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Abstract— This letter extends previous results on constrained
optimization control problems of uncertain robot systems based
on sliding modes generation. An equivalent linear parameter
varying (LPV) state-space representation of the nonlinear robot
model is considered to design a stabilizing state-feedback
control law by solving linear matrix inequalities (LMI) with
structural constraints. The finite-time regulation of the state
trajectory to a desired reference, while minimizing a pre-
specified cost function with state constraints, is then solved by
a sliding mode approach relying on the considered parameter-
dependent structure of the robot system. Stability conditions of
the proposed approach are provided, and a realistic numerical
example verifies the effectiveness of the proposed technique.

Index Terms— Sliding modes, convex optimization, LPV sys-
tems, robotics.

I. INTRODUCTION

Sliding mode control (SMC) has been proved to be an
effective technique to control constrained nonlinear dynam-
ical systems characterized by parameter uncertainties and
disturbances [1]. For these reasons, SMC has been success-
fully applied also to robotic applications [2]–[8], among
many others. In fact, these are significantly challenging
systems for which the adoption of classical proportional-
integral-derivative (PID) controllers is not always sufficient
to guarantee desired performance and disturbance rejection.

Moreover, the presence of operational limits aimed at
reducing energy consumption or minimizing wear and tear
of the robots introduce other theoretical and practical chal-
lenges. Indeed, although among other methods, model pre-
dictive control seems the natural solution in case of con-
strained optimal control problems, its computational burden
could be a bottleneck in field implementations. Furthermore,
if control methods in the operative space are required, the
online Jacobian matrix and the inertia matrix inversions
might be needed [9, Ch. 6].

A way to introduce less costly design conditions avoiding
the online matrix inversions and improve the synthesis of
linear controllers to achieve some project requirement is
the use of state-feedback LPV controllers [10]. If the robot
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model is recast into the LPV framework, then its nonlinear-
ities are formulated as varying parameters exploiting state
transformation and change of variable methods. An example
of this approach is proposed in [11], where linearizing
transformations are adopted to transform the LPV controller
design into a feasibility problem of parameter-dependent
LMI constraints.

If on the one hand the LPV approach [11] stand-alone
simplifies the controller design, on the other hand there is not
guarantee of compensating disturbances and fulfilling state
constraints of the robot system. In this context, the use of
SMC algorithms for robot manipulators has been widely in-
vestigated in the last decades [12], [13]. More specifically, a
recent development of constrained SMC approaches capable
of taking into account both state and input constraints is
introduced in [14]. Optimization problems characterized by
the generation of sliding modes were instead presented in the
literature since seventies, see e.g., [15] and [16]. The specific
case of sliding mode optimization in presence of constraints
has been then further studied and developed for instance
in [17], where sliding modes are enabled on the boundary
of a feasible domain while minimizing a pre-specified cost
function and relying on linear time invariant (LTI) systems.

In this letter we propose an alternative scheme which is
based on the LPV approach [11] and exploits the advantages
of the optimization based SMC in [17]. Specifically, the merit
of this letter is to extend the SMC based optimization to the
case of LPV systems. Indeed, in this letter, an LPV version
of the robot model is considered to design a stabilizing state-
feedback law. Consequently, the SMC component is designed
by reformulating the control laws proposed in [17], so that
the stabilizing control term is now a state-feedback control
component obtained by solving a finite number of parameter-
dependent LMIs, and the analysis of the stability property
of the controlled system trajectory is different from the one
reported in [17]. Therefore, the extension of SMC based
optimization to LPV systems provides a new approach where
not only state constraints of the robot manipulator are directly
taken into account, but also a predefined cost function,
related for instance to the system energy consumption, is
minimized to reach an optimal equilibrium point.

The letter is organized as follows. In Section II the basic
concept of constrained SMC is reviewed, while in Section III
the LPV modeling of a robot manipulator is introduced. The
proposed control strategy is discussed in Sections IV and V.
A realistic example and some conclusions are reported in
Sections VI and VII, respectively.

Notation: Given a column vector x ∈ Rn, let x′ denote
its transpose. Analogously, given a matrix A, its transpose



is A′, while He {A} := A + A′. If A is symmetric, A >
0 (resp. A ≥ 0) means that A is positive definite (resp.
semi-positive definite). Given a function f , let gradxf be
the gradient operator with respect to vector x.

II. PRELIMINARY: CONSTRAINED SLIDING MODE LAW

Before introducing the proposed approach, we review the
concept of constrained sliding mode control as in [14].
To simplify the exposition, we consider a 1-relative degree
single input linear plant with matched disturbances and fully
measured state.

Consider an LTI system captured by the equation

ẋ(t) = Ax(t) +Bu(t) +Bd(t), (1)

where x ∈ Rn is the (available) state, u ∈ R is the control
input, d ∈ R is the matched disturbance, A ∈ Rn×n and
B ∈ Rn are constant matrices with det(A) ̸= 0, B ̸= 0n×1.
In [14], a general method was proposed in order to cope with
the presence of state constraints, and in particular inequality
constraints

h(x) ≤ 0, t ≥ 0,

that have to be satisfied point-wise in time. The main idea of
the SMC is to enable a sliding mode on a suitably selected
sliding variable σ via a discontinuous control law which is a
function of σ itself. If constraints are present, whenever the
boundary of the admissible domain is reached, the SMC law
becomes a discontinuous function of the constraint h, giving
rise to the so-called constrained SMC.

The trick is then to select the control law u with

u(t) =

{
−γ sign(σ(x(t))), h(x) < 0

−γ sign(h(x(t))), h(x) > 0,
(2)

where γ > 0 is the control gain. For instance, given the
choice σ(x(t)) = Sx(t), where S ∈ R1×n is a design
variable such that SB > 0, applying the first row of (2)
to (1), a regulation to zero of the sliding variable in a
finite-time ts is proved, and one has Sẋ(t) = SAx(t) +
SB

(
u(t) + d(t)

)
= 0, t ≥ ts. This condition leads to

the definition of the equivalent control corresponding to u
and equal to ũ(t) = −(SB)−1SAx(t) − d(t). This means
that (2) is capable of rejecting the matched disturbance in
(1) and makes the closed-loop dynamics evolve according to
ẋ(t) = (In − B(SB)−1S)Ax(t) for all t ≥ ts constrained
to Sx(ts) = 0. Conceptually, when instead the condition
h(x) > 0 holds, if gradxh(x)B > 0 a sliding mode is
enforced on the surface h(x) = 0 till the point when
h(x) < 0 again.

The idea to slide on the constraints can be then extended
to solve a more sophisticated control problem. For example,
the problem can consist in designing a control signal capable
of steering the state trajectory to an equilibrium point while
minimizing a predefined cost function without violating a
feasible region defined by a number of inequality constraints.
This problem, solved in [17] for LTI systems, is here
extended to the LPV case, with reference to the particularly
challenging application of robot manipulators. Relying on

static optimization, the proposal is to select a control input
split into three parts as

u(t) = u0(t) + u1(t) + u2(t), (3)

where u0 is a stabilizing control law, for instance as

u0(t) = Kx(t), (4)

with K ∈ R1×n a suitable gain matrix such that A+BK is
Hurwitz and the nominal dynamics ẋ(t) = (A + BK)x(t)
satisfies the desired requirements (e.g., convergence, band-
width, etc.). As for u1, this is a control law capable of
solving an unconstrained optimization problem, while u2 is
a discontinuous law chosen according to (2) to take into
account constraints and disturbances.

III. LPV MODELLING OF THE ROBOT MANIPULATOR

Spurred by the motivations previously mentioned, without
loss of generality and to streamline the exposition, we now
present the LPV modeling of a 2-degrees-of-freedom robot
manipulator with rotational joints [11]. Let q =

[ q1
q2

]
∈ R2

be the vector of the joint variables, and mij = mij0 +
mijc cos(q2) for all i, j, apart from m22c = 0, be the entries
of the inertia matrix. Then, the corresponding dynamic model
of the robot is given by

m11q̈1 +m12q̈2 −m11c sin(q2)
(
q̇1q̇2 +

1
2 q̇

2
2

)
+ f1q̇1 + ke1q1 = τ1 + τd1, (5a)

for the first joint, and

m12q̈1 +m22q̈2 +
1
2m11c sin(q2)q̇

2
1

+ f2q̇2 + ke2q2 = τ2 + τd2, (5b)

for the second one, where fk are the damping terms, kek are
the stiffness ones, while τk and τdk are the control torques
and the load disturbances. Define the varying parameters ρ =[ ρ1
ρ2
ρ3

]
∈ R3, with ρ1 = cos(q2), ρ2 = −ρ̇1 = q̇2 sin(q2) and

ρ3 = q̇1 sin(q2), which are bounded with bounded derivatives
so that ρk ∈

[
ρ
k
, ρk

]
and ρ̇k ∈

[
ρ̇
k
, ρ̇k

]
. Note that, while

−1 ≤ ρ1 ≤ 1 by definition, the bounds on ρ2 and ρ3 are
strictly related to the joint speed limits provided by the robot
manufacturer or by the specific task to execute. Operating a
change of variables in (5), one can write in a compact form
the matrices

S(ρ)=

[
m11cρ2

1
2m11cρ2

− 1
2m11cρ3 0

]
, A1(ρ)=

[
02 I2

−Ke (S(ρ)− F )

]
,

and B1 =
[
02
I2

]
, with Ke = diag

(
ke1, ke2

)
, and F =

diag
(
f1, f2

)
. Pose now the state vector equal to x =

[ q
q̇

]
∈

R4, so that one has x1 = q1, x2 = q2, x3 = q̇1, and x4 = q̇2,
the input vector u =

[
τ1
τ2

]
∈ R2, and the disturbance as

d =
[
τd1
τd2

]
∈ R2, then the LPV state-space representation of

the robot model is given by

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) +B(ρ(t))d(t), (6)

with A(ρ) = M−1
1 (ρ)A1(ρ), M1(ρ) = diag

(
I2,M(ρ)

)
, and

B(ρ) = M−1
1 (ρ)B1.



IV. LPV STABILIZING LAW

After having recast the nonlinear model of the robot in
an LPV framework, we start to develop the first term of the
control law in (3). To do this we exploit the LPV controller
presented in [11] to find the gain matrix K(ρ) in the nominal
case, that is when d = 0. Indeed, the LPV model (6) is
characterized by a rational parametric dependence, and such
dependence is associated to the coupling between the inverse
matrix M−1(ρ) and matrices A(ρ) and B(ρ).

The following choice will allow to compensate the rational
terms and it is based on the use of a slack variable V1(ρ),
(see also [10]). Moreover, we would like to guarantee a
specific rate of convergence of the state trajectory to a
desired equilibrium. Therefore, let λ > 0 be the desired
exponential decay rate, and Acl(ρ) = A(ρ) + B(ρ)K(ρ)
be the closed-loop matrix. The Lyapunov condition for the
stability of the closed-loop system with decay rate λ, that is
∥x(t)∥ ≤ βe−λt∥x(0)∥ with β > 0, is given by the existence
of a matrix P (ρ) = P ′(ρ) > 0 such that

P (ρ)Acl(ρ) +A′
cl(ρ)P (ρ) + Ṗ (ρ) + 2λP (ρ) < 0. (7)

This condition can be transformed in an LPV control syn-
thesis according to the following result presented in [11].

Lemma 1: Given the closed loop system Acl(ρ) =
M−1

1 (ρ)
(
A1(ρ) + B1K(ρ)

)
with ρk ∈

[
ρ
k
, ρk

]
and ρ̇k ∈[

ρ̇
k
, ρ̇k

]
, this is Lyapunov stable with exponential decay rate

λ > 0 if there exist matrices Γ(ρ) = Γ′(ρ), R(ρ) and V1

such that the following LMI holds[
−He

{(
V −1
1

)′M1(ρ)
}

A1(ρ)V
−1
1 + B1R(ρ) + Γ(ρ)

(
V −1
1

)′M1(ρ)

∗ Γ̇(ρ) + (2λ − 1)Γ(ρ) 0
∗ ∗ −Γ(ρ)

]
<0.

Moreover, the state feedback LPV controller is given by

u0(t) = K(ρ)x(t), (8a)
K(ρ) = V1R(ρ). (8b)

Proof: In line with the proof in [11], condition (7)
is equivalent to the LMI by posing R(ρ) = V −1

1 K(ρ),
Γ(ρ) = −(V −1

1 )′P (ρ)V −1
1 , and by left and right multiplying

by diag
(
(V −1

1 )′, (V −1
1 )′, (V −1

1 )′
)

and its transpose.
Note that, such a procedure, that is solving the previous LMI
constraints, is done off-line and entirely based on the nominal
model of the robot manipulator.

V. SLIDING MODE OPTIMIZATION

We are now in a position to introduce the sliding mode
optimization procedure for the considered robotic case.

A. Optimal control problem

Having in mind the robotic case study, consider a suitable
(in whatever appropriate sense) continuously differentiable
cost function J(x) subject to the inequality constraint

h(x) ≤ 0, (9)

so that the feasible region is defined as Ω =
{
x ∈ Rn |

h(x) ≤ 0
}

. We assume that h(x) is a convex inequality
constraint. The optimal control problem (OCP) becomes that
of finding a control law u(t) such that for any x(0) ∈ Ω,

then x(t) ∈ Ω for all t ≥ 0 and x tends to the equilibrium
point given by

xo = argmin
x∈Ω

J(x), (10)

with xo ∈ span
(
A−1(ρ)B(ρ)

)
.

B. Unconstrained control law

To solve the previous problem, we propose a control law
as in (3), whose first term is synthesized as presented in
§IV. In fact, Lemma 1 allows to satisfy all the hypotheses in
[17, Prop. 3.1], guaranteeing that the previous optimization
problem admits solution.

Therefore, consider now the control law (3) with u2 = 0,
and the nominal closed-loop system dynamics

ẋ(t) = Acl(ρ(t))x(t) +B(ρ(t))u1(t), (11)

where the unconstrained law u1 is chosen such that

u̇1(t) = −γ1
((

gradxJ
)′(−Acl(ρ)

−1B(ρ)
))′

. (12)

Moreover, the following assumption holds.
A1: Given γ1 > 0, then ∥u̇1∥∞ < ∥u1∥∞ ≤ ϵ, for some

ϵ > 0.
Lemma 2: Given the LPV system (11) with u1 as in

(12), let A1 hold. Then, a closure of order ϵ of xo =
argminx∈Ω J(x) is reached in finite-time.

Proof: Following the same proof reasoning in [17, Prop.
4.1], let z(t) = x(t)+A−1

cl (ρ)B(ρ)u1 be an auxiliary control
variable, whose derivative is equal to

ż(t) = Acl(ρ(t))z(t) +A−1
cl (ρ(t))B(ρ)u̇1

+
(
Ȧ−1

cl (ρ(t))B(ρ(t)) +A−1
cl (ρ(t))Ḃ(ρ(t))

)
u1(t),

from which

z(t) = 2eAcl(ρ(t))tz(0)

+

∫ t

0

eAcl(ρ(τ))(t−τ)A−1
cl (ρ(τ))B(ρ(τ))u̇1(τ)dτ

+

∫ t

0

eAcl(ρ(τ))(t−τ)
(
Ȧ−1

cl (ρ(τ))B(ρ(τ))

+A−1
cl (ρ(τ))Ḃ(ρ(τ))

)
u1(t)dτ.

Since Acl is Hurwitz, and by virtue of assumption A1, then
∥z(t)∥∞ ≤ O(ϵ), that is x(t) = −A−1

cl (ρ)B(ρ)u1 +O(ϵ).
Now, in line with arguments in [17], we can write the

derivative of the cost function evaluated in steady-state along
the solution of (11), that is

J̇(x) =
(
gradxJ

)′(−A−1
cl (ρ)B(ρ)

)
u̇1

+
(
gradxJ

)′(−Ȧ−1
cl (ρ)B(ρ)−A−1

cl (ρ)Ḃ(ρ)
)
u1 +O(ϵ)

Substituting the expression of u̇1 and using A1, one obtains

J̇(x) = −γ1∥
(
gradxJ

)′(−A−1
cl (ρ)B(ρ)

)
∥2 +O(ϵ),

implying that the cost function decreases until
∥
(
gradxJ

)′(−A−1
cl (ρ)B(ρ)∥ ≥ O(ϵ). As a consequence, the

state x(t) tends in finite-time to an ϵ-closure of the point
given by (gradxJ

)′(−A−1
cl (ρ)B(ρ)

)
= 0, that is xo.



C. Constrained control law

Finally, we need to introduce the last component u2 of the
control law (3), so that the state remains on the constraint
surface h(x) = 0, due to enforcing a sliding mode, should the
state reach this surface from the feasible domain h(x) < 0.
Consider now the perturbed system dynamics

ẋ(t) = Acl(ρ(t))x(t)+B(ρ(t))(u1(t)+u2(t))+B(ρ(t))d(t).
(13)

The term u2 is selected such that

u̇2 = −γ2
(
−Acl(ρ)

−1B(ρ)
)′(

gradx̂h(x̂)
)
v(x̂), (14a)

with the SMC discontinuous input

v(x̂) =

{
−1 h̃(x̂) < 0

γ3 h̃(x̂) > 0
, (14b)

where, by virtue of assumption A1, h̃(x̂) = h(x̂)+η, η > 0,
while x̂(t) = −A−1

cl (ρ)B(ρ)(u1 + u2) is a static observer
required to directly solve the dynamic optimization prob-
lem because of the needed discontinuities of function h in
h(x) = 0, and of the control signal given by the output of
an integrator with discontinuous input (see [16] for further
details). Specifically, the idea underlying (14) is conceptually
the same of constrained sliding modes in §II, with an asym-
metric gain due to γ3 > 1, applied whenever the constraints
are violated, in order to maintain the trajectory inside the
set Ω even when a practical sliding mode (for instance in
field implementations where ideal infinite frequency is not
feasible) would be enabled on the constraint, making the
state overcome the imposed limits.

Consider now the following assumption.
A2: ∥d∥∞ ≤ δ, for some δ > ∥O(ϵ)∥∞, and ∥u2∥∞ ≤ ϵ.

Lemma 3: Given the LPV system (13) with u1 as in (12)
and u2 as in (14), let A2 hold. If there exists γ̄2 ≫ δ such
that γ2 ≥ γ̄2 for any x(0) ∈ Ω, then a closure of order
ϵ of xo = argminx∈Ω J(x) is reached in finite-time with
x(t) ∈ Ω for all t ≥ 0.

Proof: In line with [17, Prop. 5.1], we can select
a nonnegative function V , which depends on x̂, such that
V (x̂) = v′(x̂)h̃(x̂), where h̃(x̂) = h(x̂) + η, with η > 0
being a safety margin. Computing the time derivative and
exploiting A2, one has

V̇ (x̂) = v′(x̂)
(
gradx̂h̃(x̂)

)′ ˙̂x
= v′(x̂)

(
gradx̂h̃(x̂)

)′((−A−1
cl (ρ)B(ρ)

)
(u̇1 + u̇2)

+
(
−Ȧ−1

cl (ρ)B(ρ)−A−1
cl (ρ)Ḃ(ρ)

)
(u1 + u2)

)
= −v′(x̂)

(
gradx̂h̃(x̂)

)′
×(−A−1

cl (ρ)B(ρ))γ1
((

gradxJ
)′
(−A−1

cl (ρ)B(ρ))
)′

− v′(x̂)
(
gradx̂h̃(x̂)

)′
×(−A−1

cl (ρ)B(ρ))γ2(−A−1
cl (ρ)B(ρ))′

(
gradx̂h̃(x̂)

)
v′(x̂)+O(ϵ).

This implies that, to dominate also the disturbance, there
exists a value γ̄2 ≫ δ such that V (x̂) is a decreasing function
and h̃(x̂) will be equal to zero in finite-time, that is a sliding

mode will be enforced. As a consequence, for any x(0) ∈ Ω,
the unconstrained control law will steer the state trajectory
to an ϵ-closure of xo ∈ Ω in finite-time (see Lemma 2), with
x(t) ∈ Ω for all t ≥ 0.

Theorem 4: Given system (6) controlled by (3), with u0

in (8), u1 as in (12) and u2 as in (14), if Assumptions A1 and
A2 hold, then the solutions to (6) are uniformly ultimately
bounded with ultimate bound ϵ.

Proof: According to Lemma 1, the unperturbed version
of (6) controlled via u0 with closed-loop matrix Acl is
Lyapunov stable. Under A1 and A2, Lemmas 2 and 3
hold, which implies the uniform ultimate boundedness of
the solutions to (6) when (3) is applied.

VI. CASE STUDY

In this section, the proposed control law is assessed in
simulation on a realistic robotic example given by the 2-
degrees-of-freedom SECAFLEX manipulator (see [18] for
further details).

A. Settings

We have considered the rigid part of the SECAFLEX
robot and the data are those reported in Table I. The set-

TABLE I
SECAFLEX ROBOT DATA.

m110 m120 m220 m11c m12c ke1 ke2 f1 f2

17.5711 5.9114 3.7233 10.0462 2.8803 89.1473 456434 0.09 0.05

point for the joint position and velocity has been selected
as x⋆ =

[
1.5708 1.7453 0 0

]′
with initial conditions of posi-

tions and velocities x(0) =
[
0.7854 0.7854 0 0

]′
. A matched

disturbance has been then added to the joint torques as
d(t) =

[
sin(10x3(t))

1−cos(10x4(t))

]
, so that δ = 2. The time-varying

parameters are finally selected as explained in §III, such
that |ρ1| ≤ 1 (by construction), |ρ2| ≤ 1.75 rad s−1 as well
as |ρ3| ≤ 1.75 rad s−1 (due to the axes speed limits). As
discussed in [11], only the time derivative ρ̇1 = −ρ2 is used
in the synthesis due to the choice of parameter dependent
matrix variables, without requiring acceleration limits.

Before applying the sliding mode optimization, we have
found the stabilizing LPV controller as in (8a) with the
gain matrix K(ρ) in (8b) by using the LMI approach in
Lemma 1. More precisely, we have chosen the affine matrix
R(ρ) = R0 + ρ1R1 + ρ2R2 + ρ3R3, the constant symmetric
matrix Γ(ρ) = Γ0, and decay rate λ = 0.5. The toolbox
YALMIP in MATLAB with solver SeDuMi has been adopted
to solve the LMIs. Fig. 1 shows the time evolution of the joint
variables and velocities in the case of the stabilized nominal
(i.e., d = 0) closed-loop system when u1 = u2 = 02×1, and
the correspondig evolution of the parameters ρ1, ρ2 and ρ3.

B. The unconstrained case

We consider now u2 = 0, with the unconstrained law u1

active, and the disturbance such that d ̸= 0. The cost function
has been chosen as J(x) = (x1−x⋆

1)
2+(x2−x⋆

2)
2+ 1

2 (x
2
3+



Fig. 1. Time evolution of the closed-loop dynamics when d = 0, only the
LPV controller u(t) = u0(t) is applied, and u1(t) = u2(t) = 02×1 for
all t ≥ 0.

x2
4), while the constraint is instead h(x) = x1+x2−π ≤ 0.

Therefore, the unconstrained law u1 has been designed by
selecting γ1 = 100.

Fig. 2. Time evolution of the closed-loop dynamics when d ̸= 0, the
controller u(t) = u0(t) + u1(t) is applied, and u2(t) = 02×1 for all
t ≥ 0.

Fig. 2 illustrates again the time evolution of the joint states
and the corresponding evolution of the parameters ρ in this
second case. The system state reaches a close vicinity of the
desired equilibrium point belonging to span

(
A−1(ρ)B(ρ)

)
,

which minimizes the cost function, as proved in Lemma 2,
and it is apparent that the plant is significantly affected by the
disturbance. The time evolution of the cost function J(x(t))
is shown in Fig. 3. Moreover, in Fig. 4 the state portrait in
the same case is reported together with the constrained white
area (delimited by the dashed line) representing the set Ω.

C. Constrained optimization

Now add the discontinuous law u2 to the previous con-
troller in the same condition, that is when d ̸= 0. Specifically,
the constrained law has been designed by selecting γ2 = 200
and γ3 = 100 to take into account the presence of the
disturbance d. In the expression of u(t), instead, the gain
γ1 has been maintained still equal to 100.

Fig. 3. Time evolution of the cost function J(x) in the unconstrained case.

Fig. 4. State portrait (top), and zoom of the convergence area (bottom) in
the unconstrained case.

Fig. 5. Time evolution of the closed-loop dynamics when d ̸= 0 and the
controller u(t) = u0(t) + u1(t) + u2(t) is applied for all t ≥ 0.

Given the constraint h(x) previously introduced, it is
evident that the point Jmin is in the forbidden region. In
this case, the controlled system state and parameters evolve
as illustrated in Fig. 5. Fig. 6 shows that function h is steered
to zero in finite-time (top), according to Lemma 3, and
the sliding mode is enforced by virtue of the discontinuous
input (bottom) v in (14b). The convergence occurs so that,
while minimizing the cost function J(x(t)), the system
state reaches an equilibrium point belonging to a vicinity
of span

(
A−1(ρ)B(ρ)

)
and of the feasible region delimited



Fig. 6. Sliding mode enforced on h = 0 (top), and SMC input v (bottom).

Fig. 7. Time evolution of the cost function J(x) in the constrained case.

Fig. 8. State portrait (top), and zoom of the convergence area (bottom) in
the constrained case.

by the constraint. The time evolution of the cost function
J(x(t)) is shown in Fig. 7. Finally, in Fig. 8 the state portrait
is reported together with the constrained area. Differently
from the previous case, this time the constraint is fulfilled
by virtue of the sliding mode optimization even in presence
of the disturbance d.

VII. CONCLUSIONS

This letter has proposed a novel approach of constrained
SMC optimization relying on an LPV formulation of a robot
manipulator model. Such reformulation has the advantage

to enable a relatively simple linear state-feedback control
synthesis by solving a finite number of parameter-dependent
LMIs. Two other control components are then added to
minimize a predefined cost function, while fulfilling state
constraints on the joint positions. The whole control law
guarantees the uniform ultimate boundedness of the con-
trolled systems solution, with robustness versus matched
disturbances. Moreover, due to the low computational com-
plexity of the considered optimization problem, which does
not involve any model-based prediction, the present control
proposal appears to be extendable to more general settings
(e.g., spatial manipulators) and different applications.
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