent difficulty of the IFD designs arises from the
following.

1) The presence of system nonlinearity and dynamics.

2) Fault diagnosis cannot be simply treated as a classifica-
tion problem.

3) Lack of interpretability in many IFD approaches since a
good representation should possess explainable posterior
knowledge.

These challenges motivate the study in this perspective article
with the following fourfold contributions.

1) Data-based modeling and construction of residual gener-
ators via the composite operators, enabling the learning
procedures to be described quantitatively.

2) A bridge is built for the construction of the generalized
kernel representations, based on which unsupervised
and supervised learning-based IFD approaches can be
transferred between each other. An additional value
of the bridge representation is the evaluation of the
performance of nonlinear IFD approaches.

3) Both unsupervised and supervised neural networks are
employed in designing the two specific IFD algo-
rithms, whose purpose is to help us understand their
fundamentals.

4) An invertible neural network is proposed to build
a bridge that allows unsupervised and supervised
neural network-based IFD approaches to be bijectively
connected.

The remainder of this study is organized as follows.
Section II introduces some metrics, machine learning, and non-
linear dynamic systems. With the aid of composite operators,
Section III is dedicated to constructing the bridge between
unsupervised and supervised learning-based IFD approaches.
Section IV details two specific IFD algorithms, respectively,
using unsupervised and supervised neural networks, followed
by an invertible neural network-based bridge. Section V con-
cludes this study and delineates research opportunities for IFD.

Notations: All notations in the article are standard. M
denotes a metric, whose subscript signifies a specific form;
R* represents the space of real x-dimensional vectors; Tr(-)
is the trace operator; | - | refers to the absolute value; o is
the cascade connection of multiple operators; superscript “f”
refers to faulty conditions; & is the estimate of «; Pr(-) is the
d Wi ¥2

V3 Wy
if and only if y; is a linear operator) obtained by stacking the

operator y;, i = 1,...,4, in a suitable manner.

probability; an is a composite operator (a matrix

II. PRELIMINARIES AND PROBLEM FORMULATION

A metric, also called a measure, is essential for obtaining
the objective function of the machine learning approaches.
Therefore, four representative metrics are introduced in this
section, followed by the description of the nonlinear dynamic
systems of interest.
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A. Metrics

Metrics are the measures that quantitatively assess, compare,
and track performance [28]. In the following, several metrics
are introduced for the purposes such as constructing residual
signals, defining test statistics, and quantifying the influences
of the unknown faults.

Consider two variables y; € Rf and y, € R, If a
metric M is chosen as the Euclidean distance, one has

Meuc = ||V/1 - WZ“Z (1)

provided k,, = k,,. By introducing a covariance matrix X,
the Mahalanobis distance can be defined as

Maan = (p1 = y2) 2, (y1 — y) )

where y; and y, are drawn from the same distribution of
covariance X,. By setting 2,;1 =1, (3) becomes

Mo = (1 — )" (w1 — y2) (3)

which is called squared prediction error (SPE). A metric can
also be defined by the correlation such as [29]

Meor (W1, ¥2) = le - TI‘(‘ Z:'/_/11/22‘/’1’1//2Z‘;;/z‘) (4a)
Meor (W2, w1) = k!//z - TI‘(‘ Z:'/_/21/221//2’(/’1 Z;‘l/z‘) (4b)

where X, ,, is the covariance matrix between y; and y»,
and k,, may not equal to k,.

B. Unsupervised and Supervised Machine Learning

Depending upon linear or nonlinear mappings, machine
learning is generally divided into linear and nonlinear
approaches. An important step is to evaluate performance
through the defined matrices (such as Meye, Mman, Mpe, and
Meor), and the subsequent step will be devoted to revealing
the relationship between unsupervised and supervised machine
learning approaches.

Define y» = Sys3, where S represents the mapping of a
supervised learning method. By minimizing (1), the following

relation holds:
4!
I -S
[ ][ L&l :| 2

min | P o[l —S][Wl} (5)
— 1w

unsupervised learning 5

min Meye = min

w.r.t. S, where P is any (linear or nonlinear) operator that does
not cause information loss or change the minimization of (5).
In (1) and (5), y; is a reference signal; y, and w3 are the
output and input of supervised learning models, respectively.
By introducing P, Po[l —S&] is a composite operator whose
inputis [y wl1”. Instead of optimizing w.r.t. S, we can treat
Pol[l — 8] as a whole mapping to be learned. In this way,
the objective function given in (5) can be minimized through
an unsupervised learning approach. Similarly, the objective
functions defined by other metrics (including Mman, Mspe,
and M) can also be considered.
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Fig. 1. Nonlinear dynamic systems with actuator and sensor faults.

It is seen that, through simple mathematical derivations,
an objective function can be achieved by using both the
supervised and unsupervised learning approaches.

Remark 1: The concept behind the aforementioned trans-
formations is a bridge linking the unsupervised to supervised
machine learning methods. This fact motivates this study to
focus on the development of a unified framework of the IFD
and related parameter-identification approaches for nonlinear
systems. \Y%

C. Nonlinear Dynamic Systems and Objectives

Consider a nonlinear dynamic system driven by

X(k + 1) = ¢(x(k), u(k), w(k))
y(k) = v(x(k), u(k)) + v(k) (6)

where k is the discrete time index; x(k) € R*, u(k) € Rk,
and y(k) € RN are the state, input, and output vectors,
respectively; w(k) and v(k) are random noise variables; and
¢(+) and v(-) are continuous nonlinear mappings.

Both the actuator and sensor faults affect (6). Mathemati-
cally, the nonlinear system with faults becomes

X (k+ 1) = p(x(k), u(k), w(k), fa (k))
Y (k) = o(x(k), u(k), fa(k)) + fs(k) + v(k)  (7)

where f, and f; represent actuator and sensor faults, respec-
tively. The schematic of (7) is given in Fig. 1. Now,
we introduce a lemma (given in [30]) that constitutes another
foundation of this study.

Lemma 1: An operator K is called the generalized stable
kernel representation for the nonlinear system (6) if, for w =
0 and v = 0, the following relationship holds:

k@[ o) | =0 ®)

Sfor an initial system state x(0) and a given u.

In (8), z refers to discrete variables in the z domain.
Motivated by [16], [27], [29], and [31], this study focuses
on IFD and its related parameter identification for nonlinear
dynamic systems. The three objectives are cast as follows:

1) to construct a unified IFD framework that can
include both unsupervised and supervised learning-based
approaches;

2) to design two IFD approaches using the unsupervised
and supervised neural networks, respectively;

3) to quantify the fault influences in each situation, whose
purpose is to mine the interpretability of IFD methods.

D. Revisiting Stable Kernel Representations

As mentioned in [16] for linear systems and [31] for
nonlinear systems, }C(z) plays an essential role in constructing
an observer and completing IFD tasks. In order to have an
intuitive understanding of /C(z), we introduce the form of 1C(z)
and how to derive it for both linear and nonlinear dynamic
systems, as given in the following.

Linear Example: Consider a linear time-invariant system
described by

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) ©)

where A, B, C, and D are the real matrices with appropriate
dimensions; other variables are defined in (6). Given a gain
matrix L, a full-order observer has the following dynamic
equations:

y(k)
y(k) = Cx(k) + Du(k)r(k) = y(k) — (&),
% _ u(k)
r(k) = —Cx(k) +[-D I]|:y(k)i| — 0
where r(k) is the residual signal. Based on the state-space

representation of (10), we can define the transfer function from
[u” y"17 to r as KC(z) of (9), i.e.,

X(k+1) = (A —LOX(k) + [B—-LD L][“(k)}

(10)

r(z) = [—N(z) M(z)][u(z)} =0 (11)
— —  ly®@
K(2)
where M(z) and N(z) are
MGE)=I-CGEzI—A+LC)™'L,
Nz =D+CEI-A+LC)'B-LD). (12

Nonlinear Example: In noise-free cases, (6) is redefined by

y() =11(z) o u(z) (13)

in order to simplify the analysis. Based on the assumption
that the nonlinear system IT(z) meets the stable condition as
in [32], II(z) can be rewritten as

I1(z) = My () o In(z) =

¥(z) = Iy (2) o In(2)u(z) (14)

where Ily is an invertible operator and Ily is stable. Then,
a generalized /C(z) can define the following residual generator:

r(z) = [-IIn(z) HM(Z)][U(Z):| =0. (15)

y(@)

K(z)

Note that KC(z) can be obtained based on both system
information and input—output data. In addition, the co-inner-
outer factorization, having a similar form to (14), can be used
to estimate unknown signals, such as external disturbances and
unexpected faults [13].
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III. UNIFIED IFD FRAMEWORK: FROM SUPERVISED TO
UNSUPERVISED LEARNING

By using the composite operators and suspected spaces
(see [29]), this section will present a data-driven implemen-
tation of residual generators using both unsupervised and
supervised learning, with a focus on the construction of the
bridge between unsupervised and supervised learning-based
approaches.

A. Data-Based Modeling

As both x(k) and the innovation from x(k — 1) to x(k)
are unknown, the extended form of (6) is usually adopted
for system identification and fault diagnosis. For obtaining
the extended form, several notations, referring to data and
operators, are introduced

pau(k) : uk) e RM - x(k +1) e RM
(k) : u(k) e RM — x(k) e RN,
P = Pax | ©Pix = P © Brx 0 b (16)
and
u, (k) = [u” (k) u (k+9)] e RCDR(17)

In (16), ¢... and v. . are nonlinear operators and can be replaced
by any other operator; </>" represents a high-order composite
operator. In (17), s is the stack length, and u can be replaced
by any variable in (6) and (7).

Remark 2: In order to parameterize nonlinear dynamic
systems, the composite operators defined in (16), similar to
Koopman operators [33], simplify the treatment processes for

obtaining an equivalent system representation [34]. \%
By using the notation given in (16), we rewrite (6) as
x(k)
X(k + 1) = (¢xx ¢xu ¢xw) ll(k) (18a)
—_—
5 w(k)
x(k)
yk) = (0yx vy vyy)| u(k) (18b)
- v(k)

where vy, = I. Similar to the parity space in [2] and [11], the
data-based system model can be described as

ys (k) = (Vx Tu)[li((%} + Twws (k) +vs (k) (19)

in which the composite operators Yy, Yy, and Yy, are

Dyx
Ty = : Rb — RUTDA (20)
UyxPrx
Oyu e 0
Tu:= : P ROFDE REFDE - (21)
VyxPax Pru * Vyu
0 e 0
Ty : = : o cRETDk R stDky
Vs Pxw - 0

(22)
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In the data-based model (19), the state x(k) is generally
unknown and needs to be estimated by using past data. The
recent studies [27], [35], [36] can bypass estimation of x(k)
and suggest to directly estimate y through data in the past
moving window, i.e.,

e(k) = y(k) = y(k), y(k) = v(X(k), u(k))
X(k + 1) = ¢(X(k), u(k)) + £(y(k) — §(k))

in which ¢ : R¥ — R* signifies the (unknown but existing)
projection from e to X. Therefore, one can obtain that

R() = ¢ &k =5, — 1)+ [Lpu Loy]zpk)

x ¢ R (k—s, — 1) ~ 0

— ()~ [Lon Lpy]2p(k)
————

Ly

(23a)
(23b)

(24)

where L,y and £, y are the composite operators similar to (21)
and (22); the past stacked vector zp(k) is defined by

_ | up(k) _ .
zp(k) = I:yz(k) :|,up(k) =u, (k—s,—1)
Ypk) = ¥s, (k ) l). (25)
Combining (19) with (24) yields an equivalent model
Vs(k) = YxLpzp(k) + Yaus (k) + Yee, (k)
_ zp (k)
= (MLp M) |:ul: (k)} + Yee, (k) (26)

where e, contains the influences caused by w and v, and Y,
has the following form:

I .0
Te = : o
Vg e oo

Remark 3: By the use of the composite operator, (26)
details a generalized nonlinear predictor from z, and ug to
the current system output ys; while resembling a linear model.
It makes system modeling possible and explainable, especially
achieving a consensus among different IFD approaches using
both unsupervised and supervised learning. \%

27)

B. Data-Driven Implementation of Residual Generators

On the basis of Lemma 1, the following corollary is
obtained, whose embryonic development credits to [27].

Corollary 1: An operator ICs, 4 is called the data-driven
generalized kernel representation for (6) if, for w = 0 and
v = 0, the following relationship holds:

Zp
(’Clzmsp ’CEHSP ’C;HSP) uy =0 (283)
e, -
— z _
o (Ko 1) | 20w
—_—— L Ys |

sp
’CApﬂ
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Sfor an initial system state x(0) and an arbitrary uy, where the
superscripts “unsp” and “sp” signify the unsupervised and
supervised learning scenarios, respectively.

The obtained I, 1, by using the unsupervised or super-
vised learning methods, can be directly applied in constructing
a unified residual generator such that

zy (k)

Iy (k) = ’C.Yp+.s Uy (k) € R(H—l)ky (29)
ys (k)

unsp

in fault-free conditions; /C;, s can be replaced by KZS s
and Klsp s provided in Corollary 1. When (6) is affected by
faults, ry(k) given in (29) becomes

r;.(k) =r,(k) + fa,term + fs,term (30)

where f, term and fsrm are the actuator and sensor fault-
related terms, respectively; their forms can be obtained via
composite operators. Then, the test statistics [1], such as T2,
can be defined on the residual signal ry, i.e.,

T?(ry(k) = ] () Z;'r,(k), Zp, = E(ry(b)r! (k). (31)

Correspondingly, the threshold is determined by the chosen
confidence level a

T < Pr(T*(ry (k) > Ji) = a. (32)

The following theorem presents the essence of this study,
sketching the bridge (i.e., one-to-one mapping) between unsu-
pervised and supervised learning-based parameter identifica-
tion, together with the IFD approaches, for nonlinear systems.

Theorem 1: Consider the two residual generators defined
by

zy (k) zy (k)
P (k) = IO | wek) |, eP() = ICP L, | ui(k) | (33)
ys (k) ys (k)
where K;’:i'; and KZ?’: L5 are defined by
ICh =10 0 1] - U, (34a)
K:?;-k—s = (_Txﬁp — Yy I) (34b)
in which Uy is a segment of unsupervised learning U
zy(k) zp (k)
(k) | = (U, Ua Uy)| uy(k) (35)
¥s (k) u s (k)
There exists a nonlinear operator Pspjunsp Such that
r? (k) = Pspjunsply P (k) (36)

and the inverse function of Pspjunsp, denoted as Punspsp =
o must exist such that

ry" P (k) = Punsp/sprst (k).

Proof: The complete proof is given in the Appendix. W
The following remark is made to set forth contributions of
Theorem 1.
Remark 4: With the help of the bridge, Theorem 1 provides
us with an elegant way to evaluate the performance of both

sp/unsp’
(37

unsupervised and supervised learning-based IFD approaches
in the sense of fault-detection capacity. \%
Based on the metric M2, the suspected space is used
to design IFD approaches, whose purpose is to gain a more

in-depth understanding of Theorem 1.

C. IFD Using Unsupervised Learning

In order to develop the unsupervised learning-based IFD
approaches, a suspected space, denoted as Y"™P, is defined
according to Uy in the following definition.

Definition 1: Given any U in (35), X‘g‘“sl’ obtained by

¥y = U [2] uf v (38)

spans a space Y"™P that is called the suspected space of (6).

Corresponding to Y"™P, Y is called the measurement space,
where y, € Y € RUTDA Based on the metric defined in (1),
the objective function of IFD approaches using unsupervised
learning can be formulated as

min Meye (YS; y‘unsp)

= Uy = arg min Meyc (Ys, yunSp)
A s

y

(39a)

(39b)

113 ”

where the superscript signifies the best solution. It is of
interest to find that the residual space, denoted as £}™P, can
be obtained based on I/{y*

_ unsp, x uns, s+1)k,
& =Y~y P e, € &) P RUF+DA

Y = Uy ul ] ey 40)
which satisfies
ggnsp J_ yunsp,*’ g;msp (%) J_ y (41)

Theorem 2: Considering a nonlinear system (6), its gener-
alized kernel representation is defined by K;’:i'; =[0 0 I]—
Uy, where Uy is obtained through (39b). For the faults £, (k)
and f5(k) occurring from the kth time instant, ry " (k) given

in (33) becomes

P k) = es (k) + £ tam (K) + £iem (6)

faterm () = X fa s (k)
foterm () = Yy fos 42)
where fa toom and £5et | have the following forms:
I 0
It‘a = Iu»Ifs = : .o (43)
—DyﬁA;_lfﬁe R |
Then, T? defined on ry™™ f(k) according to
T2 (I‘;mSP’f(k)) — I.;msp,f,T (k) E;Xlr;msp,f(k) (44)
has the optimal fault-detection power.
Proof: When (6) is fault-free, we have
P (k) = e, (k) Z,me = E(e,(k)e! (k)). (45)

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on March 30,2023 at 07:29:27 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Since f, and f;, respectively, represent the actuator and
sensor faults, it is reasonable to adopt

¢Xfa

When (6) is affected by f, and f, %f(k) and y'(k) in (23a)
and (23b) can be expressed by

Rk +1) = pesk(k) + ruu(k) + psafa (k)
+O(y' (k) — 3k — £)y" (k)
= 035X (k) + vguur(k) + vgufa(k)
+ vy fs (k) + e(k).

= ¢xu, Uyf, = Uyu, and oy, =1L (46)

(47)

Combining it with (A.2) yields (42) with Yy and Yy described
by (43). Furthermore, taking expectation of (44) obtains

IE(TZ( unsp, f(k))) = Tz(es) +f aterm EEullspfa,term
(48)

+ ff,term r?mp ff Jterm

because, in general, e;(k), fa term(k), and fr ¢erm (k) are inde-
pendent. As proved in [29], Uy* minimizes X via (39b);
thus, the last two terms in (48) are maximized to the greatest
extent possible. It means that L{y*, a segment of U/*, can achieve
optimal performance in detecting f, and f.

The theorem is proven. [ |

D. IFD Using Supervised Learning

In parallel to Y"™P, another suspected space Y*P using
supervised learning can be defined according to S as follows.
Definition 2: Given any S in (A.8), ij obtained by

yP = S[ZT uT]T

s p s

(49)

spans a space YP that is also the suspected space of (6),
where S is defined by

S=(S, &) = (TXLZ,, Tu). (50)
Similar to (39a) and (39b), the optimal S* can be obtained via
min Meyc (Ys 5 X?P)

= S = arg min Meye (YS; ys.p)
s L

(51a)

(51b)

based on which Y*"* can be obtained.

By the use of S&*, the following theorem is derived for IFD
using supervised learning.

Theorem 3: Considering a nonlinear system (6), its gener-
alized kernel representation is defined by Ks, =S =D,
where S8* is obtained through (51b). For the faults £,(k) and
f,(k) occurring from the kth time instant, ri¥ (k) given in (33)
becomes

sp,f(k) = TeeS (k) + f:pterm(k) + f:l:erm( )
a, term(k) Tf a, s(k)
term(k) Tf S,s (52)
where fa term and f:l:erm have the following forms:
T, =Yy Yy, =L (53)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Then, T? defined on r?p’f(k) according to

T2 (fP(K)) = e () 2, e (k) (54)
has the optimal fault-detection power.
Proof: The proof is similar to Theorem 2. Owing to space
constraints, the detail is omitted here.
In addition, another sketch of the proof for the theorem is
presented as follows. By using the bridge Pgp/unsp given in

Theorem 1, simple mathematical manipulations can yield

T2 (eP (k) = T2 (e (k)) (55)
and (53). Furthermore, it can also be verified
T? (e (k) = T2 (r{™P (k) (56)

which has the same (i.e., optimal) performance of fault detec-
tion as T2(r"™ "' (k)) and, thus, completes this proof. [

Remark 5: As presented in Theorems 2 and 3, performance
evaluation of the two proposed IFD frameworks for nonlinear
systems becomes possible. The main reason is that the differ-
ence between y,(k) and its estimation in Y"™** and Y*®*
can be measured through quantitative metrics. \%

E. Notes on the Bridge

In what follows, several remarks (including fault features
and geometric interpretation) and perspectives (i.e., a more
general version) are made to set forth contributions and
essences of the bridge provided in Theorem 1.

1) Fault Features: Along with Theorems 2 and 3, the fault
features, corresponding to Y"™P* and Y*P*, are

unsp,f __ unsp unsp
rs Pl = €5 + f Jterm + f ,term> (573‘)
sp.f _
ree = fPSP/UnSPeS + fa,term + £ s,term * (57b)
It is interesting to verify
FUISP  _ gSP
PSP/ ““SP aterm — fa term
£5P £5P unsp
7D““SP/SP a,term — Psp/unsp a,term fa term (58)
for fa term, and
£UnSP  _ gsp sp __ punsp
PSP/ UHSP Jterm — fs term> PUHSP/ SPfs,term fs term (59)

for fsterm- Combining (57a) and (57b) with (58) and (59)
yields

unsp,f __ I‘

r’ f
Psp/unsprs Psp/unsp o P P

sp/unsp s (60)

which indicates that, based on the bridge given in Theorem 1,
the fault features can be transformed between each other.
Also, (60) can be used as an auxiliary evidential statement
to illustrate the validity of Theorems 2 and 3 because of

T = Ee, (k)e! (k)),

Zpp = Pspunsp Z ““*PPsp/unsp (61)
such that
ET?(r™P(k))) = E(T*(r®(k)))
E(T? (r™P! (k) = E(T?(r (k). (62)
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yunsp,*

£unsp psp/unsp
)

punsp/sp

(a)

Fig. 2. Geometric descriptions of the suspected and residual spaces in system
identification. (a) Unsupervised learning. (b) Supervised learning.

(b)

psp/unsp
punsp/sp

psp/unsp
unsp
2

(a) (b)

Fig. 3. Geometric descriptions of the residual spaces in both normal and
faulty scenarios. (a) Unsupervised learning. (b) Supervised learning.

2) Geometric Interpretation: Fig. 2 provides the geo-
metric descriptions of both unsupervised and supervised
learning-aided parameter identification, where the bridge,
Punsp/sp and Ppunsp, is highlighted by the two red curves.
It is worth mentioning that Y"™P* and Y*P* reconstruct
the dynamic behaviors of nonlinear systems by carrying the
maximum variation information (i.e., the largest uncertainty).
They are suitable for nonlinear parameter identification. At the
same time, £"P* and £* with the minimum uncertainty are
the best choices for fault diagnosis [16].

Fig. 3 sketches the changes caused by f, and f; in residual
spaces, together with the same bridge in both normal and
faulty scenarios.

3) Generalized Version: In Theorems 1-3, Mye is chosen
as the metric to measure the difference not only between y, and
y"™P when utilizing unsupervised learning to identify 1C{'2%
but also between y; and ysP when utilizing supervised learning
to estimate ICS s+ For the fault diagnosis purpose, the same
performance can be obtained by using Mo defined in (4a)
and (4b). As pointed in [29] and [31], an IFD design relying
on the Mo metric is a generalized version that can provide
multiple optimal solutions to both IC™% and 3P .

In order to distinguish it from the solution based on Myc,
the notations in the generalized version are marked by *..”
Therefore, the objective functions of two generalized verswns,

respectively, corresponding to unsupervised and supervised
learning can be formulated as follows:

min Meor (ys, y“"sp)
-1/2

= min k — Tr(‘zjl/zzy yunspz unsp

)

& min ky, — Tr(Z"™P7 £P) (63)
and
min Mor (ys, ij)
— min ky, — Tr(’E;l/z Zy, yv Zye’ 2’)
& min ky, — Tr(Z%" =) (64)

where X"P and Z"™P are obtained via the following singular
value decompositions:

2;1/2 ZyA yonsp Zyunsp — Funsp zunsp Tunsp T

x 12 zyv yo I/t = [PEPYSRT,

¥s ) = = =

(65)

Now, we define two sets of linear mappings as follows:

GyP = [P I V2 G = YT E s (660)
Gunsp FUHSPTE 1/2 G;P lsP’TE);pl/z. (66b)

—Ys

Then, the two generalized residual generators can be con-
structed according to

pUISP — GUISPy 3 uBSpGGunSpyunsp (672)
L = = _y.msp
I = Gy, - ZGYY (67b)
It can be verified that
S = [ — TP g el Tpo =1 2% =T (68)

Furthermore, by substituting (66a) into (67a), one can obtain
Gunsp.— 1 rUnsp
=y =s

=y, — @Gunsp, -1 ho} unsp Gunspyunsp

—Ys — —yunsp

=y, — 2 1/2 (Eunspzunsplunsp,T) z;l‘llzp2yl.1nsp

=5 =S

=Yy — Zy yuns)p zy“nspyunsp (69)
because g‘y’mp has full rank. Define
Zy

Xllnsp — gy us (70)
- ¥s

where its optimal choices, y“nSp * and I/{ *, are obtained accord-

ing to (63). It must be pomted out that L{; and its corre-
sponding output y"™P-* are not unique because the objective

functions are deﬁiled by Meye- Then, (69) can be further
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written as

z

p

-1 -1
g;flspa gl:nSP = yS _ Eyhzunsp Eyunsp%; Uy
e v,
Uy
= e = I,unsp
— g‘:“sl’ = g‘y‘f‘sl’rz‘“sl’. (71)

Similarly, the following relationship holds for supervised
learning-based IFD approaches:

r’ = G°PriP.

o = G (72)

Eventually, the following two relationships hold:
T2 (El:nsp (k)) £:msp T (k) zrump I.unsp (k)
( Gunsp I.unsp) El:.Eul.sp g;l:lsprgnsp
T

(e o)
(73)

and

Tz(gzp(k)) = T2(r*P (k). (74)

Combining (74) with (55) obtains

T2<£§p(k)) _ Tz( unsp(k))

T?(r®(k)) = T*(r?™P(k)) (75)

for normal operations, and

r{) - () -

T* (e (k) = T (r!™P (k) (76)

for faulty operations.

Following Theorems 2 and 3, T? test statistic defined on
the two generalized residual generators also has the optimal
fault-detection power. The readers can refer to [29] for a more
rigorous analysis of the generalized version.

Remark 6: We can find that the generalized versions of
residual generators also deliver the least-squares estimation
of ys because both G*™P and G* play a role as normalization
by limiting their co:z;”iance matrices to (68). \%

In order to have an insightful observation, Fig. 4
depicts multiple solutions to the suspected spaces, where
Fig. 4(a) and (b), respectively, corresponds to unsupervised
and supervised learning strategies.

IV. 1IFD DESIGNS AND IMPLEMENTATIONS: FROM
UNSUPERVISED TO SUPERVISED
NEURAL NETWORKS

A study of the existing approaches reveals that both unsu-
pervised and supervised machine learning techniques can
be employed to enhance the IFD flexibility against system
nonlinearity. For example, neural networks have received
increasing attention for the designs of IFD. Directly motivated
by Theorems 1-3, the fully connected neural networks are used
in this section for the fault diagnosis purpose.
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sp,*
(Zlunsp,* z

yunsp,*

h unsp,*

Fig. 4. More general versions of suspected and residual spaces. (a) Unsu-
pervised learning. (b) Supervised learning.

Gw nsp

unsp

(b)

A. Unit-Time Delay Operators

A recurrent neural network is capable of describing the
dynamic behaviors of nonlinear systems, thanks to the
unit-time delays attached to neurons [37]. As the system order
increases, more delay units are necessary to fit the higher order
dynamics, resulting in heavy computations together with prob-
lems associated with vanishing and exploding gradients [38].
To avoid such a situation and improve computation efficiency,
the unit-time delay operator, denoted as z~1, is used in the
data preprocessing stage.

As shown in Fig. 5(a), (s, +s+ 1) unit-time delay operators
are defined on both u(k +s) and y(k + s) to obtain the inputs
of an unsupervised neural network, i.e.,

uk+s—1) =z uk+s) ---,
u(k—s,—1) = z_(S”H’Ll)u(k + ),

yk+s—1) =z""yk+s) -,
yk—s, —1) = =G Dy 4 ).

Similarly, (s, +s 4+ 1) and (s, 4+ 1) unit-time delay operators
are defined on u(k +s) and y(k), respectively. The inputs of a
supervised neural network given in Fig. 5(b) are [ug u!] and

yk —1) =z""y(k), ---,
y(k—sp,—1) = 27 Dy).

In addition, the unit-time delays are also used to obtain
the reference outputs of both unsupervised and supervised
neural networks. As observed from (77) and (78), and Fig. 5,
these unit-time delay operators work independently of training
neural networks, which reduces the requested layer number of
neural networks from the inputs to outputs. In other words,
according to the chain rule, the recommended location where
delay operators are installed in this study can reduce the order
of partial derivatives. Therefore, not only does it avoid the

7

(78)
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Fig. 5.

Schematic of IFD frameworks with multiple unit-time delays, where “a,” represents an auxiliary variable. (a) is designed based on an unsupervised

neural network (unsupervised learning-based IFD). (b) is implemented based on a supervised neural network (supervised learning-based IFD). (c) Highlighted

in red is the bridge using an invertible neural network.

vanishing and exploding gradient problems but also improve
the computation efficiency. It is worth mentioning that our
recommended approach does not change the objective function
of the neural networks.

B. Unsupervised IFD Approaches

Similar to (39a), the loss function L of the unsupervised
neural network can be defined by

2
Zp Zp
unsp _ u | — HlmSP(@Z Ou ®y) u, (79)
yS FunsP (@) y.&‘ >

where H"™P(®) is the architecture of the neural network
with the hyperparameter ® and the subscripts of ® signify
their corresponding outputs. Therefore, the optimal ® can be
obtained by minimizing L"™P, i.e.,

(80)

0 =(0; 0; 6;)= arg@min L'P

based on which the residual signal using H"™P(®*) is

Zp

r}"P(k) =y, — H'™P(0}) o | u;

¥s

In Fig. 5(a), ry P (k) is highlighted in red, and “x” refers to
the reconstruction errors that may be neglected.

Combining with Fig. 5(a), the implementation procedures

of an unsupervised neural network-based IFD approach are

summarized in Algorithms 1 and 2.

= (34a). (81

C. Supervised IFD Approaches

Considering a supervised neural network H(®), its loss
function is formulated as follows:

¥ - HSP(@)[flﬂ

when M2, (¥, sz) is adopted. Then, the optimal hyperpara-
meter can be obtained according to

2

L® = (83)

2

O* = arg min L*®
)

(84)
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Algorithm 1 Off-Line Learning: Unsupervised Neural
Network-Based IFD Approaches

Algorithm 4 Online Fault Diagnosis: Supervised Neural
Network-Based IFD Approaches

1: Collect system measurements u and y;
2: Pre-process u and y by using the delay units according
to (77) to obtain zp, u, and yy;

3: Construct an unsupervised neural network whose architec-
ture is H"™P(®) and loss function is defined in (79);

: Update ® according to (80) and obtain ®;

. Generate the residual signal ry ™" via (81);

: Determine the threshold J,;, for T2 based on (32);

: (If necessary) identify the fault features based on system
knowledge or using faulty data.

N O B

Algorithm 2 Online Fault Diagnosis: Unsupervised Neural
Network-Based IFD Approaches

1: Read real-time data and employ unit-time delay operators;
2: Compute the online residual signal according to (81);

3: Compute the test statistic via (31);

4: Make an FD decision according to

T? (r!™P(online)) — J;, <0 = Fault-free;

) (82)
Otherwise = Faulty;

s: (If necessary) diagnose the fault by using r{" " (online).

Algorithm 3 Off-Line Learning:
Network-Based IFD Approaches
1: Collect system measurements u and y;
2: Pre-process u and y by using the delay units according
to (77) and (78) to obtain z, and uy;
3: Construct a supervised neural network whose architecture
is H*P(0®) and loss function is defined in (83);
: Update ® via (84) and obtain ®*;
: Generate the residual signal ri? via (85);
: Determine the threshold J,; for T2 based on (32);
: (If necessary) identify the fault features based on system
knowledge or using faulty data.

Supervised Neural

~N O L B

which allows for constructing the residual signal as follows:

Zy

) — y, — HP(07) [u (85)

S

i| = (34b).

According to the analysis above and the schematic presented
in Fig. 5(b), the complete designs and implementation proce-
dures are given in Algorithms 3 and 4.

D. Invertible Neural Network-Aided Bridge

In order to build the bridge between unsupervised and super-
vised neural network-based IFD approaches, we introduce an
auxiliary variable a,. The mapping generated by H(®ex) in
the red square of Fig. 5(c) is

=G ]

H(Gext)

(87)

1: Read real-time data and employ unit-time delay operators;
2: Compute the online residual signal according to (85);

3: Compute the test statistic via (31);

4: Make an FD decision according to

T?(r®(online)) — J;, <0 = Fault-free;

. (86)
Otherwise = Faulty;
s: (If necessary) diagnose the fault by using r;" (online).
where the loss function of H(®ex¢) is chosen as
sp unsp 2
ext __ I - I
L™ = H [ oy i| H(®ext)[ a, } . (88)
Without loss of generality, we can choose a, = ry " to

prove the existence of the bridge. Then, minimizing L
obtains

Of, = arg min L™ < H(®;) =Py (89)
®exl
as shown in Fig. 5(c). It indicates that
rP = (Pp+ Dri™, rf™ = 1™ (90)
and
B = 1P - P,
I.unsp — I.sp _ H(@*)runsp
s s p/ts
=P —H(O})ay,
a, = a,. oD

It is interesting to see that, even though the inverse operation
is not used, we can obtain the bridge by

ry? IPy\[ ™
[au}_(O I ay ©2)
and
unsp Sp
Iy (1T =Pp\|rs
G e
In addition, the Jacobian matrix J of H(Qex¢) is
_(1P»
J= (0 I ) 94)
whose determinant is always positive, i.e.,
_ I Pe), _
|JI—‘(0 . )|—1. (95)

It means that H(@ex) and its component Pgp /unsp are globally
invertible.

Also, (92), (93), and (95) can be used as an auxiliary
evidence to illustrate the validity of Theorem 1.

Remark 7: The solutions to the bridge depicted in Fig. 5(c)
are not unique. For example, a “reversible residual network”
given in [39] can also be directly employed to obtain a one-
to-one mapping between ry " and ri. \%
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V. CONCLUSION

Thanks to the advanced machine learning techniques, there
appears to have room for further development of nonlin-
ear IFD. System data can provide us with information to
reveal physical principles, making more informative infer-
ences and decisions possible. As the interpretability of these
advanced methods is fundamental, the interplay between phys-
ical principles (such as a mathematical system description
whose parameters may be unknown) and data becomes more
critical.

This perspective article has developed three theorems
related to IFD and related parameter identification for non-
linear dynamic systems. In order to obtain a unified form,
Theorem 1 builds a bridge between unsupervised and super-
vised learning-based residual generators. Theorems 2 and 3,
respectively, corresponding to unsupervised and supervised
learning, develop the IFD structures and illustrate their optimal
performance for fault detection. With the aid of three differ-
ent kinds of neural networks, Section IV details the specific
designs and implementations of Theorems 1-3. This work lays
a foundation for the further development of explainable IFD.

The perspective article ends with discussions, includ-
ing our opinions, expected challenges, and future research
opportunities.

1) Not all IFD approaches are satisfactory from the view-
point of fault-diagnosis performance. Our work provides
researchers with some instructive guidance on designing
more effective IFD algorithms, including both unsuper-
vised and supervised learning-based schemes.

2) As shown in Fig. 5 and Theorem 2, not all results
obtained through unsupervised learning are useful for
fault diagnosis. The conclusion is also true and eas-
ier to explain in the case of linear dynamic systems.
For example, the purpose of singular value decomposi-
tion [40] and QR [5] used in linear approaches is not
for dimension reduction although they can do so. Keep
in mind that the ultimate goal of unsupervised learning
adopted in IFD approaches is always to minimize the
reconstruction error of system outputs for both linear
and nonlinear systems.

3) The initial must step to apply the results obtained
through this work is to show the existence of the bridge
Psp/unsp and Punsp/sp given in Theorem 1. Then, a series
of invertible machine learning tools, such as invertible
neural networks in [41], can be employed to build this
bridge. The process should not be reversed.

4) An unmentioned condition in this study for nonlinear
IFD approaches is that (6) is output reconstructible [42].
In fact, the condition is weak and easy to satisfy for our
proposed IFD frameworks because a multilayer neural
network can approximate a continuous function (such as
¢(-) and v (-) in Fig. 1) to an arbitrary accuracy [43].

5) The data-based model (19) is obtained from (6) with
the assumption of additivity given in (18a) and (18b).
In practical applications, many classes of nonlinear
systems satisfy (18a) and (18b), such as Sector bounded
systems, Hammerstein systems, and affine systems.
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6) It is a fact that nonlinear IFD approaches and the asso-
ciated thresholds show dependence on u and x(0) [13].
In order to obtain a reasonable dataset for training,
a uniformly distributed u over different operation points
is recommended so that a persistent excitation of the
global system nonlinearities can be achieved.

7) In addition to the bridge developed in this work, other
aspects of system identification and IFD approaches
deserve more investigations, such as the following.

a) How many neurons should be used when utilizing
a neural network?

b) How to determine the nonlinearity degree to
approximate an unknown dynamic system without
the problem of overfitting or underfitting?

c¢) What is the minimum size of training data for
obtaining the desired performance?

8) Neural networks can generate a reproducing kernel
Hilbert space [44], by which modeling nonlinear sys-
tem dynamics is achievable. This comment has pushed
us toward developing neural network-aided orthogonal
projections to complete both the parameter (and system)
identification and IFD tasks [45].

9) Zero-shot (or few-shot) learning-based IFD approaches

do not mean that trustworthy results can be obtained

without (or with less) data samples. On the contrary,
sufficient data samples are necessary as learning prereq-

uisites in zero-shot (and few-shot) learning [46].

The  Vapnik—Chervonenkis dimension and the

Rademacher complexity, respectively, corresponding to

the data-independent and data-dependent measures [47],

can be used to bound the generalization error of

both unsupervised and supervised learning methods.

Borrowing these theories from statistical learning will

open up a new avenue for evaluating the generalization

capability of nonlinear IFD approaches.

10)

APPENDIX
PROOF OF THEOREM 1

Given an arbitrary unsupervised learning approach whose
notation is I/, it generates the nonlinear mapping (35) with

the objective function, such as defined via M2,
2

Zp Zp
min ||| u, | — | @
Ys Ys 5

— min [ly, — §,II3 = min e 5. (A.D)

In (35), the input of U,, Uy, and Uy is [zg u? yI'17, and the
subscripts correspond to the output variables.

Three steps are necessary to complete the proof.

Step 1 (Generation of Innovation Error e; Using Unsuper-
vised Learning): Based on (23a) and (23b), one can obtain

y(k) = v3eR(k) + vgau(k) + e(k)
yk+1) = vgek(k + 1)
+ vgau(k + 1) + e(k + 1)
= gk + 1) + e(k + 1) + gLy (k)
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+ Uyx (d)‘)‘( — fl)y,}) f((k)

—_———

A,

+ 035 (Pru — Cogu) u(k)
———

B,
(A.2)

Then, e, (k) can be described by
(k) = ys(k) — Xyys (k) — X X(k) — XYyus(k)  (A3)

where Yy, Y, and X, are the nonlinear composite operators

0 0 ---0
Dy,}f 0 --- 0
X, = . R (A4)
l)y,}A;71€ <o 09zt 0
Dju o --- 0
DA,}B[ Uy s 0
T, = ' " , (A.5)
l)y,}A;_lBg - vyBe vgu
Vyx
X, = . (A.6)
o5z Az

Through some mathematical manipulations, (26) can be

rewritten as
Ys (k) = Txﬁ(k) + Yuuy (k) + Yeeg (k) (A7)

which can be achieved by wusing supervised learning
approaches, as shown in (26), i.e.,

. . z, (k)
() = (02, )| 20 |
Si=(S, Su)

(A.8)

where S is the nonlinear composite operator generated by
supervised learning.

Step 2 (A Unified Description of the Transformation
Between ry™P and ri?): Based on (A.3) and (A.8), two kinds
of residual generators can be described by

Zp
P =y, —U| u | =e, (A.9a)
Ys
r?p =Y — (Sz Su)|:ff:| = Tee. (A.9b)
S

Step 3 (The Existence of Pl ): In fact, ry"P in (A.9a)

o - sp/unsp
and ry in (A.9b) have shown

r? = Popjunsply P, Pspjunsp := Ye. (A.10)
For the sake of simplicity, we rewrite (A.10) as
r? =" 4+ Pri"P (A.11)
where P, is the component of Py unsp, 1.€.,
0 0
Py = (A.12)

s—1
V3sPiz L(3e -+ 0
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Consider a nonlinear operator Punsp/sp and the Lipschitz
constant of P}, is Lip < 1. By defining a sequence {e; ;} € e;,
one can obtain the following innovation:

Punsp/sp D61 = Tee; — Ppef,j

— hm € = Punsp/sp o Yee;. (A.13)
J—>00
Given a positive integer n, we have
lles,jtn — € jll2 < lles, jrn — € jtn-1ll2
+ o e — el
= | Pp(es,jtn-1 — € jtn—2)ll2 + -
+ ||Pp(es,j - es,jfl) “2
< (Lip/*" '+ + Lip/) [les1 — esoll2
1 — Lipn—l )
L L llea = ecol
Lip’
s (A.14)

— - 1I€,1 — € 0l2.
l—Llp ” s, s,O”

It indicates that, given an arbitrary small &, there always exists
an n such that

(A.15)

when Lip < 1, which guarantees the existence of ’Ps_pl/lmsp =

Punsp/sp- 1t is worth mentioning that {e, ;} is a Cauchy
sequence [48], and (A.15) holds for Lip < 1 because of the
Banach fixed-point theorem [49]. Furthermore, Lip < 1 is a
weak condition/requirement to satisfy when choosing Py.

Hence, the proof of Theorem 1 is completed.

2
||es,j+n - es,j||2 <égor ||es,j+n - es,j”z <ée
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