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Abstract—In this paper, an existing approach for modeling

and efficiently implementing arbitrary reciprocal connection

networks using Wave Digital scattering junctions based on voltage

waves is extended to be used in a broader class of Wave Digital

Filters based on different kinds of waves. A generalized wave

definition which includes traditional voltage waves, current waves

and power-normalized waves as particular cases is employed.

Closed-form formulas for computing the scattering matrices

of the junctions are provided. Moreover, the approach is also

extended to the family of Biparametric Wave Digital Filters,

which have been recently introduced in the literature.

Index Terms—Wave Digital Filters, Scattering Matrices, Junc-

tions, Adaptors, Connection Networks.

I. INTRODUCTION

O
VER forty years ago, Martens and Meerkötter presented
a method [1] for modeling arbitrary circuit topologies

using multi-port Wave Digital (WD) adaptors [2]. The method
was initially based on a partition of the digraph representing
the reference circuit into tree and cotree. It was later extended
to accommodate more general reciprocal connection networks,
which embed reciprocal multi-ports, such as ideal transformers
[3]–[6]. Recently, an alternative approach, based on the Mod-
ified Nodal Analysis (MNA) [7]–[11], was developed for im-
plementing in the WD domain arbitrary connection networks,
which also contain active and non-reciprocal linear multi-
ports, such as controlled sources, nullors, and gyrators. The
MNA-based method discussed in [7] allows us to implement
a larger class of WD junctions than the approach presented
in [1], [5], [6] for the two following reasons. The former is
that the MNA-based method accommodates both reciprocal
and non-reciprocal connection networks in the WD domain,
while the applicability of the method in [1], [5], [6] is limited
to reciprocal connection networks. The second reason is that
the formulation of the method in [7] is based on a generalized
definition of wave signals [12], which includes definitions of
voltage, current and power-normalized waves of traditional
WD Filters (WDFs) [13] as particular cases, while the results
in [1], [5], [6] are limited to WDFs based on voltage waves.
However, as outlined in [7], the method presented in [1], [5],
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[6] remains more efficient for realizing reciprocal connection
networks in the WD domain. Therefore, it would be desirable
to develop extensions of the method in [1], [5], [6] that are
applicable to WD structures based on other types of waves, in
order to investigate whether they can bring advantages over the
MNA-based method [7] in implementing reciprocal junctions.

Reciprocity in the WD domain is an important property,
as it can be exploited for a variety of theoretical derivations.
For example, in [14] and [15], reciprocity is used to prove a
theorem granting the convergence of a computationally inex-
pensive WD relaxation algorithm, called Scattering Iterative
Method (SIM), which is suitable for solving circuits with
multiple nonlinear one-ports characterized by monotonic i–
v characteristics. The application of SIM to the case of large
photovoltaic arrays of arbitrary topologies is described in [14],
[16]. This fact constitutes a further motivation to explore
generalizations of the method presented in [1], [5], [6], since,
for instance, closed-form expressions of scattering matrices
describing WD junctions based on different types of wave
definitions could be useful for deriving extensions of the
theorem proven in [14].

Various definitions of wave signals with diverse benefits
are available in the literature of WDFs [13]. Among these,
power-normalized waves (as defined in microwave engineering
[17]) are worth mentioning for their energy properties in
fixed-point implementations and for the orthogonality of their
scattering matrices [18], [19]. In the literature on sound
synthesis through physical modeling, for example, power-
normalized waves have been employed for implementing WD
models of acoustic systems involving WDFs and/or digital
waveguides [20]–[22]. The generalized definition of waves,
including voltage, current and power-normalized waves of
traditional WDFs as particular cases, presented in [7], [12],
allows us to derive general expressions of scattering relations
which are parametrized in terms of the wave type. Moreover, a
new family of Biparametric WDFs (BWDFs) was introduced
in [23]. Wave signals in BWDFs are defined as depending on
two free parameters per port instead of one, which enables the
design of WD structures with increased degrees of freedom.
Additional free parameters in BWDFs allow, for instance, the
design of scattering matrices of series or parallel adaptors that
are made of off-diagonal entries equal to �1 or +1, thus,
independent from the circuit parameters, and with diagonal
entries equal to zero, making ports of adaptors all reflection-
free [23]. As only adaptors describing series and parallel
interconnections were discussed in [23], a theoretical study
on the design of adaptors representing arbitrary connection
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networks in BWDFs is missing in the literature. We believe
that all the potential of recently introduced BWDFs have not
yet been expressed and further special properties might be
discovered, especially as the modeling and/or optimization of
nonlinear WD structures is concerned [8], [14], [15]. For this
reason, investigations on alternative ways of exploiting the free
parameters are in progress.

In this article, extensions of the theory of Martens et al. [1],
[5], [6] to the general definition of waves introduced in [7],
[12] and to biparametric wave definitions [23] are presented.
We will see that both extensions are not immediate. But the
case of BWDFs is particularly interesting as the corresponding
scattering matrices are far less constrained in their structure
than those used in WDFs (e.g., they are no longer self-inverse).
This makes the generalization of the results of Martens et al.
to this case anything but straightforward.

The article is organized as follows. Section II provides a
description of general reciprocal connection network, starting
from the reciprocity condition that relates its port currents and
port voltages. Section III shows how an arbitrary reciprocal
connection network can be implemented in the WD domain
using a scattering matrix based on the definition of wave
variables presented in [7]. Section IV presents two derivations
of WD scattering matrices, based on two different biparametric
definitions of wave variables [23]. Section V explains how
the scattering matrices derived in Section III and Section IV
can be employed for the design of arbitrary adaptors in
traditional WDFs and BWDFs. In particular, bridged-T and
twin-T adaptors are derived, along with adaptors usable for
implementing the Brune section and the Darlington-D section
in the WD domain. Moreover, WD implementations of multi-
winding ideal transformers with series and parallel structures
are presented. We show that ports of adaptors based on bipara-
metric definitions of waves can all be made reflection-free (i.e.,
can all be adapted). Examples of application of such adaptors
for the implementation of non-trivial circuits are included in
order to show the effectiveness of the proposed approach.
Section VI presents a final discussion on the computational
cost of the proposed method. Finally, the article is concluded,
proposing some possible future developments.

II. RECIPROCAL CONNECTION NETWORKS

Let us consider a linear N -port reciprocal connection
network characterized by a vector of port voltages v =
[v1, . . . , vN ]T and a vector of port currents i = [i1, . . . , iN ]T ,
with N > 1. We assume that vt is a column vector of size
q ⇥ 1, with 1  q < N , containing all q independent port
voltages, and that il is a column vector of size p ⇥ 1, with
p = N � q, containing all p independent port currents. As
discussed in [24], [25], there always exists a pair of matrices
Q and B of sizes q ⇥N and p⇥N , respectively, such that

v = QTvt , i = BT il . (1)

Without loss of generality, we also assume that port vari-
ables are ordered in such a way that we can write vt =
[vN�q+1, . . . , vN ]T and il = [i1, . . . , ip]T . It follows that
matrices Q and B can be expressed as [5], [6]

Q =
⇥
Qq I

⇤
, B =

⇥
I Bp

⇤
, (2)

where Qq and Bp are matrices of sizes q ⇥ p and p ⇥ q,
respectively, and I indicates a properly sized identity matrix.

Let us now consider two arbitrary and distinct pairs of
vectors of port signals

{ṽ = [ṽ1, . . . , ṽN ]T , ĩ = [̃i1, . . . , ĩN ]T } ,

{v̂ = [v̂1, . . . , v̂N ]T , î = [̂i1, . . . , îN ]T } .

As the network is reciprocal, the reciprocity condition [26]

ṽT î = v̂T ĩ (3)

is always satisfied. We define ṽt, ĩl, v̂t and îl in such a way
that, according to (1), ṽ = QT ṽt, ĩ = BT ĩl, v̂ = QT v̂t and
î = BT îl, the reciprocity condition can be rewritten as

ṽT
t QBT îl = v̂T

t QBT ĩl . (4)

As condition (4) holds valid independently of the chosen set of
signals {ṽt, ĩl, v̂t, îl}, Q and B must satisfy the orthogonality
property

QBT = 0 , (5)

where 0 is a zero matrix [6]. The orthogonality property (5)
quite obviously makes equality (4) always satisfied. Equality
(5) also implies

BQT = 0 . (6)

It is worth pointing out that the orthogonality properties (5)
and (6) hold irrespectively of the ordering of port variables. In
fact, the ordering used above is not a mandatory choice, but
comes in handy when studying the general relation between
Q and B, as shown in what follows.

If we use eq. (2) in (5) or (6), we obtain

⇥
Qq I

⇤  I
BT

p

�
= 0 , (7)

and we deduce that

Qq = �BT
p . (8)

It follows that, in the light of (8), eq. (2) can be rewritten as

Q =
⇥
F I

⇤
, B =

⇥
I �FT

⇤
, (9)

where Qq = F and Bp = �FT .
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Fig. 1. Fig. 1(a) shows a circuit with 4 one-ports connected in series; Fig. 1(b)
shows its digraph representation. The link of the cotree subgraph is a dashed
line, the 3 twigs of the tree subgraph are continuous lines.
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Fig. 2. Fig. 2(a) shows a circuit with 4 one-ports connected in parallel;
Fig. 2(b) shows its digraph representation. The twig of the tree subgraph is a
continuous line, the 3 links of the cotree subgraph are dashed lines.
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Fig. 3. Fig. 3(a) shows a circuit with 6 one-ports and bridged-T topology;
Fig. 3(b) shows its digraph representation. The 3 twigs of the tree subgraph
are continuous lines, the 3 links of the cotree subgraph are dashed lines.
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Fig. 4. Fig. 4(a) shows a circuit with 8 one-ports and twin-T topology;
Fig. 4(b) shows its digraph representation. The 4 twigs of the tree subgraph
are continuous line, the 4 links of the cotree subgraph are dashed lines.

A. Connection Networks based on “Wire Interconnections”

Topological connection networks solely based on “wire
interconnections” are inherently reciprocal [26]. In such cases,
the matrices Q and B are reduced to the well-known fun-
damental cut set matrix and fundamental loop matrix [25],
respectively. Series and parallel topologies are the simplest
and most widespread examples of the sort, but this class of
connection networks also includes more complex topologies
that are neither series nor parallel [27], [28]. The elegant
tree-cotree decomposition method based on graph theory [1],
[24] can be applied to connection networks of this class in
order to identify suitable sets of independent port variables.
According to the method, the reference N -port connection
network is represented as a directed graph (digraph). The
vertices of the digraph correspond to the nodes of the network,
N branches represent the arbitrary elements connected to the
N ports and the direction of the arrows on the branches is

the same of port currents. The digraph is decomposed into
two subgraphs: a tree, which is a connected subgraph without
loops containing all nodes of the digraph, and a cotree, which
is the complementary subgraph of the selected tree. Branches
are then partitioned into tree branches, called twigs, and cotree
branches, called links. Once the partition is performed, port
voltages associated to twigs form the vector of independent
port voltages vt; while port currents associated to links form
the vector of independent port currents il.

We now discuss some examples of connection networks
that are solely based on “wire interconnections”, as well as
the partition of the branches of the corresponding digraphs
into twigs and links. In all the examples that follow, ports are
numbered according to the convention used in (9).

1) Series Topology: The digraph corresponding to a N -port
series connection network is characterized by N�1 twigs and
1 link. It follows that q = N � 1 and p = 1. The matrix
F in (9) becomes F = �1N�1, where 1N�1 is a column
vector of size (N � 1)⇥1 with unitary entries. The vectors of
independent port variables are vt = [v2, . . . , vN ]T and il = i1.
The circuit in Fig. 1(a), for instance, is characterized by the
series connection network in Fig. 5(a) and its corresponding
digraph is shown in Fig. 1(b).

2) Parallel Topology: The digraph corresponding to a N -
port parallel connection network is the dual of the one rep-
resenting a series topology and it is characterized by 1 twig
and N � 1 links. It follows that q = 1 and p = N � 1. Matrix
F becomes F = 1T

N�1, vt = vN and il = [i1, . . . , iN�1]T .
The circuit in Fig. 2(a), for instance, is characterized by the
parallel connection network in Fig. 5(b) and its corresponding
digraph is shown in Fig. 2(b).

3) Bridged-T Topology: The circuit in Fig. 3(a) is char-
acterized by the 6-port bridged-T connection network [1] in
Fig. 5(c), which is neither a series nor a parallel connection
network. The corresponding digraph is shown in Fig. 3(b),
where one possible tree with 3 twigs and the associated cotree
with 3 links are highlighted. It follows that p = q = 3. The
matrix F, needed for deriving Q and B, is

F =

2

4
1 1 0
1 0 �1
0 1 1

3

5 , (10)

vt = [v4, v5, v6]T and il = [i1, i2, i3]T .
4) Twin-T Topology: Another example of circuit character-

ized neither by a series nor by a parallel connection network is
the one in Fig. 4(a) and its 8-port twin-T connection network
[4] is shown in Fig. 5(d). The corresponding digraph is shown
in Fig. 4(b), where one possible tree with 4 twigs and the
associated cotree with 4 links are highlighted. It follows that
p = q = 4. The matrix F, needed for deriving Q and B, is

F =

2

664

1 0 0 �1
�1 1 0 0
0 �1 1 0
0 0 �1 1

3

775 , (11)

vt = [v5, v6, v7, v8]T and il = [i1, i2, i3, i4]T .
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Fig. 5. Examples of connection networks based on wire interconnections. Fig. 5(a), Fig. 5(b), Fig. 5(c), Fig. 5(d) show a 4-port series connection network,
a 4-port parallel connection network, a 6-port bridged-T connection network and a 8-port twin-T connection network, respectively.

B. Connection Networks embedding Reciprocal Multi-ports
Equations (1) are not only suitable for describing arbitrarily

complex “purely topological” connection networks, i.e. solely
based on “wire interconnections”, but also more general
connection networks embedding reciprocal multi-ports, such
as ideal transformers [5]. In what follows we discuss some
examples of connection networks made of “wire interconnec-
tions” and ideal transformers and we describe them in terms
of independent port voltages and port currents, according to
eqs. (1). In particular, a description of the sort is applied to
N -port ideal multi-winding transformers.
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Fig. 6. Examples of connection networks embedding transformers. Fig. 6(a)
and Fig. 6(b) show the 4-port connection network of a Brune section and the
5-port connection network of a Darlington-D section, respectively.

1) Brune Section: Fig. 6(a) shows the 4-port connection
network of the so-called Brune section [6], [29]. It can be
verified that p = 2 and q = 2. Defining vt = [v3, v4]T and
il = [i1, i2]T , the resulting F matrix is

F =


1 ⌘B
1 1

�
, (12)

where ⌘B is the turns ratio of the ideal transformer. It follows
that p = q = 2.

2) Darlington-D Section: Fig. 6(b) shows the 5-port con-
nection network of the so-called Darlington-D section [30],
[31]. It can be verified that q = 3 and p = 2. Defining

i1

+
v1
�

i2

+v2�

i3

+
v3
�

1

(a)

i1

+
v1
�

i2

+v2�

i3

+
v3
�

1

(b)

Fig. 7. Examples of multi-winding transformers. Fig. 7(a) and Fig. 7(b) show
the 3-port connection network of a 3-winding transformer with series structure
and the 3-port connection network of a 3-winding transformer with parallel
structure, respectively.

vt = [v3, v4, v5]T and il = [i1, i2]T , the resulting F matrix
is

F =

2

4
1 1
1 ⌘D1
1 ⌘D2

3

5 , (13)

where ⌘D1 and ⌘D2 are the turns ratios of the two ideal
transformers.

3) Ideal Multi-winding Transformer with Series Structure:
Let us consider an N -port ideal N -winding transformer char-
acterized by a series magnetic structure. Fig. 7(a) shows an
example of a 3-winding transformer of the sort. �1, . . . , �N
are the numbers of turns of the N windings, respectively. Port
voltages are related by the constraint

v1/�1 = v2/�2 = · · · = vN/�N , (14)

while port currents satisfy the equation

�1i1 + �2i2 + · · ·+ �N iN = 0 . (15)

As each port voltage vn with 1  n  N can be expressed as
vn = (�n/�N ) vN , we deduce that q = 1 and p = N � 1. It
follows that

F = [�1/�N , �2/�N , . . . , �N�1/�N ] . (16)

It is worth noticing that an ideal N -winding transformer with
series structure can be interpreted as a generalization of a
connection network with parallel topology; in fact an N -port
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parallel junction is like an ideal N -winding transformer with
series structure where �n = �N , 8 n 2 {1, 2, . . . , N}. This is
in accordance with the duality principles relating electric and
magnetic circuits discussed in [32].

4) Ideal Multi-winding Transformer with Parallel Structure:
Let us now consider a N -port ideal N -winding transformer
characterized by a parallel magnetic structure. Fig. 7(b) shows
an example of a 3-winding transformer of the sort. �1, . . . , �N
are the numbers of turns of the N windings, respectively. Port
currents are related by the constraint

�1i1 = �2i2 = · · · = �N iN , (17)

while port voltages obey the equation

v1/�1 + v2/�2 + · · ·+ vN/�N = 0 . (18)

It follows that matrix F is given by

F = � [�1/�2, �1/�3, . . . , �1/�N ]T . (19)

It is worth noticing that an ideal N -winding transformer with
parallel structure can be interpreted as a generalization of a
connection network with series topology; in fact an N -port
series junction is like an ideal N -winding transformer with
parallel structure where �n = �1, 8 n 2 {1, 2, . . . , N}.

III. RECIPROCAL JUNCTIONS IN GENERALIZED WDFS

The previous Section discussed the general properties of
N -port reciprocal connection networks in the domain of port
voltages and port currents, along with some examples. This
Section shows how the same reciprocal connection networks
can be represented in the WD domain using scattering junc-
tions, characterized by scattering matrices. Scattering matrices
will be derived and their properties will be discussed, starting
from a generalized definition of wave signals that includes
traditional definitions of voltage waves, current waves and
power-normalized waves as particular cases.

A. Generalized Definition of Wave Signals

The generalized definition of wave port variables in WDFs,
recently proposed in [7], [12], is the following

a = R⇢�1v +R⇢i , b = R⇢�1v �R⇢i , (20)

where a = [a1, . . . , aN ]T and b = [b1, . . . , bN ]T are the
vectors of so called incident and reflected waves, R =
diag[R1, . . . , RN ] is a diagonal matrix of free parameters
called port resistances, and ⇢ is a real parameter. Setting
⇢ = 1, (20) reduces to the traditional definition of voltage
waves proposed by Fettweis in [2]; setting ⇢ = 0, (20) reduces
to the dual definition of current waves; while, setting ⇢ = 1/2,
(20) reduces to the definition of power-normalized waves.
Infinite other choices of ⇢ are possible, leading to infinite new
definitions of wave signals with hybrid units of measure. The
inverse mapping of (20) is the following

v =
1

2
R1�⇢ (a+ b) , i =

1

2
R�⇢ (a� b) . (21)

TABLE I
GENERALIZED WDF SCATTERING MATRIX PROPERTIES

Name Equation

Losslessness STR1�2⇢S = R1�2⇢

Self-inverse property SS = I

Reciprocity STR1�2⇢ = R1�2⇢S

B. Scattering Matrix Properties
The N -port WD junction representing an arbitrary N -port

reference connection network is characterized by a scattering
matrix S, which relates the vector a of waves incident to the
junction to the vector b of reflected waves as follows

b = Sa . (22)

The three main properties of S, i.e., losslessness, self-inverse
property and reciprocity, are summarized in Table I and
discussed in the following.

1) Losslessness: As every connection network is lossless,
the power W absorbed by the N -port is zero, therefore we
can write

W = vT i = 0 . (23)

It follows that, according to equations (23), (21) and (22),

W =
1

4
aT

�
R1�2⇢ � STR1�2⇢S

�
a = 0 . (24)

From (24), we derive the losslessness property

STR1�2⇢S = R1�2⇢ , (25)

since W = 0 must be satisfied independently of a.
2) Self-inverse property: Similarly to what pointed out in

[33] for voltage waves; as the vectors v and i are solutions of
independent homogeneous linear equations, from b = Sa, we
deduce

⇠R⇢�1v � ⇣R⇢i = S
�
⇠R⇢�1v + ⇣R⇢i

�
, (26)

where ⇠ and ⇣ are arbitrary real numbers. Therefore, if we
choose ⇠ = �1 and ⇣ = 1 the inverse mapping a = Sb must
hold true as well. This means that S is an involutory matrix
and the following self-inverse property must be satisfied

SS = I . (27)

3) Reciprocity: Combining equations (25) and (27), we
deduce the following reciprocity property of S

STR1�2⇢ = R1�2⇢S . (28)

In fact, we will show in the following that the reciprocity
condition (3), involving the port variables of the reference con-
nection network, implies the property (28). First, we rewrite
the reciprocity condition (3) in the WD domain as
⇣
ãT � b̃T

⌘
R1�2⇢

⇣
â� b̂

⌘
=

⇣
âT � b̂T

⌘
R1�2⇢

⇣
ã� b̃

⌘
(29)

where the two pairs of vectors of wave signals

{ã = [ã1, . . . , ãN ]T , b̃ = [b̃1, . . . , b̃N ]T } , (30)
{â = [â1, . . . , âN ]T , b̂ = [b̂1, . . . , b̂N ]T } , (31)
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are obtained from the two pairs of vectors {ṽ, ĩ} and {v̂, î},
after applying the transformation (21) two times with the same
diagonal matrix of port resistances R and parameter ⇢. As
b̃ = Sã and b̂ = Sâ, (29) can be written as

ãT
⇣
I+ ST

⌘
R1�2⇢ (I� S) â = âT

⇣
I+ ST

⌘
R1�2⇢ (I� S) ã .

(32)
Condition (32) is satisfied for any pair of vectors of incident
waves ã and â, when

�
I+ ST

�
R1�2⇢ (I� S) = 0 (33)

or, equivalently, when

R1�2⇢ �R1�2⇢S+ STR1�2⇢ � STR1�2⇢S = 0 . (34)

Condition (34) is always verified only if both the losslessness
property (25) and the reciprocity property (28) hold true.

4) Power-normalized case: In the special case in which
power-normalized waves are used, S becomes an orthogonal
matrix. In fact, by replacing ⇢ = 1/2 into (28), we obtain

S = ST , (35)

therefore S is a symmetric matrix. Moreover, by combining
(35) with (27), we obtain

ST = S�1 , (36)

therefore, S is orthogonal.

C. Scattering Matrix Derivation
By replacing (1) into the generalized definition of wave

signals (20), we derive

a = R⇢�1QTvt +R⇢BT il (37)
b = R⇢�1QTvt �R⇢BT il (38)

and by left-multiplying both sides of eq. (37) by QR�⇢, we
obtain

QR�⇢a = QR�1QTvt . (39)

Similarly, by left-multiplying both sides of eq. (38) by
BR1�⇢, after simplifying the resulting expression we obtain

BR1�⇢b = �BRBT il . (40)

By solving (39) and (40) for vt and il, respectively, we obtain

vt =
�
QR�1QT

��1
QR�⇢a (41)

il = �
�
BRBT

��1
BR1�⇢b (42)

In order to compact the expressions, we now define

 = QT
�
QR�1QT

��1
Q and ⇤ = BT

�
BRBT

��1
B ,
(43)

so that, after plugging both (41) and (42) in (37) and in (38),
we can write

a = R⇢�1 R�⇢a�R⇢⇤R1�⇢b (44)
b = R⇢�1 R�⇢a+R⇢⇤R1�⇢b (45)

Adding eqs. (44) and (45) together and solving for b yields

b = 2R⇢�1 R�⇢a� a . (46)

Therefore, the scattering matrix S can be expressed as

S = 2R⇢�1 R�⇢ � I . (47)

Subtracting eq. (44) from eq. (45) and solving for a returns

a =
�
I� 2R⇢⇤R1�⇢

�
b , (48)

which, exploiting the self-inverse property (27), allows us to
derive the following alternative expression for S

S = I� 2R⇢⇤R1�⇢ . (49)

It is worth noticing that the most computationally demand-
ing operation to derive S is the inversion of a linear system of
equation. When using eq. (47), this corresponds to inverting
the q ⇥ q matrix QR�1QT in order to compute  . When
using eq. (49), on the other hand, we need to invert the p⇥ p
matrix BRBT to compute ⇤. As q is generally different from
p, it might be computationally advantageous to carefully select
one of the two eqs. (47) and (49).

IV. RECIPROCAL JUNCTIONS IN BIPARAMETRIC WDFS

In this Section, we consider a family of WD structures,
recently introduced in [23], characterized by wave definitions
involving two free parameters per port instead of one and
known as Biparametric WDFs (BWDFs). We restate in a more
general fashion the pair of “dual” biparametric definitions
of wave signals originally introduced in [23] and we derive
the corresponding WD junctions, which describe arbitrary
reciprocal N -port connection networks.

A. Biparametric Definition of Waves
We first consider the following definition of wave variables

a = µ��1 (v +R�i) , b = µ��1 (v �R↵i) , (50)

where vectors v, i, a and b are defined as in Section III, µ
is an arbitrary dimension-less constant (set equal to 1/2 in
[23]), R↵ = diag [↵1, . . . ,↵N ] and R� = diag [�1, . . . ,�N ],
being ↵n and �n, with 1  n  N , positive real free
parameters having the same unit of measurement of resis-
tances. In the case of power-normalized waves [23] we have
� = diag['1, . . . ,'N ] with 'n =

p
(↵n + �n) /2. It is worth

noticing that, in the special case of R = R↵ = R� (⇢ = 1/2
and µ = 1), (50) is equivalent to (20); therefore, (50) can be
seen as a generalization of the traditional definition of power-
normalized waves. Other biparametric definitions of waves
with different units of measurement (e.g., voltage waves or
current waves) can be derived through alternative definitions
of the normalization matrix �. An in-depth discussion of such
cases, however, will not be presented here for the sake of
simplicity. The inverse mapping of (50) is given by

v =
1

µ
� (R↵ +R�)

�1 (R↵a+R�b) (51)

i =
1

µ
� (R↵ +R�)

�1 (a� b) (52)

We call S' the scattering matrix describing the reference
connection network, so that b = S'a; in the following, we
will show four possible ways of deriving S'.
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By replacing (1) into (50), we obtain

a = µ��1
�
QTvt +R�B

T il
�

(53)
b = µ��1

�
QTvt �R↵B

T il
�

(54)

Left-multiplying both sides of eq. (53) by Q�R�1
� yields

Q�R�1
� a = µQR�1

� QTvt . (55)

By left-multiplying both sides of eq. (54) by B�, we obtain

B�b = �µBR↵B
T il . (56)

Solving (55) and (56) for vt and il, respectively, returns

vt =
1

µ

⇣
QR�1

� QT
⌘�1

Q�R�1
� a (57)

il = � 1

µ

�
BR↵B

T
��1

B�b (58)

We can now compact the expressions by defining

 � = QT
⇣
QR�1

� QT
⌘�1

Q , ⇤↵ = BT
�
BR↵B

T
��1

B,

(59)
so that, after replacing both (57) and (58) in eqs. (53) and
(54), we can write

a = ��1 ��R
�1
� a�R��

�1⇤↵�b (60)

b = ��1 ��R
�1
� a+R↵�

�1⇤↵�b (61)

By left-multiplying both sides of eq. (60) by R�1
� , left-

multiplying both sides of eq. (61) by R�1
↵ , adding together

the two resulting equations and solving for b, we obtain

b =
⇣
R↵

⇣
R�1

↵ +R�1
�

⌘
��1 ��R

�1
� �R↵R

�1
�

⌘
a .

(62)
Subtracting eq. (61) from eq. (60) and solving for a, yields

a =
�
I� (R↵ +R�)�

�1⇤↵�
�
b . (63)

Alternatively, by left-multiplying both sides of eq. (53) by
B� and both sides of eq. (54) by Q�R�1

↵ and, by solving the
two resulting equations for il and vt, respectively, we obtain

il =
1

µ

�
BR�B

T
��1

B�a (64)

vt =
1

µ

�
QR�1

↵ QT
�
Q�R�1

↵ b (65)

We can now compact the expressions by defining

 ↵ = QT
�
QR�1

↵ QT
��1

Q , ⇤� = BT
�
BR�B

T
��1

B,
(66)

so that, after replacing both (64) and (65) in eqs. (53) and
(54), we can write

a = ��1 ↵�R
�1
↵ b+R��

�1⇤��a , (67)
b = ��1 ↵�R

�1
↵ b�R↵�

�1⇤��a . (68)

By subtracting eq. (68) from eq. (67) and solving for b, we
obtain

b =
�
I� (R↵ +R�)�

�1⇤��
�
a . (69)

Left-multiplying both sides of eq. (67) by R�1
� , left-

multiplying both sides of eq. (68) by R�1
↵ , summing the

resulting equations and solving for a, yields

a =
⇣
R�

⇣
R�1

↵ +R�1
�

⌘
��1 ↵�R

�1
↵ �R�R

�1
↵

⌘
b .

(70)
From eqs. (62), (69), (70), and (63), respectively, the fol-

lowing four equivalent expressions for the scattering matrix
S' can be easily derived:

S' = ��1R↵

⇣⇣
R�1

↵ +R�1
�

⌘
 � � I

⌘
R�1

� � (71)

S' = ��1 (I� (R↵ +R�)⇤�)� (72)

S' =
⇣
��1R�

⇣⇣
R�1

↵ +R�1
�

⌘
 ↵ � I

⌘
R�1

↵ �
⌘�1

(73)

S' =
�
��1 (I� (R↵ +R�)⇤↵)�

��1 (74)

It should be quite clear that (71) and (72) are computationally
less expensive than (73) and (74), which are only reported
here for reasons of completeness.

B. Dual Biparametric Definition of Waves
Let us now consider the following dual definition of wave

variables

a = µ⇥�1
⇣
R�1

� v + i
⌘

, b = µ⇥�1
�
R�1

↵ v � i
�
,

(75)
where v, i, a, b, R↵ R� and µ are defined as in the previous
Subsection. In the case of power-normalized waves [23], we
have ⇥ = diag[✓1, . . . , ✓N ] with ✓n =

p
(1/↵n + 1/�n) /2

and µ = 1/2. It is worth noticing that, even (75) can be
seen as a generalization of the traditional definition of power-
normalized waves; in fact, setting R = R↵ = R� , ⇢ = 1/2
and µ = 1, (75) is equivalent to (20). The inverse mapping of
(75) is given by eqs. (76) and (77).

v =
1

µ
⇥

⇣
R�1

↵ +R�1
�

⌘�1
(a+ b) (76)

i =
1

µ
⇥

⇣
R�1

↵ +R�1
�

⌘�1 ⇣
R�1

↵ a�R�1
� b

⌘
(77)

We call S✓ the scattering matrix describing the reference
connection network, so that b = S✓a. Using a derivation
method similar to the one described in the previous Subsection
the following four equivalent expressions for the scattering
matrix S✓ are derived

S✓ = ⇥�1
⇣⇣

R�1
↵ +R�1

�

⌘
 � � I

⌘
⇥ (78)

S✓ = ⇥�1R�1
↵ (I� (R↵ +R�)⇤�)R�⇥ (79)

S✓ =
⇣
⇥�1

⇣⇣
R�1

↵ +R�1
�

⌘
 ↵ � I

⌘
⇥
⌘�1

(80)

S✓ =
⇣
⇥�1R�1

� (I� (R↵ +R�)⇤↵)R↵⇥
⌘�1

(81)

where  � , ⇤� ,  ↵ and ⇤↵ are defined as in (59) and (66).

C. Properties of Scattering Matrices
As far as self-inverse property is concerned, it can be

verified that, when ↵n 6= �n with 1  n  N , S' and S✓ are
not self-inverse. The losslessness and reciprocity properties of
S' and S✓, instead, can be derived similarly to what done in
Section III-B, as shown in the following.
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1) Losslessness: Since the reference N -port connection
network is lossless, condition (23) holds. As far as BWDF
based on wave definition (50) are concerned, by replacing (51),
(52) and eq. b = S'a into (23), we obtain

W =
1

µ2
aTL'a = 0 , (82)

where

L' =
�
R↵ + ST

'R�

�
�2 (R↵ +R�)

�2 (I� S') . (83)

From that follows the following losslessness property

L' = 0 . (84)

A similar result is derived for BWDFs based on the wave
definition (75). By replacing (76), (77) and eq. b = S✓a into
(23), we obtain

W =
1

µ2
aTL✓a = 0 , (85)

where

L✓ =
�
I+ ST

✓

�
⇥2

⇣
R�1

↵ +R�1
�

⌘2 ⇣
R�1

↵ �R�1
� S✓

⌘
(86)

from which we deduce the following losslessness property

L✓ = 0 . (87)

2) Reciprocity: As far as BWDFs based on wave definition
(50) are concerned, by applying definitions (51) and (52)
and by replacing eq. b̃ = S'ã and eq. b̂ = S'â into the
reciprocity condition (3), we obtain

ãTL'â = âTL'ã (88)

where L' is defined in (83), while ã and â are the incident
waves from two distinct signal distributions as defined in (30)
and (31). Consequently, the reciprocity property turns out to
coincide with the losslessness property (84), i.e. L' = 0.

Similarly, as far as BWDFs based on wave definition (75)
are concerned, by applying definitions (76) and (77) and by
replacing eq. b̃ = S✓ã and eq. b̂ = S✓â into the reciprocity
condition (3), we obtain

ãTL✓â = âTL✓ã (89)

where L✓ is defined in (87). Again, the reciprocity property
coincides with the losslessness property (86), i.e. L✓ = 0.

3) Power-normalized waves: We now show that, in the
special case of power-normalized waves, S' and S✓ are
symmetric matrices. In fact, according to Section IV-A, in the
power-normalized case, the normalization matrix � can be
defined as

� =
1p
2
(R↵ +R�)

1/2 . (90)

By replacing (90), e.g., in (72), we obtain

S' = I� (R↵ +R�)
1/2⇤� (R↵ +R�)

1/2 . (91)

As ⇤� is a symmetric matrix ( ⇤T
� = ⇤�), then so

is (R↵ +R�)
1/2⇤� (R↵ +R�)

1/2. Also S' is symmetric
(S' = ST

' ), because it is the difference between two sym-
metric matrices. Similarly, according to Section IV-B, in the

power-normalized case, the normalization matrix ⇥ can be
defined as

⇥ =
1p
2

⇣
R�1

↵ +R�1
�

⌘1/2
(92)

By replacing (92), e.g., in (78), we obtain

S✓ =
⇣
R�1

↵ +R�1
�

⌘1/2
 �

⇣
R�1

↵ +R�1
�

⌘1/2
� I . (93)

Since  � is a symmetric matrix, i.e.,  T
� =  � , then

⇣
R�1

↵ +R�1
�

⌘1/2
 �

⇣
R�1

↵ +R�1
�

⌘1/2
is also a symmetric

matrix. It follows that S✓ is symmetric (S✓ = ST
✓ ), as it is the

difference between two symmetric matrices.

V. DESIGN OF GENERALIZED WDF ADAPTORS AND
EXAMPLES OF APPLICATION

In this Section, adaptors based on the generalized definitions
of wave variables presented in Sections III and IV are designed
and employed for the WD implementation of some reference
circuits. Designing adaptors requires:

• deriving their scattering matrices, using the closed-form
formulas presented in the previous two Sections;

• deriving adaptation conditions that make one or more
of their ports reflection-free, i.e., finding the values of
the free parameters that set the corresponding diagonal
entries of the scattering matrices to zero.

It is important to underline that, when working with WD
structures based on the generalized wave definition of Sec-
tion III, only one of the ports of a WD junction can be made
reflection free. But when we are working with the biparametric
waves discussed in Section IV, an arbitrary number of ports
(even all of them) of a WD junction can be simultaneously
adapted. The WD scattering relations of the linear one-ports
that are used in the WDF and BWDF implementations of
the considered reference circuits are collected in Table II.
The first row of Table II refers to ideal voltage sources that
cannot be adapted. Instead, WD scattering relations of adapted
real voltage sources, resistors, capacitors and inductors, along
with the imposed adaptation conditions, are provided in the
rows that follow. In both WDFs and BWDFs, discretization
for implementing reactances (capacitors and inductors) is
performed applying the bilinear transform [2], [23].

For the sake of brevity, only output signals of WD structures
based on power-normalized waves will be shown. The corre-
sponding WD structures based on the other types of waves
have also been implemented in MATLAB, but with exactly
the same results (up to the limits of numerical precision).
The output signals given by the WD implementations of
the considered reference circuits will be compared to the
corresponding signals obtained using the LTspice simulation
software, in order to verify the accuracy of the developed
digital structures.

A. Bridged-T and Twin-T Adaptors
Closed-form expressions for the scattering matrix of a WDF

bridged-T adaptor are obtained by replacing matrix F of
eq. (10) into eq. (47) or into eq. (49). As p = q = 3 (as
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TABLE II
WAVE DIGITAL SCATTERING RELATIONS OF EMPLOYED CIRCUIT ELEMENTS

element

name

constitutive

equation
generalized WDF BWDF based on wave def. (50) BWDF based on dual wave def. (75)

ideal volt.
source e

v = e
b[n] =

2R⇢�1e[n]� a[n]
b[n] = (µ (↵+ �) /('�)) e[n]� (↵/�) a[n] b[n] = (µ (1/↵+ 1/�) /✓) e[n]� a[n]

adapted real
volt. source

e

v =
e+Rei

b[n] = R⇢�1e[n]
with R = Re

b[n] = (µ/') e[n] with ↵ = Re b[n] = (µ/ (✓↵)) e[n] with ↵ = Re

adapted
resistor Re

v = Rei
b[n] = 0 with

R = Re
b[n] = 0 with ↵ = Re b[n] = 0 with ↵ = Re

adapted
capacitor C

i =
Cdv/dt

b[n] = a[n� 1] with
R = 1/ (2CFs)

b[n] =
(2↵a[n� 1]+(� � ↵ )b[n� 1]) / (↵+ �)

with ↵ = 1/ (2CFs)

b[n] =
(2�a[n� 1]+(� � ↵ )b[n� 1]) / (↵+ �)

with ↵ = 1/ (2CFs)

adapted
inductor L

v =
Ldi/dt

b[n] = �a[n� 1]
with R = 2LFs

b[n] =
� (2↵a[n� 1]+(��↵ )b[n� 1]) / (↵+ �)

with ↵ = 2LFs

b[n] =
� (2�a[n� 1]+(��↵ )b[n� 1]) / (↵+ �)

with ↵ = 2LFs

outlined in Subsubsection II-A3), the computational complex-
ity that is needed to compute S is the same when eq. (47) or
eq. (49) are used. Similarly, closed-form expressions for the
scattering matrices of BWDF bridged-T adaptors are obtained
by replacing (10) in (72) or in (78).

Once scattering matrices are expressed as functions of the
free parameters, adaptation conditions can be derived. Table III
lists the six adaptation conditions at the six ports of the
bridged-T adaptor, where ⇧ijk = �i�j�k, ⇧jk = �j�k and
i, j, k 2 {1, . . . , 6} are port indexes. The numbering of
ports follows the convention used in Fig. 5(c). The adaptation
conditions are the same for all kinds of waves. Only one
of such conditions can be imposed at a time in a WDF
adaptor, since Rn = ↵n = �n, 8 n. Instead, all six adaptation
conditions can be valid at the same time in a BWDF adaptor.

As an example of application of the derived bridged-T
adaptors, we consider the WD implementations in Fig. 8 of
the circuit in Fig. 3(a). In Fig. 8(a) a WDF bridged-T adaptor
with one adapted port is employed, while in Fig. 8(b) a BWDF
bridged-T adaptor with all adapted ports is used. In both
cases all the WD one-ports are adapted, except for the ideal
input voltage source. The circuit is a notch audio filter with
parameters C4 = C5 = 27 pF, Rf = 820 k⌦, Rm = 680 ⌦ and
Rout = 1 M⌦. In order to measure the impulse responses of
the derived digital filters, the input voltage source Vin is driven
by an unitary impulse and the voltage across the resistor Rout
is taken as an output signal. Fig. 9(a) and Fig. 9(d) compare
the magnitude and the phase of the unitary impulse responses
of the circuit in Fig. 3(a) in the frequency domain, obtained
with a WDF, a BWDF and the LTspice software. The sampling
frequency used in the WD implementations is Fs = 96 kHz.
As shown in Fig. 9(a) and Fig. 9(d), the compared phase and
magnitude responses are identical up to numerical precision.

Similar considerations are valid for the design of twin-T
adaptors. Matrix F in eq. (11) is plugged in eq. (47) or in
eq. (49). Also in the case of twin-T adaptors, the computational
complexity needed to compute S is the same when eq. (47)
or eq. (49) are used, as p = q = 4. Adaptation conditions for
twin-T adaptors have been derived, but are not shown here for
reasons of space.

�+

Vin Rm Rout

C1
Rf C2

Bridged-T1

1

(a)

�+

Vin Rm Rout

C1
Rf C2

Bridged-T1

1

(b)

Fig. 8. WD structures implementing the reference circuit in Fig. 3(a). The
WD structure in Fig. 8(a) is based on traditional WDF principles, while the
one in Fig. 8(b) is based on BWDF principles.

B. Brune and Darlington-D Adaptors

Some network synthesis procedures to turn polynomial
transfer functions into lumped-element circuits, such as
Brune’s synthesis [29] or Darlington’s synthesis [30], very
commonly produce sections which involve absorbed ideal
transformers. Two sections of the sort are the Brune and
the Darlington-D sections, whose connection networks have
been analyzed in Subsection II-B. Corresponding Brune and
Darlington-D WDF adaptors are designed as follows. Closed-
form expressions for their scattering matrices are obtained,
considering the F matrices in eq. (12) and eq. (13) and
plugging them in eq. (47) or in eq. (49). In the case of the
Brune adaptor, p = q = 2. Therefore, the same computational
cost considerations from the bridged-T adaptor remain valid.
Conversely, in the case of the Darlington-D adaptor, p = 3
and q = 2; therefore, applying eq. (47) is computationally
cheaper than applying eq. (49). Similarly, scattering matrices
for BWDFs can be computed, e.g., using eq. (71), eq. (72) or
eq. (78). Once expressions for forming scattering matrices are
available, adaptation conditions can be derived. Table IV and
Table V list the adaptation conditions of Brune and Darlington-
D adaptors, respectively. Also in these two cases, only one of
the adaptation conditions can be imposed at a time in WDF
adaptors, while, all adaptation conditions can be set at the
same time in BWDF adaptors.

In [4], many examples of circuits obtained applying Brune’s
synthesis or Darlington’s synthesis to polynomial transfer
functions are shown, along with the corresponding WDF
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TABLE III
ADAPTATION CONDITIONS FOR THE BRIDGED-T ADAPTOR

↵1 = (⇧425 +⇧426 +⇧423 +⇧453 +⇧463 +⇧256 +⇧253 +⇧563) / (⇧45 +⇧46 +⇧43 +⇧25 +⇧26 +⇧56 +⇧23 +⇧63)
↵2 = (⇧415 +⇧416 +⇧413 +⇧453 +⇧156 +⇧463 +⇧163 +⇧563) / (⇧45 +⇧46 +⇧15 +⇧43 +⇧16 +⇧13 +⇧56 +⇧53)
↵3 = (⇧415 +⇧416 +⇧425 +⇧426 +⇧125 +⇧126 +⇧156 +⇧256) / (⇧41 +⇧42 +⇧45 +⇧46 +⇧12 +⇧16 +⇧25 +⇧56)
↵4 = (⇧125 +⇧126 +⇧156 +⇧123 +⇧256 +⇧163 +⇧253 +⇧563) / (⇧15 +⇧16 +⇧25 +⇧13 +⇧26 +⇧23 +⇧53 +⇧63)
↵5 = (⇧416 +⇧413 +⇧426 +⇧423 +⇧126 +⇧463 +⇧123 +⇧163) / (⇧41 +⇧42 +⇧12 +⇧43 +⇧16 +⇧26 +⇧23 +⇧63)
↵6 = (⇧415 +⇧425 +⇧413 +⇧125 +⇧423 +⇧453 +⇧123 +⇧253) / (⇧41 +⇧42 +⇧12 +⇧15 +⇧43 +⇧25 +⇧13 +⇧53)
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Fig. 9. Fig. 9(a) and Fig. 9(d) show magnitude and phase of the impulse response of the digital implementations of the reference circuit in Fig. 3(a). The
plotted signal is the voltage across resistor Rout. Fig. 9(b) and Fig. 9(e) show magnitude and phase of the impulse response of the digital implementations of
the reference circuit in Fig. 10. The plotted signal is the voltage across resistor Rout. Fig. 9(c) and Fig. 9(f) show magnitude and phase of the impulse response
of the digital implementations of the reference circuit containing the real transformer model in Fig. 12 and represented in the WD domain in Fig. 13. The
plotted signal is the voltage across resistor RoutB. In each figure, the dashed blue line indicates the result by LTspice, the dashed-dotted green line indicates
the result by a traditional WDF based on power-normalized waves and the continuous red line indicates the result by a BWDF based on power-normalized
waves; the three plotted lines are always overlapped, indicating that the three different results are matching.

implementations based on voltage waves. One of such circuits,
containing two Brune sections, characterized by turns ratios
⌘B1 = 0.14 and ⌘B2 = 0.16, respectively, and one Darlington-
D section with turns ratios ⌘D1 = 0.14 and ⌘D2 = �1.12,
is reported in Fig. 10. The other circuit parameters are the
following: Rin = 1.02 ⌦, Rout = 1.02 ⌦, C0 = 1.61 F,
C1 = 1.83 F, C2 = 2.26 F, C3 = 5.52 F, C4 = 11.20 F,
L0 = 0.70 H, L1 = 2.12 H, L2 = 2.55 H, L3 = 3.51 H and
L4 = 1.60 H. Possible WDF and BWDF implementations of
the circuit in Fig. 10 are shown in Fig. 11(a) and Fig. 11(b),
respectively. The WD inverters I1 and I2 (equivalent to 2-port
series adaptors) make it so that the port polarities match [12],
[34], [35]. In order to measure the impulse responses of the
derived digital filters, the input voltage source Vin is driven by
an unitary impulse and the voltage across the resistor Rout is
taken as an output signal. Fig. 9(b) and Fig. 9(e) show how the
magnitude and phase responses by LTspice, WDF and BWDF
implementations closely match. The sampling frequency used
in the WD implementations is Fs = 250 Hz.

C. Wave Digital Multi-winding Ideal Transformers
Following the same approach used in the two previous

Subsections, WD realizations of multi-winding transformers

TABLE IV
ADAPTATION CONDITIONS FOR THE BRUNE ADAPTOR

↵1 =
�
�3�4 (⌘B � 1)2 + �2�3 + �2�4

�
/
�
�3⌘

2
B + �2 + �4

�

↵2 =
�
�3�4 (⌘B � 1)2 + �1�3⌘

2
B + �1�4

�
/ (�1 + �3 + �4)

↵3 = (�1�2 + �1�4 + �2�4) /
�
�4 (⌘B � 1)2 + �1⌘

2
B + �2

�

↵4 =
�
�1�3⌘

2
B + �1�2 + �2�3

�
/
�
�3 (⌘B � 1)2 + �1 + �2

�
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⌘
D
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1

Fig. 10. An example of circuit taken from [4] containing two Brune sections
and a Darlington section.

are easily obtained.
We first consider an N -port multi-winding transformer

based on a series magnetic structure and characterized by the
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TABLE V
ADAPTATION CONDITIONS FOR THE DARLINGTON-D ADAPTOR

↵1 =
�
�2 (�3 + �4 + �5) + �3�4 (1� ⌘D1)

2 + �3�5 (1� ⌘D2)
2 + �4�5 (⌘D1 � ⌘D2)

2� /
�
�2 + �3 + �4⌘

2
D1 + �5⌘

2
D2
�

↵2 =
�
�1

�
�3 + �4⌘

2
D1 + �5⌘

2
D2
�
+ �3�4 (1� ⌘D1)

2 + �3�5 (1� ⌘D2)
2 + �4�5 (⌘D1 � ⌘D2)

2� / (�1 + �3 + �4 + �5)
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�
�1

�
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2
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D2
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2� /
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�1 + �2 + �4 (1� ⌘D1)
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2�

↵5 =
�
�1

�
�2 + �3 + �4⌘

2
D1
�
+ �2 (�3 + �4) + �3�4 (1� ⌘D1)

2� /
�
�1⌘

2
D2 + �2 + �3 (1� ⌘D2)

2 + �4 (⌘D1 � ⌘D2)
2�

�+ Vin

Rin

C1 C5

C2 C3
C4

L1 L2 L3 L4

L5

Rout+��
Brune1 Brune2 Darlington1P1

P2

S1I1

1

(a)

�+ Vin

Rin

C1 C5

C2 C3
C4

L1 L2 L3 L4

L5

Rout+��
Brune1 Brune2 Darlington1P1

P2

S1I1

1

(b)

Fig. 11. Fig. 11(a) and Fig. 11(b) show, respectively, a WDF implementation and a BWDF implementation of the same reference circuit in Fig. 10.

F matrix in eq. (16). Since q < p (q = 1 and p = N � 1),
using eq. (47) to derive S is computationally less expensive
than using eq. (49), as eq. (47) requires the inversion of a one-
dimensional linear system, instead of a (N � 1)-dimensional
one. For the same reason, the cheapest formulas for forming
the scattering matrices in BWDF implementations are (71)
and (78). Once the scattering matrices are formed, adaptation
conditions can be derived. A general formula, valid for each
type of waves, expressing the adaptation condition at the nth
port of the N -port WD junction is the following

↵n =
�2
nP

k 6=n �
2
k/�k

(94)

where �k is the kth number of turns as defined in Subsec-
tion II-B. It can be verified that, when BWDFs based on the
wave definition (75) are used (e.g., (78) is employed), and all
N adaptation conditions (94) are set, the entry si,j✓ at the ith
row and jth column of the scattering matrix S✓ is simply

si,j✓ =

(
1 , if i 6= j

0 , if i = j .
(95)

It is worth noticing that, using BWDFs based on wave
definition (75), a scattering matrix S✓ of a multi-winding
transformer with series structure and all adapted ports is
equivalent to the scattering matrix of a parallel adaptor with
all adapted ports [23].

We then consider the dual case of an N -port multi-winding
transformer based on a parallel magnetic structure and char-
acterized by the F matrix in eq. (19). Since p < q, being
p = 1 and q = N � 1, the cheapest formulas for forming
the scattering matrices in traditional WDFs and BWDFs are
(49), (72) and (79). A general formula, valid for each kind of

waves, expressing the adaptation condition at the nth port of
the N -port WD junction is the following

↵n =
X

k 6=n

�2
n�k/�

2
k . (96)

It can be verified that, when BWDFs based on wave definition
(50) are used (e.g., (72) is employed), and all N adaptation
conditions (96) are set, the entry si,j' at the ith row and jth
column of the scattering matrix S' is simply given by

si,j' =

(
�1 , if i 6= j

0 , if i = j .
(97)

It is worth noticing that, using BWDFs based on wave
definition (50), the scattering matrix S' of a multi-winding
transformer with parallel structure and all adapted ports is
equivalent to the scattering matrix of a series adaptor with
all adapted ports [23].

As an example of application, we provide a WD imple-
mentation of the T-model of a real 3-winding transformer
in Fig. 12. The T-model is composed of an ideal 3-winding
transformer characterized by a series magnetic structure and
four inductors. The presented T-model has been used for the
emulation of real 3-winding transformers in power electronics
systems [36], [37]. However, it could be employed also for
modeling multi-winding transformers in audio circuits [38],
properly adjusting the values of self and mutual inductances.

We set the following values of self inductances and mutual
inductances provided in [36]; L11 = 44.35 H, L22 = 44.685
H, L33 = 11.267 H, M12 = 42.66 H, M13 = 21.301 H
and M23 = 22.261 H. Inductances of T-model are given
by M0 = (M12M13) /M23, Ll0 = L11 � M0, LlA =
L22 � (M12M23) /M13 and LlB = L33 � (M13M23) /M12.
The ideal 3-winding transformer is characterized by the turns
ratios ⌘A = M23/M13, ⌘B = M23/M12, being �1 = 1,
�2 = ⌘A and �3 = ⌘B the numbers of turns. Let us assume
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that a voltage source Vin is connected to the left input port
of the T-model. Moreover, two resistors RoutA = 100 ⌦ and
RoutB = 100 ⌦ are connected to the upper-right and lower-
right ports of the T-model, respectively. Possible WDF and
BWDF implementations of the resulting circuit are shown in
Fig. 13(a) and Fig. 13(b), respectively. The WD inverters I1,
I2 and I3 make it so that the port polarities match [12], [34],
[35]. In order to measure the impulse responses of the derived
digital filters, the input voltage source Vin is driven by an
unitary impulse and the voltage across the resistor RoutA is
taken as an output signal. Fig. 9(b) and Fig. 9(e) show how
the magnitude and phase responses by LTspice, WDF and
BWDF implementations are close to each other. The sampling
frequency used in the WD implementations is Fs = 48 kHz.

Ll0

M0

LlA

LlB

1 : ⌘A

1 : ⌘B

i1

+
v1
�

i2

+
v2

�

i3

+
v3

�

1

Fig. 12. T-model of a real 3-winding transformer characterized by series
structure with turn ratios ⌘A and ⌘B.

VI. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

In this manuscript, we derived closed-form expressions
for scattering matrices describing arbitrary reciprocal WD
junctions, based on generalized definitions of wave signals.
In order to perform a computational cost analysis of such WD
junctions, at least two aspects need to be taken into account.
The first aspect is the size of the matrix to be inverted in
order to form the scattering matrix; the second aspect is the
cost of scattering, i.e., computation of the reflected waves
given the incident waves, in multiplies. A comparison between
the method proposed in this article and the state-of-the-art
MNA-based method presented in [7], in terms of these two
aspects, is shown in Table VI, where N � 2 is the number
of ports of the general reciprocal connection network, K > 1
is the number of nodes, q is the number of independent port
voltages, p is the number of independent port currents and
t⌘ � 0 is the total number of turns ratios in case ideal
transformers are embedded in the junction. Trivially, the worst
possible cost of scattering in multiplies is N2. In addition
to the general case, all the examples of connection networks
discussed in this paper are considered. Table VI shows that
the computational efficiency of the proposed method generally
surpasses or at least matches that of the method in [7], both
when the sizes of matrices to be inverted and the cost of
scattering are considered. It is important to say that, according
to traditional WDF theory [2], purely series and parallel N -
ports can always be implemented in the WD domain as inter-
connections of 3-port series or parallel adaptors, respectively,
reducing the computational cost. However, one might prefer
to use N -port series or parallel junctions in some situations,

especially dealing with circuits with multiple nonlinearities
[14]. Moreover, studying the computational cost of pure series
or parallel junctions allows us to estimate the implementation
cost of large reciprocal “series-like” (p ⌧ q) or “parallel-like”
(q ⌧ p) N -ports, for which the WD implementation method
proposed in this article is always the best solution. Similar
considerations hold true for reciprocal junctions embedding
ideal transformers, in which the number of nodes K tends to
be comparable to or larger than N ; also in these cases, the
proposed method allows to save computations with respect to
the MNA-based method, as confirmed by Table VI.

As far as the implementation of arbitrary reciprocal junc-
tions in BWDFs is concerned, a comparison with the state-of-
the-art cannot be performed, as no alternative method exists
in the literature. However, their computational cost is similar
to that shown in Table VI for ⇢ 6= 1 ^ ⇢ 6= 0.

It is also worth mentioning that the expressions of the
scattering matrices introduced in this article enable the de-
velopment of new techniques for efficiently computing waves
reflected from the WD junction, without having to actually
construct the scattering matrix. A preliminary example of
such techniques for regular voltage waves [14] involves the
Cholesky factorization and is particularly useful for imple-
menting large circuits. In fact, the possibility of updating
WD junctions in an efficient fashion, along with an expanded
applicability to all kinds of waves, paves the way to effi-
ciently implementing nonlinear [8], [39]–[44] and/or time-
varying networks in which port resistances (free parameters)
are frequently changed [14], [15], [45]–[47]. Moreover, the
properties of the derived scattering matrices both in traditional
WDFs and BWDFs should be further investigated in order to
search for extensions of the theorem, proven in [14], granting
convergence of the Scattering Iterative Method, applied for
solving nonlinear circuits [14], [15].
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Fig. 13. Fig. 13(a) shows a WDF implementation of the T-model in Fig. 12 with a connected ideal voltage source and two resistors. Fig. 13(b) shows a
BWDF implementation of the same circuit.

TABLE VI
COMPUTATIONAL COST OF RECIPROCAL WD JUNCTIONS. COMPARISON BETWEEN PROPOSED APPROACH AND MNA-BASED APPROACH: MINIMUM

SIZE OF MATRIX TO BE INVERTED AND MINIMUM COST OF SCATTERING IN MULTIPLIES ARE HIGHLIGHTED FOR EACH WAVE TYPE.

Size of Matrix to be Inverted Cost of Scattering in Multiplies

8⇢ ⇢ 6= 1 ^ ⇢ 6= 0 ⇢ = 1 _ ⇢ = 0
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[47] Ó. Bogason and K. J. Werner, “Modeling time-varying reactances using
wave digital filters,” in Proc. 21st Int. Conf. Digital Audio Effects (DAFx-
18), Aveiro, Portugal, Sept. 2018.

Alberto Bernardini (S’16) received the B.S. degree
in computer engineering from the University of
Bologna, Italy, in 2012, and the M.S. degree (cum
laude) in computer engineering from the Politecnico
di Milano, Italy, in 2015, where he is currently pur-
suing the Ph.D. degree in information engineering
with the Dipartimento di Elettronica, Informazione
and Bioingegneria. His main research interests are
audio signal processing and modeling of nonlinear
systems.

Kurt James Werner (S’14–M’17) received the B.S.
degree in general engineering (with a secondary
field in acoustics) and the B.Music degree in theory
and composition from the University of Illinois at
UrbanaChampaign, in 2011, and the Ph.D. degree in
computer-based music theory and acoustics from the
Center for Computer Research in Music and Acous-
tics, Stanford University, in 2017. He is currently
a Lecturer in audio with the Sonic Arts Research
Centre, Queens University Belfast, where he joined
the Faculty of Arts, Humanities and Social Sciences

and the School of Arts, English and Languages in 2017. His research focuses
on theoretical aspects of wave digital filters, virtual analog modeling, computer
modeling of circuit-bent instruments, sound synthesis, and the history of
music technology. He is a member of the Audio Engineering Society and
the International Computer Music Association. He was a recipient of the Best
Student Paper Award from the IEEE WASPAA (2015) and (as second author)
AES (2017). As a co-author, he received the Best Paper no. 3 (DAFx, 2016)
and a Best Paper Honorable Mention (DAFx, 2015).

Julius Orion Smith III (M’76) received the
B.S.E.E. degree in control, circuits, and communi-
cation from Rice University, Houston, TX, USA, in
1975, and the M.S. and Ph.D. degrees in electrical
engineering from Stanford University, Stanford, CA,
USA, in 1978 and 1983, respectively. His Ph.D.
research was devoted to improved methods for dig-
ital filter design and system identification applied
to music and audio systems. From 1975 to 1977,
he was with the Signal Processing Department,
ESL, Sunnyvale, CA, USA, on systems for digital

communications. From 1982 to 1986, he was with the Adaptive Systems
Department, Systems Control Technology, Palo Alto, CA, USA, where he was
involved in the areas of adaptive filtering and spectral estimation. From 1986
to 1991, he was employed at NeXT Computer, Inc., responsible for sound,
music, and signal processing software for the NeXT computer workstation.
After NeXT, he became an Associate Professor with the Center for Computer
Research in Music and Acoustics, Stanford University, teaching courses and
pursuing research related to signal processing techniques applied to music
and audio systems. Continuing this work, he is currently a Professor of music
and (by courtesy) electrical engineering with Stanford University. For more
information, see http://ccrma.stanford.edu/jos/.

Augusto Sarti (M’04–SM’13) received the M.S.
and Ph.D. degrees in electronics and information
engineering from the University of Padua, Italy, in
1988 and 1993, respectively. In 1993, he joined the
Faculty of the Politecnico di Milano, Italy, where he
is currently a Full Professor. In 2013, he also joined
the University of California, Davis. His research
interests are in the area of multimedia signal pro-
cessing, with a particular focus on sound analysis,
synthesis and processing, computational acoustics,
and music processing. He has co-authored over 250

scientific publications on international journals and congresses and holds
numerous patents in the multimedia signal processing area. He coordinates the
activities of the Musical Acoustics Lab and the Sound and Music Computing
Lab of the Politecnico di Milano. He has been the promoter/coordinator and/or
contributor to numerous (20+) European projects. He is an active member of
the IEEE Technical Committee on Audio and Acoustics Signal Processing.
He is on the Editorial Board of the IEEE.

View publication stats

https://www.researchgate.net/publication/327897240

	Introduction
	Reciprocal Connection Networks
	Connection Networks based on ``Wire Interconnections"
	Series Topology
	Parallel Topology
	Bridged-T Topology
	Twin-T Topology

	Connection Networks embedding Reciprocal Multi-ports
	Brune Section
	Darlington-D Section
	Ideal Multi-winding Transformer with Series Structure
	Ideal Multi-winding Transformer with Parallel Structure


	Reciprocal Junctions in Generalized WDFs
	Generalized Definition of Wave Signals
	Scattering Matrix Properties
	Losslessness
	Self-inverse property
	Reciprocity
	Power-normalized case

	Scattering Matrix Derivation

	Reciprocal Junctions in Biparametric WDFs
	Biparametric Definition of Waves
	Dual Biparametric Definition of Waves
	Properties of Scattering Matrices
	Losslessness
	Reciprocity
	Power-normalized waves


	Design of Generalized WDF Adaptors and Examples of Application
	Bridged-T and Twin-T Adaptors
	Brune and Darlington-D Adaptors
	Wave Digital Multi-winding Ideal Transformers

	Discussion, Conclusions, and Future Work
	References
	Biographies
	Alberto Bernardini
	Kurt James Werner
	Julius Orion Smith III
	Augusto Sarti


