
Fault Diagnosis for Robot Manipulators via Vision Servoing Based
Suboptimal Second Order Sliding Mode

Gian Paolo Incremona1 and Antonella Ferrara2

Abstract— This paper deals with the formulation of a fault
diagnosis strategy for industrial robotic manipulators. The core
of the proposed scheme is the inverse dynamics-based feedback
linearized robotic MIMO system, that is a set of linearized
decoupled SISO systems affected by uncertain terms. Relying
on this set of systems, in the paper the problem of detecting
and isolating both sensor and actuator faults is considered. The
proposed fault diagnosis strategy consists of a vision based logic,
to detect possible malfunctions of the sensors of the robot, and
a set of Unknown Input Observers (UIOs) of second order
sliding mode type, to perform the Fault Detection and Isolation
(FDI) on the actuators. The sliding mode approach provides
good performance in terms of stability and robustness, while
guaranteeing a satisfactory estimate of the faults. To give the
possibility to the fault diagnosis system to distinguish between
sensor and actuator faults, a vision sensor is used in the scheme.
This sensor also allows to design a fault tolerant control strategy
in case of sensor faults. The verification and the validation of
the present proposal have been carried out, both in simulation
and experimentally, on an industrial robotic manipulator.

I. INTRODUCTION

In the last decades, there has been a growing interest in
methods to detect the occurrence of faults/corruptions in
mechanical or electromechanical systems (see, for instance,
[1], [2]), and to perform a complete diagnosis of the faulty
system. Fault diagnosis, apart from the “detection”, which is
the capability to reveal the presence of a fault in the system,
consists of the so-called “isolation” (the possibility to isolate
the faulty component), and of fault “identification”, i.e., the
reconstruction of the time evolution of the detected fault. The
design of an efficient and reliable fault diagnosis strategy
can significantly reduce the damage risk, decreasing, as a
consequence, the system maintenance costs, while increasing
industrial production throughput and operation security [3].

In the scientific literature, the fault diagnosis problem
has been faced from a theoretical viewpoint. It has been
widely investigated in case of linear, nonlinear and coupled
systems. The proposed methods can be classified in “active”
or “passive” techniques. The active approach is based on
the injection of signals into the system to improve the
detectability of the faults (see, among others, [4]–[6]), that is
to make abnormal behaviors, which otherwise could remain
undetected, more evident. The passive approach is instead
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based on the comparison between the actual process input-
output measurements and the corresponding signals produced,
under the assumption of fault absence, by a nominal model
of the process, or available under the form of historical data
[3], [7].

In most cases, in fault diagnosis literature, the coupling
effects in the system are considered negligible, which is
generally false in robotics. For this reason, robot fault
diagnosis is a particularly difficult problem [8], [9]. In case
of robotic systems, the considered faults typically affect
the robot actuators and sensors. In field implementations,
faults can occur simultaneously on both types of devices.
Moreover, more than one fault at a time can perturb the
system operations. Yet, in most papers published up to now
about fault diagnosis in the robotic context, the assumption
that the faults (often assumed to be single faults) affect only
the actuators or only the sensors is normally introduced [10]–
[13]. Indeed, the difficulty in isolating the faults is due to
the relevant coupling effects among the robot joints. This
latter can make the occurrence of a fault on an actuator
indistinguishable from that of a fault on a sensor, and vice
versa.

A preliminary attempt to extend the capability of a fault
diagnosis system for robot manipulators to more complex
(and realistic) fault scenarios has been made in [14]. The
key idea, in that paper, was the use of vision. Yet, the fault
diagnosis was still complicated by the nonlinear couplings
among the different degrees of mobility of the robot arm. In
the present paper, we have elaborated the idea and made it
effective by first solving the problem of the rejection of the
coupling effects, by relying on an inverse dynamics control
approach [15]. The internal control loop transforms the MIMO
nonlinear and coupled robotic system into a set of linear
decoupled systems affected by bounded uncertainty terms to
account for the non idealities in the feedback linearization.
The use of a low cost vision sensor (an IP camera in our
case) allows one to detect possible sensor faults. In case a
sensor fault is revealed, then the joint variables measurements,
determined through an appropriate image processing and the
application of the inverse kinematics of the robot, are used
to close the control feedback, enriching the scheme with
a sensor fault tolerant control feature. As for the actuator
faults, a number of unknown input observers equal to the
number of actuators are exploited to perform the complete
fault diagnosis. In this paper, to comply with robustness
and smoothness requirements, the second order sliding mode
methodology has been adopted to design such observers [16].
More specifically, observer input laws of Suboptimal Second



Order Sliding Mode (SSOSM) type [17] have been proposed.
Note that sliding mode and SSOSM approaches have already
been efficiently applied to solve motion and force control
problem in case of industrial robots [18]–[21].

Moreover, it is worth recalling that the use of sliding mode
theory to solve observation and fault detection problems has
already been investigated in the literature (see for instance,
[22]–[24], and the references therein cited), even in case of
robotic systems (e.g., [13], [25]). Yet, this paper differs from
previous proposals because of the joint use of the inverse
dynamics approach, of vision and of a battery of SSOSM
unknown input observers, which actually enables to solve the
fault diagnosis problem for robot manipulators even in case of
multiple faults occurring, at the same time, on both the robot
actuators and sensors. The proposed fault diagnosis scheme
has been assessed in simulation, as well as experimentally.

II. PRELIMINARIES ON VISION SERVOING SYSTEM

Some preliminary issues about vision based control (see
[15, Chapter 10]), also referred as to Vision Servoing
System (VSS), for a n-joints robot manipulator are hereafter
introduced.

A. Position reconstruction

Define the planes on which the light reflected by the object
is focused and where the photosensitive sensor lies as “image
planes”. The relationship between the homogeneous coordi-
nates of position, p̃ = [px, py, pz, 1]>, and the corresponding
pixel coordinates in the image plane (XI, YI) can be written
as λ [XI, YI, 1]> = ΩΠ p̃, where λ > 0, Ω ∈ R3×3 is a matrix
containing the intrinsic parameters depending on the sensor
and lens characteristics, while Π = [I3×3, 03×1] ∈ R3×4, with
I3×3 being the identity matrix and 03×1 being the null vector.
Assume to have two cameras (labeled as 1 and 2) with
known intrinsic parameters, and refer to the triangulation
method. It consists of computing the end-effector position
p = [px, py, pz]

> with respect to a base frame, starting from
normalized coordinates in the image planes s̃1 = [X1, Y1, 1]>

and s̃2 = [X2, Y2, 1]> of the projections of p, such that
λis̃i = Πp̃i, i = 1, 2, p̃i being the coordinates with respect to
the frame of the cameras. Assuming to have the vision base
frame on camera 1, the following system can be written as{

p̃1 = λ1s̃1

p̃1 = o1
1,2 +λ2R1

2s̃2 ,
(1)

where o1
1,2 is the position vector of the frame of camera 2 with

respect to the frame of camera 1, and R1
2 is the corresponding

rotation matrix. By solving system (1) with respect to p̃1,
and considering the homogeneous transformation matrix T b

1 ,
finally, one has the position of the end-effector with respect
to the base frame of the overall system assumed for instance
on the first joint of the robot, i.e., p̃ = T b

1 p̃1 .

B. Orientation reconstruction

It is also necessary to find in real-time the orientation of
the end-effector with respect to the base frame. This can be
done by determining the homogeneous transformation matrix

T b
e . Assuming to acquire the vector of the projection of N

points of the end-effector on the image plane of camera 1, the
ith component of which is s[i]1 = [X [i]

1 , Y [i]
1 ]>, then, by making

a simple change of reference frame, the coordinates of these
points can be written with respect to the reference frame of
the camera itself as

λ1s̃[i]1 = ΠT 1
e p̃e

[i], i = 1, . . . ,N . (2)

This is a set of N equations from which it is possible
to compute T 1

e . Then, solving system (2), the end-effector
position and orientation with respect to the base frame results
in being T b

e = T b
1 T 1

e . Hence, it is possible to obtain the robot
joint variables qv, by inverting the kinematics.

III. PROBLEM SETTINGS

In this section the considered robot model and type of
faults are described, and the problem to solve is formulated.

A. Robot modelling

Consider a robotic system with n-joints. Let `i, i= 1,2, . . .n
denote the length of the ith link, let q1 denote the orientation
of the first link with respect to y-axis clockwise positive,
and let q j, j = 2, 3, . . . n, denote the displacement of the jth
link with respect to the ( j−1)th one clockwise positive. Let
O(x, y, z) be the base-frame of the robotic manipulator, while
Oe(n, s, a) be the end-effector frame.

1) Kinematics: The direct kinematics of a n-joints manip-
ulator describes the relationship between the joint variables
q ∈ Rn and the end-effector position and orientation in the
workspace, according to the following expression{

p = p(q)
Rb

e = Rb
e(q)

(3)

where p = [px, py, pz]
> is the position of the end-effector

with respect to the base frame, and Rb
e is the rotation matrix

between the reference frame attached to the end-effector and
the base frame. In a more compact form, the direct kinematics
can be expressed in terms of the following homogeneous
transformation matrix

T b
e =

[
Rb

e p
0>1×3 1

]
. (4)

2) Dynamics: The dynamics of the robot can be described
in the joint space, by using the Lagrangian approach, as

B(q)q̈+n(q, q̇) = τ (5)
n(q, q̇) =C(q, q̇)q̇+Fvq̇+Fs sgn(q̇)+g(q) (6)

TABLE I
POSSIBLE SCENARIOS IN CASE OF FAULT EVENTS (FES)

FEs #SF = 1 #SF > 1 #AF = 1 #AF > 1

FE1 X
FE2 X
FE3 X
FE4 X
FE5 X X
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Fig. 1. The proposed fault diagnosis scheme for the considered COMAU
SMART3-S2 robot manipulator with camera Atlantis NetCamera 500

where B(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n

represents centripetal and Coriolis torques, Fv ∈ Rn×n is the
viscous friction matrix, Fs ∈Rn×n is the static friction matrix,
g(q) ∈ Rn is the vector of gravitational torques and τ ∈ Rn

represents the motors torques.

B. Faults modelling

In this paper, the number (#) and type of fault events (FEs)
which are taken into account are those indicated in Table I.
For the sake of simplicity and in a quite realistic way, it is
assumed that both sensor and actuator faults can be regarded
as additive terms affecting the joint variable q and the torque
vector τ , respectively.

Thus, let ∆τ ∈Rn and ∆q ∈Rn denote the generic actuator
fault (AF) and sensor fault (SF). In case of fault events
on both these components of the plant, the control system
receives q̄ = q+∆q as angular displacements of the joints,
while the actual torque applied to the robot can be expressed
as τ̄ = τ +∆τ . Hence, the dynamical model of the robot can
be written as

B(q̄) ¨̄q+n(q̄, ˙̄q) = τ̄ . (7)

IV. THE PROPOSED FAULT DIAGNOSIS SYSTEM

The proposed diagnosis scheme for robot manipulators is
that illustrated in Figure 1. The key element is the so-called
redundant sensor (in our case, it is a low cost IP camera). The
use of this sensor can appear to be trivial, but it is actually the
way to circumvent the difficulties in the detection of sensor
and actuator faults which can occur at the same time. The
redundant sensor allows one to detect and isolate faults on
the sensors. In addition, the measurements it provides can be
used, in case of sensor faults, to close the feedback, making
the adopted control approach fault tolerant. More specifically,
for the ith joint:

qci(t) =

{
qvi(t) #FEs 6= 0
qi(t) otherwise

(8)

where qci is the ith component of vector qc indicated in Figure
1, and qv is the actual position of the robot provided by the
IP camera. Since the feedback is closed using qc, one has
that, independently of the presence of sensor faults, the so-
called “inverse dynamics” control can be adopted to simplify
the MIMO nonlinear robotic system. This is transformed
into n perturbed double integrators, n being the number of
degrees of mobility of the robot. The feedback linearization

produced by the inverse dynamics control allows the designer
to independently consider each joint, which is an advantage
to perform the detection and isolation of the actuator faults.

A. Fault diagnosis logic for sensors

The vision block is assumed to provide the correct position
of the joints with a sampling time which can be longer than
that of the measurements provided by onboard sensors. For
the sake of generality, assume that τv is the vision-based data
sampling time, and that τs is the sensor (i.e., robot) sampling
time. Then, the following hold mechanism is introduced

qvi(t) = qvi(kτv), kτv ≤ t ≤ (k+1)τv
qsi(t) = qsi(kτs), kτs ≤ t ≤ (k+1)τs

, ∀k≥ 0 . (9)

The position retrieved from the acquired images is com-
pared with the actual robot position obtained from the
sensors. The resulting signals represent the estimate of the
displacement between the sensors output and the real position
of the robot, called

∆̂qi(t) = qsi(t)−qvi(t) . (10)

Let qsi denote the measurement of the position of the ith
joint obtained from the sensor, in order to detect the faults
on the sensors the following flag function is defined

fsi =

{
0 −Qsi

< ∆̂qi(t)≤ 0 ∨ 0 < ∆̂qi(t)≤ Qsi

1 otherwise
(11)

where Qsi
and Qsi are positive numbers indicating the lower

and the upper threshold values, respectively. Ideally, they
should be equal to zero, but noise both on fastened sensors
and in the vision system needs to be taken into account. If
fsi returns 1 on the ith component, then a fault is detected
on the corresponding sensor.

Apart from sensor FDI, the identification of the detected
fault on the ith sensor can be also obtained by considering
the time evolution of the difference signal (10).

B. Inverse dynamics

In this paper, in order to transform the nonlinear MIMO
robotic system into a set of linear systems, the so-called
inverse dynamics approach is used [15]. The inverse dynamics
of the robot manipulator can be written, in the joint space,
relying on (5)-(6), as a nonlinear relationship between the
plant inputs and the plant outputs,

τ = B(qc)y+ n̂(qc, q̇c) (12)

with qc as in (8), y being an auxiliary control variable, B(·)
coinciding with the actual one, while n̂(·, ·) being an estimate
of n. By applying the inverse dynamics control to system
(5)-(6), one has

q̈c = y−η(qc, q̇c)
η(qc, q̇c) = B−1(qc)(n̂(qc, q̇c)−n(qc, q̇c))

(13)

where η(·, ·) takes into account the modelling uncertainties
and, possibly, external disturbances. Note that in this paper, as
it is reasonable in field implementation, we assume that η ∈H



with Hsup := supη∈H{‖η‖} known. Equation (13) shows how
the original MIMO system is transformed into a set of n
SISO decoupled systems subject to matched uncertainty. In
case of fault on the actuators, substituting (12) in (7), it is
possible to describe how the fault is mirrored on the auxiliary
control variable, i.e., ∆y = −B−1(qc)∆τ so that, the single
joint dynamics results q̈ci(t) = yi(t)+∆yi(t)−ηi(t) .

C. Sliding mode based observers for actuators

The fault diagnosis method for actuator faults proposed in
this paper is based on the use of a SSOSM based Unknown
Input Observer (UIO). In the considered case, it is assumed
that the inverse dynamics control is applied. Then, it seems
natural to design the observer relying on the model of the
feedback linearized system. As such, the proposed UIO is
the following

¨̂qci = yi(t)+ui(t) (14)

where q̂ci is the observer state variable, yi is the ith component
of the auxiliary control variable, while ui is the input of the
observer. This signal is chosen according to the SSOSM
approach [17]. Let ei ∈ R2 be the estimation error, such that
e1i = qci− q̂ci and e2i = q̇ci− ˙̂qci . Then, for any joint, a sliding
variable is chosen as a linear combination of the estimation
error and its first time derivative

σi = βie1i + e2i (15)

where βi is a positive constant. Assume ξ1i = σi and ξ2i = σ̇i,
then the so-called “auxiliary system” results in being

ξ̇1i(t) = ξ2i(t)

ξ̇2i(t) = βiė2i(t)+
d(3)qci (t)

dt3 − ẏi(t)−wi(t)
wi(t) = u̇i(t) .

(16)

To be able to refer to the appreciable finite time convergence
results related to the SSOSM approach it is required that the
drift term in the second equation of (16) is bounded. Since
the considered plant is a mechanically constrained robotic
system, this assumption is surely satisfied. So, indicating with
Fi the bound for joint i, one has∣∣∣∣∣βiė2,i(t)+

d(3)qci(t)
dt3 − ẏi(t)

∣∣∣∣∣< Fi . (17)

Finally, following the SSOSM design, the observer auxiliary
control variable is chosen as

wi(t) = αiWmaxi sgn
(
ξ1i(t)− 1

2 ξmaxi(t)
)

(18)

with αi and Wmaxi being positive parameters to be suitably
selected as follows

αi ∈ (0, 1]∩ (0, 3), Wmaxi > max
(

Fi

αi
;

4Fi

3−αi

)
(19)

so as to enforce a second-order sliding mode on the sliding
manifold σi = 0, and ξmaxi being the last extremal value of the
sliding variable, i.e., the last value of ξ1i (t) in correspondence
of which ξ2i is equal to zero. Note that, the observer input
is continuous, since it is the output of an integrator.

Now, it is convenient to make reference to the concept
of “equivalent control” (see [26] for a definition in case
of relative degree one systems subject to a discontinuous
control input). This concept has been extended to systems
exhibiting second-order sliding modes in [27]. By definition,
the equivalent control (its ith component in the multi input
case) is the continuous time control which solves the equation
σ̇i = 0. Let ueqi be the ith equivalent control component in
our case. It can be used as a residual to perform the FDI,
according to the following rule

fai =

{
0 −Qai

< ueqi ≤ 0 or 0 < ueqi ≤ Qai

1 otherwise
(20)

where Qai
and Qai are the activation thresholds, determined

according to the known bounds of the uncertainty contribu-
tions.

D. Analysis of the fault diagnosis strategy

By applying the inverse dynamics control in (12), any
single joint can be regarded as a linear decoupled second
order system. Then the FDI rules (11) and (20) can be applied
to each joint. Thanks to the use of vision, sensor faults can
be detected, isolated and identified. It remains to prove that
the equivalent signals ueqi , i = 1, . . . ,n, are actually estimates
of the actuator faults. To this end, the following result holds.

Theorem 1: Given the nonlinear coupled robotic model
(5) and (6), applying the inverse dynamics control in (12),
and the fault detection and isolation strategy in (11) and
(20), considering the SSOSM UIO in (14)-(18), then any
component i of the observer input law provides, after a
transient time tr, an estimate ∆̂yi of the ith fault, with
an associated estimation error ∆̃yi = ∆yi − ∆̂yi such that
|∆̃yi|<Hsup. �

Proof: The proof of convergence directly follows from
[17], while the computation of the estimation error and its
bound are derived from the equivalent control signal ueqi .

According to [26], a practical way to retrieve the equivalent
control signal ueqi is to filter the discontinuous control input
via a low-pass filter. In the present case it can be found at
the output of the integrator indicated in (16).

V. CASE STUDY

In this section simulation and experimental results are
reported to complement the theoretical discussion.

TABLE II
SCENARIO FE5

#joint FE to [s] ∆∗ (t) (∗ .
= q, y)

1 AF 9 30 [rads−2]
SF 8 0.3sin(2t) [rad]

2 AF 9 40sin(t) [rads−2]
SF – –

3 AF 11 -60 [rads−2]
SF – –



TABLE III
SIMULATION PARAMETERS

#joint Qsi
Qsi

Qai
Qai

βi αi Wmaxi

1 0.02 0.02 3 3 10 0.9 30000
2 0.05 0.05 11 5 10 0.9 60000
3 0.04 0.02 8 65 10 0.9 100000

Fig. 2. Simulation results: multiple faults both on actuators 1, 2 and 3, and
on sensor 1

A. Experimental setup

The verification and validation of the concept underlying
the proposal of this paper have been performed in simulation
and experimentally with reference to a COMAU SMART3-S2
industrial anthropomorphic robot manipulator. For the sake
of simplicity, only three joints are used in the testing phase,
so that the model of the robot identified as in [21] can be
adopted for simulation, and a single camera can be used as
vision sensor. This latter is, in our lab set-up, a low-cost IP
camera of type Atlantis NetCamera 500. The Round Trip
Time (RTT) of the camera is approximately 30 ms.

To assess the effectiveness of the proposed fault diagnosis
strategy, we have considered the injected faults reported
in Table II, where the AFs are expressed in terms of
corresponding acceleration. They occur both on the actuators
and on the sensors (scenario FE5 in Table I), and their

TABLE IV
EXPERIMENTAL PARAMETERS

#joint Qsi
Qsi

Qai
Qai

βi αi Wmaxi

1 0.02 0.02 3 3 10 0.9 40000
2 0.05 0.05 11 5 10 0.9 150000
3 0.03 0.03 8 65 10 0.9 400000

Fig. 3. Experimental results: multiple faults both on actuators 1, 2 and 3,
and on sensor 1

occurrence time is to.

B. Simulation results

In this subsection we assess the performance of the
proposed fault diagnosis strategy in simulation, relying on
the model of the considered robot manipulator. In order to
better emulate the real robot, the noise term η = [η1, η2, η3]

>,
experimentally acquired, is injected to the accelerations of the
joints. The noise term components are bounded with bounds
which can be determined by signal processing methods during
the experimental tests, i.e., −2.3≤ η1 ≤ 2.1,−10.3≤ η2 ≤
0.3,−6.9≤ η3 ≤ 59.2 .

Since the sliding mode-based observers prove to converge
in a finite time tr, we have considered a time instant tc ≥ tr,
from which the observed variables in (14) become usable,
since the observer transient phase has elapsed. Moreover, the
IP camera is simulated assuming that it is a block which



provides the correct value of the joint angles with a sampling
time, as in the real case, of 30 ms. To perform the simulation
tests, the Euler solver is used with a numerical integration
step equal to 0.001 s. Table III reports the thresholds used
by FDI logic both for the actuators and for the sensors and
the parameters of the SSOSM UIO used for each joint. Note
that, in order to better identify the shape of the faults, a
low pass filter with a time constant of 0.1 s is applied to the
detected signals. Figure 2 shows the behavior of the proposed
strategy. All the faults have been correctly detected, isolated
and identified.

C. Experimental results

The proposed control approach has also been experimen-
tally verified by performing tests on the actual COMAU
SMART3-S2 industrial anthropomorphic robot manipulator.
The parameters used in the experimental tests are reported in
Table IV. Note that the parameters used in simulation have
been regarded as a starting choice to perform the tuning of the
parameters used in the experimental tests. Also in this case,
a low pass filter is applied to the detected signals to improve
the fault identification. Figure 3 shows the effectiveness of
the proposed strategy in the same scenario considered in
simulation. In all cases, the simulation results are confirmed
also experimentally.

VI. CONCLUSIONS

In this paper, a fault detection, isolation and identification
scheme for robot manipulators has been presented. The
proposed approach is based on the joint application of an
inverse dynamics-based feedback linearizing control and of a
fault detection and isolation logic. The use of an IP camera,
which is a low cost vision sensor in our case, allows one to
attain a complete sensor fault diagnosis, apart from providing
estimates of the controlled variables which can be used
to close the control feedback in case of faulty behavior,
making the robot control system tolerant to sensor faults. The
additional use of n SSOSM UIOs also enables the actuator
fault diagnosis with appreciable robustness features. Future
work will be devoted to the analysis of the vision system and
its impact on the proposed fault diagnosis method.
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