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Abstract— The paper deals with the design of a Suboptimal
Second-Order Sliding Mode (SSOSM) control algorithm for
local ramp metering of freeway systems. Indeed, sliding mode
control is well-known for its robustness in front of uncertain
terms and it perfectly fits to solve the control problem in case
of traffic systems. Moreover, the proposed control law is able to
steer the so-called sliding variable, chosen as the error between
the density of the cell in the vicinity of the ramp and its
reference value, to zero in a finite time. The traffic flow is
modeled by means of the macroscopic second-order METANET
model and the approach is finally assessed in simulation with
satisfactory results.

I. INTRODUCTION

Nowadays congestion on freeways is a major problem
that strongly affects efficiency of the system and also has a
great socio-economical impact. The development of efficient
freeway traffic control and management tools is absolutely
important in order to reduce travel times, fuel consumption
and pollutants emissions. Highways were originally designed
to have a sufficient capacity for virtually unlimited mobility,
but, with the increasing number of traveling vehicles, recurrent
and non-recurrent congestion has started to strongly degrade
the system. Ramp metering is a well-known traffic control
method that regulates the number of vehicles that can
access the mainstream from an on-ramp, depending on the
current traffic situation [1]. Its implementation is usually
accomplished by traffic lights, either by allowing the entrance
of one car at a time (control via red phase duration), or via
traffic cycles. Ramp metering has proved to be really effective
for congestion dissipation since it directly affects the density
of the highway and it can be either local or coordinated.
The local one is implemented in the vicinity of each ramp
considering only the local value of the density, while the
coordinated ramp-metering controller collects the values of
all the densities and decides the control input for each ramp.
One of the first simple ramp metering strategy is the well-
known ALINEA [2], a simple local feedback control structure
that has been successfully applied worldwide, and for which
several field results are also available [3]. ALINEA was then
extended by assuming a proportional integral version called PI-
ALINEA [4] that has shown better performances in the case
of a bottleneck located downstream of the metered on-ramp.
Besides these simple control structures, more sophisticated
control approaches for ramp metering have successfully been
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studied, often based on optimal control approaches [5]. For
example, in [6] the problem of coordinated ramp metering is
formulated as a constrained discrete-time nonlinear optimal
control problem. A distributed model predictive control (MPC)
scheme for freeway systems has been considered in [7]. The
drawback of optimal control approaches is the computational
burden that derives from the solution of large and often
nonlinear optimization problems. In order to reduce the
computational effort of the standard MPC that computes
the control law at each time step, an event-triggered MPC
scheme is proposed in [8], where the control law is updated
only when a given set of conditions is verified. In [9] a
first-order model is formulated in a switched version and a
switched controller is applied where different control laws
are adopted depending on the current mode of the system.

Motivated by the uncertain nature of the system at hand
and by the necessity to adopt a computationally light easy-
to-implement solution, in this paper we propose a sliding
mode control approach to solve the ramp metering problem.
Sliding Mode Control (SMC) [10]–[12] is well-known to be
a robust control approach that deals well with systems with
uncertainties, as the traffic system is. SMC is based on the
idea to have a variable structure controller depending on the
changing state of the system. In the literature, there are few
examples in which SMC has been applied to the context of
traffic control with ramp-metering. In [13], for instance, a first-
order traffic model is adopted for a stretch of highway with
several on-ramps and a so-called drift algorithm is applied
for the sliding mode control. In this case, a coordinated
Multi-Input Multi-Output (MIMO) sliding mode controller is
applied, using both a first-order and a second-order algorithm.
In [14] differential flatness is combined with a first-order
SMC in order to keep the density close to its prescribed
value by modeling the traffic with the well known first-
order Lighthill-Whitham-Richards (LWR) model [15] [16],
without taking into consideration the queue length dynamics.
The same approach has then be extended by applying a
Super-Twisting sliding mode approach in [17]. In the present
paper we introduce a Suboptimal Second-Order Sliding Mode
(SSOSM) control [18] to ramp metering in order to minimize
the error between a chosen reference value, i.e., the critical
density, and the value of the density in the vicinity of the on-
ramps. In this way congestion gets reduced and the throughput
is increased, with benefit for the travel time of drivers.

In the following, Section II introduces the main notation
used in the paper and recalls some preliminary issues on
second-order sliding modes. In Section III the adopted macro-
scopic METANET model is introduced and ramp metering
problem is formulated. In Section IV the proposed SSOSM



algorithm is described together with two modifications in
order to improve its performance. Simulation results are
illustrated in Section V, while some conclusions are gathered
in Section VI.

II. PRELIMINARIES

In this section, some preliminary elements will be intro-
duced: the main notation used in the paper is reported, and
basics of sliding mode control are recalled.

A. Notation

The notation used in the paper is mostly standard. Let R
denote the set of real numbers, while N is the set of natural
numbers. Given a vector x, then xi are its entries and x> is
the transpose. Let x[j] be the vector associated to the index j.
Given a scalar function s(x) : S → R, then sgn(s) = 1 if
s > 0, sgn(s) ∈ [−1, 1] if s = 0 and sgn(s) = −1 if s < 0.

B. Second-order sliding mode control

In order to formulate the control problem at hand, it is
convenient to make reference to a canonical form frequently
used in the development of sliding mode control laws.
Consider a Single-Input-Single-Output (SISO) system affine
in the control variable as follows{

ẋ(t) = f(x(t)) + b(x(t))u(t)

y(t) = σ1(x(t))
(1)

where x ∈ X (X ⊂ Rn bounded) is the state vector, with
initial conditions x(t0) = x0, t0 being the initial time
instant and u ∈ U ⊂ R is the control input such that
U := [−α, α] with α > 0, while f(x(t)) : X → Rn and
b(x(t)) : X → Rn are uncertain functions of class C1(X ).
The output function σ1(x) : X → R is of class C2(X ). The
latter will play the role of the so-called “sliding variable”.
Furthermore, the following assumptions hold.

Assumption 1: If u(t) in (1) is designed so that, in a finite
time tr (the so-called “reaching time”), σ(x(tr)) = 0 ∀x0 ∈
X and σ(x(t)) = 0 ∀ t > tr, then ∀ t ≥ tr, there exists a
point x̄ such that it is an asymptotically stable equilibrium
point of (1) constrained to σ(x(t)) = 0. �

Assumption 2: System (1) has an uniform and time invari-
ant relative degree equal to 1. �

The control law can be designed either as a discontinuous
control law, or as the output of an integrator having in input
the discontinuous signal, i.e., w(t) = u̇(t). This second
strategy is recognized as Higher-Order Sliding Mode (HOSM),
typically aimed at chattering reduction. Having in mind
to design a Second-Order Sliding Mode (SOSM) control,
letting σ = [σ1, σ̇1]> = [σ1, σ2]> be the vector of the
sliding variable and its time derivative, the relative degree of
system (1) is artificially increased to 2 [19]. Given the system
dynamics (1), the so-called “auxiliary system” is written as

σ̇1 = σ2

σ̇2 = h(σ) + g(σ)w

w = u̇

σ1(t0) = σ10

(2)

Assumption 3: The continuous functions h(·), g(·) are
such that

∃ β > 0 : |h(σ)| ≤ β (3)
∃ ε > 0 : g(σ) ≤ ε (4)
∃ γ > 0 : g(σ) ≥ γ , (5)

with β, γ and ε being known positive constants. �
This assumption means that the uncertainties affecting the
systems are bounded. In our case study it is reasonable due
to the nature of the involved variables. Relying on (2)-(5),
we are now in a position to formulate the control problem.

Control Problem 1: Design a feedback control law Ψ as

u(t) = Ψ(σ1, σ2)

such that u ∈ U and ∀x0 ∈ X , ∃ tr > 0 : σ1(x(t)) = 0,
∀ t ≥ tr, in spite of the uncertainties. �

III. PROBLEM SETTING

In this work we study the ramp metering problem in
freeway systems, where the aim is to regulate the on-ramp
flow by using traffic lights in order to make the traffic density
at the mainsteram segment as close as possible (ideally equal)
to a critical density denoted as ρcr. The model adopted to
describe the highway system is a continuous version of the
macroscopic second-order METANET model [20]. In the
following the adopted model and the ramp metering principle
will be discussed in detail.

A. Freeway model

We consider a stretch of freeway divided in N cells of
equal length Li, i = 1, . . . , N . For each section i, a sketch
of which is reported in Figure 1, the following variables
are defined: vehicle (veh) density (ρi, veh km−1 lane−1),
mean speed of the traffic flow (vi, km h−1) and the traffic
flow (qi, veh h−1). Furthermore, having in mind to apply a
sliding mode control, typically designed in the continuous
time framework, a continuous version of the METANET
model is hereafter adopted.

1) Conservation law: The dynamics of the system is
captured by the conservation law, given by the following
differential equation

d
dtρi(t) = mmi(t) =

1

Liλi
(qi−1(t)− qi(t) + qri(t)) (6)

Li

qi−1 qi

dri

qri

ρi

Fig. 1. Freeway segment



where mmi denotes the density change rate, λi ∈ N is the
number of lanes, while qri is the metered on-ramp flow.

2) Velocity model: The dynamics of the mean speed of
the traffic flow in the ith cell is given by

d
dtvi(t) = ai(t) =

1

τ
(V (ρi(t)− vi(t)) +

+
1

Li
vi(t) (vi−1(t)− vi(t)) +

− ν

τLi

ρi+1(t)− ρi(t)
ρi(t) + κ

− δ

Liλi

qrivi(t)

ρi(t) + κ
(7)

where ai denotes the acceleration, τ is the time constant, ν
is the anticipation constant, δ is on-ramp constant and κ is
a correction factor expressed in vehicles per kilometer per
lane. Moreover, the steady-state speed V (ρi(t)) is expressed
as a function of the free-flow speed vf , and of the critical
density ρcr, i.e.,

V (ρi(t)) = vf exp

(
−1

p

(
ρi(t)

ρcr

)p)
(8)

where p is an empirical correction factor to take into account
the maximum flow, given the features of the considered cell.

3) Ramp model: For each metered ramp, let ωrj , j ∈ N,
be the number of vehicles in queue on the jth ramp. Note
that when the jth ramp corresponds to the ith cell, then i = j.
Then, the queue model is given by

d
dtωrj(t) = mrj(t) = drj(t)− qrj(t) (9)

where drj is the traffic demand at the on-ramp origin. The
output of the ramp depends on the traffic flow on the main
segment and on the flow rate input rj(t) ∈ [rmin, 1], where
rj = 1 is the case when the on-ramp is unmetered and
rmin ≥ 0. More specifically, one has that

qrj(t) = rj(t)q̂rj(t) (10)

where q̂rj(t) = min {q̂1rj ; q̂2rj} and

q̂1rj =drj(t) +
ωrj(t)

T
(11)

q̂2rj =Qsat min

{
1 ;
ρmax − ρj(t)
ρmax − ρcr

}
(12)

with T being a sampling time, Qsat being the on-ramp
capacity under free-flow conditions and ρmax being the
maximum density of the mainstream segment.

B. The ramp metering problem

We define the following traffic control problem

min
ri, i=j

∫ tf

t0

 N∑
i=1

ρi Li λi +

M∑
j=1

ωrj

 dt

s.t. d
dtρi = mmi

d
dtvi = ai

d
dtωrj = mrj

ρi ≤ ρmax rj ∈ [rmin, 1],

(TfcCP)

with M being the number of ramps. More specifically, the
control objective is to minimize the so-called Total Time Spent

(TTS, veh h), which is the sum of the Total Travel Time
(TTT, veh h), that is the total time spent by the drivers in the
mainstream, and of the Total Waiting Time (TWT, veh h), that
is the waiting time of the drivers on the ramps. Furthermore,
the minimization problem is subject to previously described
dynamics, to the maximum density of the cell and to input
constraints. Since it is possible to show that the solution
to (TfcCP) implies the critical density, the previous control
problem is reformulated as a ramp metering problem of
regulating the on-ramp flow via traffic lights in order to track
the reference traffic density, equal to the critical one, at the
mainstream segment, that is

ρi(t) = ρcr, ∀ t ≥ t0, ∀ i ∈ N , (RMtrCP)

with the metered on-ramp flow such that ri ∈ [rmin, 1].

IV. THE PROPOSED SLIDING MODE BASED RAMP
METERING ALGORITHM

In this section the previous ramp metering problem
(RMtrCP) is recast according to the SOSM control formu-
lation introduced in Section II-B. Therefore, starting from
the freeway cell dynamics (6) and (7), the sliding variable,
according to Assumption 1, is chosen as the error

σ1i = ρcr − ρi , (13)

while x[i] = [ρi, vi, ωri]
> and ui = ri, with U := [rmin, 1],

in order to fit system (1). Moreover, by virtue of the choice
of the sliding variable, it is possible to write the auxiliary
system as in (2), while Assumptions 2 and 3 hold due to the
physical nature of the system at hand. Thus, we are now able
to solve Control Problem 1, by using a second order sliding
mode control law.

A. The classical SSOSM control algorithm

A particular case of SOSM approach is the SSOSM
control [19]. Starting from the Bang-Bang principle [21],
if bounded uncertain terms are present, with bound as in (3)–
(5), it is possible to generate a “suboptimal” state trajectory
with respect to that obtained with the Bang-Bang minimum
time optimal control law. Specifically, computing the local
minimum or maximum of the sliding variable, referred to
as σ1imax, instead of its first time derivative, the SSOSM
control law can be defined as

wi(t) = −ηi · αi sgn

(
σ1i(t)−

1

2
σ1imax(t)

)
(14)

where ẇi = ri in our case, while ηi = η∗ and αi are chosen
such that

αi > max

(
βi
η∗γi

,
4βi

3γi − η∗εi

)
(15)

η∗ ∈ (0, 1] ∩
(

0,
3γi
εi

)
. (16)

As for the stability analysis, according to [19], one can prove
that, under sufficient conditions (15) and (16), the control law
(14) implies a contraction property of the extremal values of
the sliding variable in time, so that the sliding variable and
its first time derivative are steered to zero in a finite time tr.
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Fig. 2. Sketch of the considered highway portion

B. Extension to the classical SSOSM control

In our proposed solution we improve the SSOSM control
performance through two modifications. A saturation strategy
is introduced to take into account the limit of the on-ramp
flow ri, and a supervision mechanism is introduced in order
to avoid to block the ramp flow for a long interval of time
and to periodically guarantee the access to the mainstream
segment.

1) Saturation of the control law: Since the ramp signal ri
is constrained to assume values between rmin and 1, while
αi has to be set according (15), it is needed to modify the
proposed control (14) in order to take into account these
bounds. Inspired by [18], the SSOSM control law is modified
adding an additional law depending on the sign of the input
signal ri(t). More specifically, the control law (14) becomes

wi(t) ={
−ηi · αi sgn (σ1i(t)− µσ1imax(t)) rmin < ri(t) < 1

−αi sgn (ri(t)) otherwise ,
(17)

where µ ∈
[
1
2 , µ̄

]
and µ̄(t) = σ1i(t)

σ1imax(t)
, ∀ t ∈ T := {tk},

k ∈ N and T being the sequence of the time instants tk when
the control law switches.

2) Ramp supervision: As is evident in the ramp model,
a sampling time T related to the traffic lights is needed in
the definition of the ramp metering algorithm. Since this
value can sensibly affect the performance of the controller, a
supervision mechanism is introduced as follows: if the flow
rate input ri(t) = rmin for a time interval greater than cT ,
c ∈ N, then set ri > rmin; if instead ri(t) = 1 for less than
cT
2 , maintain ri = 1 up to cT

2 . This mechanism has the aim
to avoid the generation of long queues on the ramps, thus
avoiding too high waiting time on the ramps.

V. CASE STUDY

The proposed control scheme has been assessed in sim-
ulation, modeling a stretch of freeway by means of the
METANET model. To this aim we have considered a stretch
of highway of N = 7 cells with M = 3 ramps located in
the first, third and sixth cell (j ∈ {1, 3, 6}). The sketch
of the highway is depicted in Figure 2. The inflow to the
highway, i.e., the demand coming from cell i = 0 and from
the on-ramps, is assumed to have a trapezoidal shape and it
is reported in Figure 3. The parameters used for the model
in the simulations are reported in Table I, following the case

Fig. 3. Inflow to the highway

TABLE I
SIMULATION PARAMETERS

N 7
M 3
tf 5h
ρcr 33.5 vehkm−1lane−1

ρmax 180 vehkm−1lane−1

vf 102 kmh−1

p 1.867
τ 0.005h
T 0.0028h
ν 60 kmh−2

κ 40 vehkm−1lane−1

δ 0.0122
Li 1 km
λi 2 lane

αi 10
ηi 0.9
c 4

rmin 0

study in [17]. Figure 4 depicts the trend of the density along
the highway when the ramp metering control is not applied.
At the beginning of the simulation, the demand of the on-
ramp of the cell 6 shows a peak. Furthermore, the sum of
the ramp demand and the mainstream inflow overcomes the
highway capacity value and this causes a congestion that
starting from cell 6 propagates for several cells upstream.
The same happens around the first hour of simulation when a
peak of demand appears at ramp 3 and again at 2 hours of the



TABLE II
PERFORMANCE INDEXES

Strategy TTT TWT TTS RMSE

Unmetered 1769 311 2080 26.33
ALINEA 1689 337.9 2027 20.99
FOSM 1690 323.5 2014 20.94

SSOSM 1453 396 1849 18.02

simulation when a severe congestion is caused by the peak
of demand coming from the first ramp. In the uncontrolled
scenario, the access from the on-ramps is not regulated, so
all the incoming vehicles can enter the highway and there is
not queue forming at the ramps. Consider now the SSOSM
control action introduced in Section IV for which the critical
density, i.e., the value for which the traffic throughput is
maximum, has been chosen as reference value. The trend of
the density in this controlled case is reported in Figure 5.
It is possible to notice that by applying the ramp metering
control, congestion in the mainstream is completely avoided.
The control variables r1, r3 and r6 of the three controlled
ramps are reported in Figure 6. As remarked in Section III,
the control variable ri is the metering rate, that represents
the portion of incoming flow that can access the highway
from the on-ramp. The first control that is activated is the
one of ramp 6. According to its demand, depicted in Figure
3, a peak at the beginning of the simulation can be noticed.
In this case the controller strongly reduces the input variable
for the whole duration of the demand peak, so that metering
rate takes value rmin, i.e., ramp closed, for around an hour,
but without undesired effect since the demand of the ramps
is zero. The same scenario happens for the other two ramps
when their demands increase causing a congestion. The trend
of the sliding variables is instead reported in Figure 7. As it
can be observed, the control successfully steers the error to
zero when the demand coming from the on-ramp is high, thus
making the density be practically equal to its set-point value.
When there is not enough demand to get the density stay
close to the critical one, the error becomes high but negative.
As highlighted before, this behavior does not represent a
problem in the traffic control since the traffic is in free-flow
condition.

The drawback that occurs by controlling the on-ramps
inflows is obviously the formation of queues at the ramps.
Their trends are depicted in Figure 8. The control effectiveness
is evaluated considering the value assumed by the TTS, that
is the time spent by all the drivers on the highway both in
the mainstream and waiting at the queue, as remarked in
Section III-B. Finally, in order to quantitatively verify the
performance of the proposal, the SSOSM control algorithm
presented in the present paper has been compared with a
First-Order Sliding Mode (FOSM) control algorithm, with
the ALINEA strategy and with the unmetered case. The
achieved results are reported in Table II, in terms of TTT,
TWT, TTS and Root Mean Square Error (RMSE) of the
density. The TTS shows a 11.1% reduction by applying the
proposed SSOSM with respect to the unmetered case, given

Fig. 4. Density trend in the uncontrolled case

Fig. 5. Density trend in the controlled case

Fig. 6. Controlled metering rate for the three ramps



Fig. 7. Trend of the sliding variables

Fig. 8. Queue length at the ramps

by an increase of the TWT due to the ramps closure and a
strong reduction of the TTT. The latter results outperform the
improvements that are achieved via ALINEA strategy. The
FOSM algorithm succeeds as well in reducing the TTS with
respect to the unmetered case (3.2%) but its performance
is lower than the proposed SSOSM. Moreover, the latter
outperforms all the other strategies in terms of RMSE.

VI. CONCLUSIONS

In this paper a Suboptimal Second-Order Sliding Mode
(SSOSM) control has been proposed to solve a ramp metering
problem in freeway systems. After the introduction of the
system according to the so-called METANET model, it
has been recast to fit into the typical class of systems of
sliding mode control theory. The SSOSM controller has been
designed taking into account all the requirements in terms of
input constraints on the on-ramp flow rate and in terms of
sampling time of the traffic lights. Therefore, a saturated and
supervised SSOSM algorithm has been finally designed and
assessed in simulation on a quite realistic case study, even
in comparison with a first-order sliding mode control, with
ALINEA strategy and with the unmetered case, achieving
satisfactory results. Future works will be devoted to further

investigate the robustness features of the proposal in front of
additional uncertainties and delays affecting the system.
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