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Abstract—TInstability and oscillation issues originating in high-
voltage direct current (HVDC) systems comprising modular
multilevel converters (MMCs) are gaining increasing interest in
the research community. To detect such phenomena in advance,
considerable effort has been devoted recently to developing MMC
models for small-signal analysis. The derivation of such models is
a challenging task due to the topology and complex control struc-
ture of MMCs, which results in them having a multi-frequency
response. To address this issue, scholars developed methods based
on dynamic phasors and harmonic state-space modelling, which,
however, require extensive pen-and-paper computations. In this
paper, the periodic small-signal analysis (PAC) is adopted to
determine numerically several MMCs transfer functions. Such
functions can be computed between any electrical circuit node
or input/output port, without the need to recast the three-phase
average MMC model to derive a linear equivalent one, possibly in
the DQ-frame. We show how vector fitting allows converting these
functions to equivalent algebraic representations, which can be
profitably used to design MM Cs and study their stability following
some parameter changes. To showcase this feature, we exploit
one of these transfer functions to detect DC-side instability in a
point-to-point HVDC system.

Index Terms—Modular multilevel converters, electrical
simulation, periodic small-signal analysis, small-signal
impedance/admittance model, vector fitting.

I. INTRODUCTION

ODULAR multilevel converters have become the tech-

nology of choice in HVDC transmission systems thanks
to their scalability to high voltages and powers, lower switch-
ing activity of the submodules (SMs) composing their legs,
high voltage waveform quality, and efficiency [1]—[3]]. In light
of their increasing penetration in modern power systems, mod-
ular multilevel converters small-signal impedance models are
crucial during the MMC design phase to identify the source of
possible instability issues and oscillation phenomena [4], [5].
The development of these models is a challenging task due to
the structure of the MMC, which is more complicated than that
of conventional two-level voltage source converters (VSCs) [6].
For instance, the circulating current flowing in each arm and
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the capacitor voltage ripple of every SM in the MMC require
ad hoc controls [[7] as the steady-state harmonic content of
these two variables leads to the converter having a multi-
frequency response [8]]. Moreover, the cross-coupling behavior
of the MMC causes the interaction of its internal variables at
different frequencies [9)]. Hence, the elimination of higher-
order harmonics demands a careful evaluation to prevent erro-
neous estimates. Additionally, given the non-linear switching
nature of MMCs, conventional frequency scan techniques [[10]]
(i.e., standard small-signal analysis aimed at calculating the
small-signal response of a circuit in the neighborhood of an
equilibrium point) cannot be used to derive MMCs small-signal
impedance models, unless reduced/simplified representations
are adopted.

One of the methods used to derive a small-signal model of
the MMC for stability studies is based on dynamic phasors,
which can be seen as an extension of the Fourier series
coefficients to the case of nearly periodic systems [11]. The
main advantage of using dynamic phasors, compared to a
more conventional DQ transformation, lies in the fact that the
obtained small-signal models are amenable to linearization and
eigenvalue analysis. For instance, in [12] the authors developed
a dynamic phasor model of an MMC incorporating various
control strategies: the results of the small-signal eigenvalue
analysis were compared to three-phase time domain simula-
tions and found to be in good agreement. This approach was
extended in several other works [13[|-[16]], where the authors
investigated the effects of various MMC control strategies,
representation frames and balanced or unbalanced system
conditions on system stability and resilience to high-frequency
resonance.

Another approach that has been successfully employed to
study MMC small-signal stability is the harmonic state-space
(HSS) analysis [8]], [[17]-[20]]. Its main advantage, compared
to dynamic phasors, is that HSS-based small-signal models
can be easily extended to any harmonic order. For instance,
in [17] the MMC is seen as a “multi-port” and a simple
2 x 2 admittance matrix in positive-negative-zero sequence is
developed and used to investigate MMC small-signal stability.
In [8]] the authors developed an HSS model that takes into
account the effects of the MMC internal dynamics and control
strategies on the impedance at its multi-ports and further
validated it by means of experimental measurements. In [18]],
the authors presented a generalized single-phase MMC model,
which eliminates the zero-sequence voltage coupling effect



and is linearized based on HSS theory. In [19]], the small-
signal stability of voltage-controlled MMCs feeding linear AC
systems is considered. By using the HSS modeling method,
the AC-side impedance matrices of the MMC with the open-
loop and closed-loop voltage control are derived and their
relationship is also explicitly given. The authors of [20]
focused on the impact of zero-sequence circulating current
dynamics on the AC-side dynamics of the MMCs, by de-
veloping a complex-valued impedance model for the MMC
with three-phase balanced grid voltages. The complex-valued
impedance model is based on complex vectors (in contrast
with conventional impedance models that are represented by
real vectors) and harmonic transfer function matrices.

We present a novel approach to the study of MMC
impedance based on the periodic small-signal analysis (PAC)
[21]. The term “periodic” refers to the time-varying nature of
the small-signal model, which is derived over one period of the
large-signal solution of the MMC (in general 1/50 Hz or 1/60 Hz).
The main advantage of this method, when compared to both
dynamic phasors and HSS modeling, is that PAC allows com-
puting the impedance of an MMC without having to explicitly
derive a small-signal model of some of its composing parts,
such as for example controllers. Often this derivation may
be very difficult and performed by pen-and-paper on largely
simplified models of the MMC controllers, and by considering
an infinite DC bus. These simplifications may require to act
on the non-linear differential-algebraic equations of the non-
linear MMC model used for time domain stability simulations
and to linearise them in a specific working condition. Instead,
PAC allows one to numerically obtain a time-varying small-
signal model of the MMC that can be used to study the small-
signal stability of the system without any intervention on the
original time domain simulation model. Additionally, being
a numerical method, PAC does not require one to explicitly
derive a new small-signal model every time a component of the
system under analysis changes because the designer modifies,
tailors or substitutes parts of the MMC or the MMC itself is
used in different power system configurations (e.g., HVDC or
MTDC). This versatility is one of the strongest points of the
PAC analysis, which is in sharp contrast with the workflow
required, for instance, by the HSS method.

To describe the application of PAC to the study of MMC
stability, we build on our previous work [22]], in which we
used it to develop a dynamic model of a power system
incorporating VSC devices: these are described by a non-linear
set of switching equations, and the shooting method (SHM)
(see [23] and references therein for details on the SHM) is
used to compute the behavior of the model at the fundamental
frequency of the system (i.e., to determine the previously
mentioned large-signal periodic solution of the system). The
small-signal impedance/admittance model is then computed
using the PAC analysis and the vector fitting (VF) algorithm
[24], [25] can be employed to derive an analytical formulation
of the MMC impedance/admittance model.

The paper is organized as follows. Section [[I] provides a
brief description of the MMC model we used, while Section
describes the operating principle of the popular frequency scan
technique, and its limitations when it comes to the derivation

of the MMC impedance/admittance matrices. Then, Section
gives a general introduction to the PAC analysis and derives
the generic trans-impedance/admittance matrices computed by
PAC (a more detailed description and mathematical derivation
of the PAC numerical method is given in Appendix [A). To
give an idea of the applicability of the method, in Section
we exploit PAC to derive the admittance matrices of two
MMCs employed in a HVDC network that connects two AC
power systems and study the small-stability of the entire
system [26]. Different case studies of increasing complexity
are considered to showcase the versatility of the proposed
method. Importantly, we show that, in agreement with previous
results [17]], the derived MMC impedance/admittance model is
independent of the grid-side impedance, and captures the in-
teractions between the two AC systems through the HVDC link,
which is a quite novel result. Finally, in Section [VI| we draw
some conclusions and discuss possible further applications of
our method.

II. MODULAR MULTILEVEL CONVERTER

Figure [[{a) depicts the structure of an MMC made up of
three legs, each consisting of an upper and lower arm. Every
arm includes a cascading stack of up to several hundreds
identical SMs and an RL filter [3|]. Regardless of the type
of sSMs used (e.g., half or full-bridge SM), the gate signals
of the IGBTs in each SM originate from a control scheme
aimed at fulfilling specific desiderata. This paper adopts the
scheme in Fig. [[c), which comprises four sections. Section
(D converts the voltages and currents at the MMC point of
common coupling to direct and quadrature components in the
positive sequence. A phase-locked loop (PLL) tracks the grid
frequency (and, thus, synchronises internal reference signals)
by regulating v, to zero [28]l, [29]. The outer power loop @
determines the reference DQ axis currents based on specific
control objectives, such as active power control [27]]. The inner
current loop @ computes the reference voltages at the a,b,c
terminals necessary for the currents retrieved in D to track
their reference values obtained from Q). Through the inverse
Park’s transform, the reference voltages are expressed in the
abc-frame [30]).

Contrary to traditional VSCs, MMCs also require a scheme to
limit circulating currents, which are caused by the inequality
among arm voltages. Section @ replicates the control scheme
of [31]], which suppresses the double-line frequency negative
sequence components of the circulating currents. As a result,
this control outputs an additional reference voltage.

Lastly, the reference voltages obtained in sections B and
@ are combined with the measured DC-side voltage to obtain
the modulation indexes 1myq,b,c and Mmyq .. of the upper and
lower arms of the MMC, respectively. ABC2DQ and DQ2ABC
converters are used to manage signals in the MMC controllers
(shown in Fig. [T{c)). If a detailed MMC model is adopted, the
modulation indexes correspond to specific gate signals, which
can be regulated according to a capacitor voltage balancing
strategy. In this paper, an average three-phase model of the
MMC arms is adopted [32]. In this case, the cascading stack
of SMs in each arm of Fig. [I(a) is represented through a
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Fig. 1. (a) High-level block schematic of the MMC model. (b) Generic arm representation in the MMC average model for phase a, upper arm. (¢) MMC control
scheme. (d) - (e) Detailed and simplified schematics of the DCS1 HVDC test system described in [27]. (f) MMC representation as a 5-terminal component.

lumped capacitor C,,, and a voltage-dependent voltage source,
as shown in Fig. [T(b).

III. FREQUENCY SCAN

The simulation technique known as frequency scan [|10]], and
implemented in several power system simulators used in the
industry (e.g., EMTP-RV and POWERFACTORY [33]]), is based
on a three-step numerical algorithm. The power flow solution
of the power system model is computed in the first step,
and its dynamic elements (i.e., those described by differential
algebraic equations (DAEs), such as for example synchronous
generators) are initialised in the second step. By doing so,
an equilibrium point of the power system model is identified.
The power system model is then linearised around this very
equilibrium point, and its small-signal solution is computed
by sweeping (scanning) a system parameter (i.e., frequency).
Frequency scan thus requires that the power system model
admit a steady-state solution which is an equilibrium point and
therefore the latter must be formulated so that, if a steady-state
solution exists, it must be an equilibrium point.

In principle, a power system described in the abc-frame
does not admit an equilibrium point as a steady-state solution
but a periodic orbit. It is well known that, if one applies the
Park’s transform [30] to the abc-model, an equivalent model
is obtained in the dqO-frame. If the original periodic solution
in the abc-frame (i) is not characterised by harmonics and (ii)
exhibits the positive sequence only, the periodic orbit solution
in the abc-frame transforms into an equilibrium point in the
dq0-frame. Frequency scan is thus successfully applied to the
power system model in the dqO-frame. In all other cases,
we have a periodic orbit in the abc-frame, transformed into
another periodic orbit in the dq0-frame, and frequency scan
can not be applied.

The MMC model described in Section [ and shown in
Fig. |l is mostly formulated in the abc-frame but some of
its sub-systems (mainly controllers, as it happens in a real
design) are formulated in the dqO-frame. The resulting model
is non-linear and also potentially affected by the negative
sequence (consider for instance the presence of possible un-
balances in the AC grid) [34]], [35]]. Therefore, since the model
is formulated in a mixture of the abc- and dqO-frames, a
periodic steady-state solution is obtained. This implies that

the frequency scan technique cannot be used to compute the
equivalent MMC impedance/admittance matrix. To force its
usage, the model must be deeply simplified in order to obtain a
solution represented by a simple equilibrium point in the dq0-
frame. This is what is done in several papers (see for example
[36]) but requires a significant amount of effort that can be
avoided by applying our proposed method. As anticipated
in the Introduction, a good numerical tool able to compute
the impedances of the MMC model without resorting to any
simplification is the PAC method, which we present in the
next section. As shown in the following, the PAC can take
into account intermodulation and up- and down-conversion of
a perturbing signal in the frequency spectrum [37], [38]. For
example, it can compute how a low frequency (e.g., 1Hz)
perturbation in the HVDC link can be up-converted to 5041 Hz
in the AC system.

IV. PERIODIC SMALL-SIGNAL ANALYSIS

The dynamical evolution of a generic electr(on)ic circuit or
system in the time domain can be typically modeled by a set
of non-linear DAEs [39], [40]. In principle, if these DAEs are of
index-1 [41]], a state-space form with a minimal set of variables
leading to a system of ordinary differential equations (ODEs)
can be identified. In general, it cannot be done in explicit form,
for instance if the algebraic constraints are highly non-linear,
but this formulation exists theoretically, and when the explicit
form exists, it can be profitably used to reduce complexity in
deriving results.

This paper focuses on circuits that operate at periodic
steady-state and are described by non-linear and time-varying
index-1 DAEs: MMCs belong to this class of circuits. The goal
is to analyze the effect of periodic small-signal perturbations
applied to these periodically working circuits and to derive
transfer functions that help designers in the circuit design
phase. To do so, we resort to periodic small-signal analysis
(PAC). It is an extension of the standard small-signal analysis,
which is used to calculate the small-signal response of a circuit
in the neighborhood of an equilibrium point [21]].

Consider the following index-1 DAE describing the dynam-
ics of a periodically forced circuit (with period T' = 1/f, =

27"/&)0)

d



where 0 € RY with N the number of equations (differential
and algebraic). It reduces to an ODE if all the entries of
the ¢(¢,y) vector are non-null. If the circuit steady-state
is periodic, an orbit y,(t) = ys(t +T) € RN (large-signal
solution) exists that solves . In our case, ys(t) represents
the periodic solution of the MMC at both the AC and DC sides,
when it works in a steady-state condition. A small additive
perturbation 7(t) € R™, which is obtained by combining the
effects of M small-signal inputs, is assumed to act as

d
@q(t, y)+j(t,y) = An(t) , (2)

where A € RV*M s a constant matrix. We are interested
in estimating how 7(t) affects y(¢). With this aim, assume
that the effects of 7(¢) translate into writing the solution of
the original non-linear circuit as y(t) = ys(t) + v, (). In
other words, we assume that the effects of the small-signal
perturbation superimpose to the large-signal (unperturbed)
solution. In the light of the above, system is linearized
along y(t) (i.e., along a periodic working cycle of the circuit),
thereby obtaining

d | dq(t,y) 9j(t.y)
= | = e =An(t) . )
dt l 6y Y=Ys yn 8y Y=Ys yn T]( )
—_——— [ —
C(t) G(t)

where y,(t) is the small-signal solution and matrices C(t) and
G(t) are characterized by T-periodic entries.

The literature describes several techniques to obtain the
periodic steady-state solution of (I)) [42] and the (small-signal)
solution of (3). In this paper, we resort to the shooting method
(SHM), which is formulated in the time-domain [43ﬂ For
space reasons, we do not recall SHM (which was recently used
also in [40]) but we provide in Appendix |A|some specific hints
about the small-signal time-domain solution, which is a key
aspect of PAC.

Assume that the small-signal input to system (3) is n(t) =
Esin(27t/T, + 1), where Z is an M real-element vector, and
T, € [T}, Tp*x], where these interval extremes define the
bandwidth of the small-signal we are interested in. We vary

'In general, this is the only available method whenever the circuit is
switching or described by an Analog Mixed Signal (AMS) model. In these
cases, it is necessary to resort to an extension toward hybrid dynamic systems
of SHM [44]-[46].

\H2)12

Wy \ w;]nax Wo /

x o o ymax
Wo + Wl

a
—2w, *wo_w;;l *—wy

wo — wyy

Fig. 2. Sketch of both the PSD of the m-th component of 7(t) (upper-left
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T, in the selected interval, thus achieving a set of small-signal
solutions y,(t; 7). Since is a set of linear time-varying
periodic DAEs, the spectrum of ¥, (¢; T;)) contains frequencies
of the form 27kf, &+ 27/T,, i.e., frequency is folded at kf,
harmonics of the periodic large-signal solution [47]]. This is
exemplified in Fig. [2| where the harmonics at 27k f,, refer to
the large-signal solution. By performing the Fourier transform
of y,(t;T,), it is possible to derive the modulus and the
phase of each Héfg(w) transfer function for ¢ =1, ..., N and
m=1,..,M (see Fig. . Hé’fn)(w) represents the transfer
function from the m-th component of 7(¢) to the g-th compo-
nent of y, (t) centered at £27kf,. In general, the effects of
these contributions should be combined at all those frequency
values at which overlaps are observed. This is exemplified in
Fig. by the superposition of H,§22 (w) with Hé}% (w), and of
H,g}qz(w) with Hé%%(w). In formula it reads

k k
HY () H)(w)

Jn(w) =Y P Hw), @
HJ(\];])LI(W)

H®*) (w)

where §,(w) (resp. f(w)) is the Fourier transform of y,(¢)
(resp. n(t)fi If one is interested in analysing what happens
around the generic 27p f, harmonic, the H (¥) (w) contributions
with k # p can be ignored if they are negligible w.r.t. H®) (w).
This implicitly reflects on the summation index in ().

V. NUMERICAL RESULTS

In this section we fully exploit PAC: to this end, we adopt
both a simplified and a detailed version of a point-to-point
HVDC system. Figure [I[d) depicts the detailed test system,
whose specifications can be found in [27]. It comprises two
AC grids, one HVDC link, and two MMCs. The MMC2 works in
the DC-SLACK mode to keep the DC link voltage constant at
+200kV, while the MMC1 works in PQ mode and nominally
injects 400 MW in the DC grid. Reactive power exchange is
zero for both MMCs. On the contrary, in the simplified version
of the test system shown in Fig.[T[e), an infinite DC bus (which
keeps the DC link voltage fixed at £200kV) replaces what is
originally connected to the right of bus dcl.

We want to stress that our goal here is not to investigate
the HVDC system in use (and, for instance, improve its
operation by implementing more advanced controls), but rather
to show the features of PAC by applying it to the previously
described test systems. In the following, we comment on the
characteristics of the specific transfer functions and possible
interesting electrical aspects enlightened by PAC.

The results presented in this Section were obtained by
resorting to our circuit and system simulator PAN [48]], [49]

21t is worth mentioning that, if one is interested in the transfer functions
relating a subset of the elements of 7(t) to a subset of the elements of yy(t)
(or a linear combination of them) it is sufficient to properly select and combine
a subset of the elements of each H(¥) (w) matrix.

3The files necessary to simulate the HVDC system with PAN simulator are
available on GitHub at the address https://github.com/danielelinaro/mmc-pac.

git.
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A. The first basic example

To introduce the operating principles of PAC on a complex
system, we start with the configuration shown in Fig. [T[f),
where the block labeled as MMC is composed of the (a), (b),
and (c) blocks in the same figure. Its external connections are
those of the (a) block. Neglect momentarily the 7,, 7, and
71p small-signal voltage sources. By referring to the circuit
in Fig. [I(f), we can write i, + 4 +i. = 0 and i, + i, = 0.
By regarding the MMC as a peculiar 5-terminal element, this
implies that (i) only three currents are necessary to describe
its behavior, and (ii) three voltages must be chosen to drive it
(two among v, s, and v, at the AC side, one between v, and
vp, at the DC side). In this paper, we choose the (vq, Vs, Vp)
and (4, 4p,1p,) voltages and currents. Our goal is to study the
effects of the 74, m, and 7, small-signal voltage sources in
Fig. [I[f) on the periodic behavior of the circuit. Through PAC,
a matrix of transfer functions can be obtained in the form

i(ln a
By | =] Y Y Yyl O
I, AR SR 5 T

Y (0)

where Y is used instead of H (see (EI)) since the entries
are admittances (from hereon, for the sake of brevity, the
frequency-dependency of each entry of the matrix is omitted).
This represents the small-signal model of the MMC in this
specific configuration and PAC provides the entries of this
matrix in numerical form. One may then use VF to obtain
an approximate formulation in closed-form, as described in
Section [V-DIF|

Consider now the simple power system shown in Fig. [Te),
in which we first applied PAC. Compared to Fig. [I[f), in this
case the v, vy, v¢, N, and g, voltage sources are located in the
three phases of the generator in the AC1 grid. These sources
have impedances connected in series. On the contrary, the v,
vp, and 7, sources are in the DC infinite bus. Due to space
reasons, hereafter we only show the results pertaining to some
of the entries of Y9 matrix in . In this case, the selected
transfer functions are shown by the black traces in Fig. [3]
Some peaks in the magnitudes of the transfer functions are
visible at about 23 Hz, 61 Hz, and 152 Hz; due to its magnitude
the last one could give rise to some resonance problems.

We then added an HVDC link between bus dcl and the
infinite DC bus in Fig. eﬂ The cables of the HVDC link,
whose parameters are reported in [27], were modeled with the

4Since i + ip + e = 0, the zero-component of the currents in Fig.me)
is zero. This is not the case if the Y node is connected to ground. If so,
another small-signal voltage source must be added, and the size of the matrix
in @) increases to 4 X 4. Despite this, the application of the PAC remains
straightforward. We mention this since [[18]], [20] derived impedance models
of a three-phase, four-wire MMC, where its DC and AC sides were grounded
to provide a circulation path for the zero-sequence current. This path does not
exist in reality, as MMCs are three-phase, three-wire systems. Thus, to force
the zero-sequence current on the MMC AC side to zero in order to carry out
the analysis, [[18]] introduced a fictitious zero-sequence voltage compensation.
On the contrary, PAC requires no additions of this sort.

SConsidering the power system in Fig. d), the same circuit is obtained
by replacing what is connected to the right of bus dc2 with an infinite DC
bus.
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detailed state-space equivalent model described in [50]. We
repeated the PAC analysis and computed the same admittances
of the first example. The results, shown by the magenta traces
in Fig. 3] are superimposed to those of the previous case. The
differences between the black and magenta traces reveal that
the admittance at the AC side of MMC1 cannot be accurately
computed by representing its DC side only with an infinite DC
bus instead of a proper HVDC system (i.e., HVDC link and
possibly also MMcC2). This is what was done for example in
[17], [51] (i.e., the DC side was neglected), and here we have
verified that this is not admissible in our case.

B. The complete DCS1 test system

We now consider the full DCS1 system depicted in Fig. [T(d),
composed of two MMCs and an HVDC link. As in the previous
cases, we injected a small-signal tone through 7, in the
AC1 grid and performed a PAC analysis. The Y,f? and Yb(f)
admittances of MMC1 obtained in this case are given by the
green traces in Fig. 3] The magenta and green traces almost
perfectly overlap, which suggests that the adoption of the real
MMC2 - or, in its stead, of an infinite DC bus in series with
an HVDC link - leads to almost identical results in terms of
Ya(g ) and Ybf).

The latter case, however, does not allow analyzing inter-
actions between ACI1 and AC2 grids. Besides, perturbations
in the AC1 system close to the synchronous frequency, may
be down-converted in frequency by MMC1, propagate through
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the HVDC link, be up-converted by MMC2, and interact with
the AC2 system. The same may occur the other way round,
possibly with different magnitudes and/or phases due to the
different control functions implemented in the two MMCs. To
verify the above statement, we injected a small-signal tone in
phases a and b, first of the AC1 and later of the AC2 systems,
and computed the corresponding cross admittances. We use
the P4 and % symbols to refer to transfer functions of the
AC1 and the AC2 systems, respectively. The obtained Ya(ﬁ)a,
Y;,Qam and Yj,,?askl, Ybs,glslk admittances are shown in Fig. |4
By observing these traces, we see that there is some (small)
coupling between the AC1 and AC2 systems, since magnitudes
are not null. Couplings are similar as indicated by comparable
magnitude values. Note that these results cannot be obtained
with a frequency scan, since it does not cope with up- and
down-conversion of the injected small signal.

C. The HVDC link

We now consider the DC side of MMC1 in three different
cases (a, b, and c¢). In case (a), described in Sec. we
connect the DC side of MMC1 to an infinite DC bus. In case
(b), described in the same subsection, we consider an HVDC
cable in series with an infinite DC bus. Both in case (a) and
(b) the small-signal tone is injected by the 7, source inside
the infinite DC bus. Lastly, in case (c) we study the DCS1
(full system) described in Sec. and insert the 7, small-
signal generator between the P node of MMC1 (see the block
in Fig. [[)) and the HVDC cable.

In Fig. [5] we report the real and imaginary parts of the
Yp(,?) admittances of the three cases. At low frequencies,
the admittance is of resistive/capacitive type (i.e., negative
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Fig. 5. The real (black) and imaginary (gray) components of the Yp(g)
admittances of the (a), (b) and (c) case studies. Real and imaginary parts
of Yp(g ) are displayed in panels from top for the (a), (b) and (c) cases.

imaginary part) in all cases. It is also worth pointing out that
the real part of three admittances is never negative, which is
a general indication of the fact that MMC1 is not prone to DC
side instabilities. This aspect was considered in recent works
[52]]-[54]], which highlighted the importance of accurate cable
modeling when studying DC side stability [SO]. The frequency-
dependence of the resistance and inductance due to skin effect
improves stability margins: although the capacitive part of the
admittance of the MMC may fall in some frequency ranges due
to resonance phenomena, the cable resistance is sufficiently
high and the inductance is sufficiently low to prevent the
negative resistance of the MMC from manifesting.

D. Stability analysis through vector fitting

Once the admittances of the MMC have been derived nu-
merically, they can be represented in closed-form with the
VF algorithm, which then allows performing several stability
analyses. To showcase this feature, we considered once again
the DCS1 system and investigated as an example the possible
instability triggered by the insertion of inductor-based Fault
Current Limiters (FCLs) at each pole of the DC side of MMC1.
This issue has been recently reported for instance in [36], [53]],
[54], where the authors showed that a too large inductance
leads to instabilities [|53]], [54]]. In [36] the authors came to the
opposite conclusion (i.e., a too small inductance value leads to
instabilities). It thus seems that an interval of inductance values
exists in which the insertion of a reactor limits the DC short
circuit current, and does not trigger instability phenomena.

The important aspect is that the analysis that we propose
here is performed after having derived an analytical model
of the two MMCs connected through an HVDC link. Such
analytical model is obtained by applying VF to the numerical
results provided by PAC analysis of the complex model shown
in Fig.[I[d). In principle, if this analytical model is sufficiently
simple, it allows the designer to perform a conventional pen-
and-paper analysis or with a programming language such as
MATLAB or Python. In our case, we used simple MATLAB
scripts and toolbox functions to perform a parametric stability
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Fig. 6. The real and imaginary parts of Yp(,? ) of the modified DCS test system.

Black and red traces refer respectively to the real and imaginary part of ng)p
obtained numerically with PAC, while the gray and blue lines correspond to
the results obtained with VF.

analysis where we varied the value of the reactor connected in
series to the poles of the HVDC link mentioned before in the
interval of values used in practice. To this end, we computed
again the Yp(,?) admittance in the (c) case of the previous
section by resorting to PAC and a modified version of the
DCS1 system. In this version, we varied the power setpoint of
MMC1 with 6 s-long steps of —100 MW (reaching —800 MW)
and reduced the integral gain of the PI controller I, of the
MMC inner current loop from 149 to 30 (Table 6.10 of [27]
shows the original control parametersﬂ

Figure |6 depicts the real and imaginary parts of Yp(g ),
obtained with PAC and VF, when the MMC reference power
reaches —800MW. We see that there is a negative peak of the
real part of Yp(,? ) at about 11 H The VF process required 10
poles for the closed-form results to match the numerical ones
by PAC. VF thus gave us the analytic expression of Yp(;’ ) that
we used in (6).

If an inductor is connected at each pole of the DC side of

MMC]1, the equivalent DC side admittance Yp(,?zw becomes:
0_1 0
Y(O) — Ypp wlac — Ypp (6)
PPnew 0 1 - y 0’
Yop + ot 1 +iwLacYy,

where L. is the inductance of the fault current limiter. The
expression in () is equivalent to the closed-loop transfer
function of a feedback system, where Yp(:,(,]) and ‘wLg. lie
respectively in the forward and feedback paths. The root locus
of the system allows studying how the poles vary with respect
to Lg.. We expect that, as L,. increases, some poles move to
the right half of the s-plane, making the system unstable.
The top panels of Fig. [7| show the root locus of the system
in Eq. (6). In the top right panel, the *, [J, ¢, and A markers
indicate how some poles vary when L. is respectively equal
to 50,75,100, and 125mH. These markers show that the
system is surely unstable for L;. > 100mH (i.e., some poles
lie in the right half of the s-plane). For instance, the bottom

5This amendment, albeit debatable from a design standpoint, was imple-
mented to reduce stability margins and observe an instability caused by the
insertion of inductor-based FCLs of plausible inductance.

"The results in Figure |6] are consistent with what was reported in [53],
[54]. We performed also a PAC analysis in a wider range of frequencies that
extended up to 10 kHz. This result is not reported in the paper. What we
found is that there is not any negative impedance effect at high frequencies
(some kHz) as described in [36]], at least for our design. From our standpoint
this is an expected result, since the signals driving the MMC are low-pass
filtered (these filters are not shown in Fig. m) and the cut-off frequencies are
well below those at which negative impedance manifests in [36]. Note that
due to low-pass filtering, the two MMCs are no longer able to maintain their
functionalities, i.e., to act as DC-SLACK and PQ, at frequencies well above
these cut-off ones.

panels of Fig. [7] depict the Nyquist diagram of the open-loop
transfer function in @ for L. = 100 mH. The point (-1,0) is
encircled, confirming system instability ﬂ

To add a final proof of instability, we performed time-
domain simulations of the test system by considering the
previously mentioned values of inductance Lg4.. Based on the
root loci in Fig. [/, we expect that when L. is equal to 50 or
75mH the system is still stable when active power exchange
amounts to —800 MW. On the contrary, when L. is equal to
100 or 125mH, instability occurs. This is confirmed by the
results shown in Fig.[8] For instance, when Lg. = 100 mH, the
system becomes unstable when the reference power reaches
—800 MW (i.e., the DC-side voltage diverges). On the con-
trary, when L. = 125 mH, instability occurs starting from
a power reference of —700 MW. In the unstable cases, the
divergence in the DC-side voltage is evident. On the contrary,
the power exchange is bounded between two extremes (see
the lower panel for ¢ > 42s, for instance): this is because of
the presence of limiters in the PI controllers inside the MMC
scheme.

E. From baseband to the second harmonic

To show the potentiality peculiar to PAC, we consider once
again the test system in Fig. [[e). In particular, we analyse the
effects of the frequency up-conversion (folding) of the small-
signal 7, at 2fy (i.e., in the right-side band of the second
harmonic) on the small-signal current flowing through 7, in
the infinite DC bus. We know that, due to the periodic working
mode of the MMC and circulating currents, a second harmonic
component may be present in the DC line current. The obtained
Y;g) is shown in Fig. |9 We underline that frequencies on
the x-axis must be read as 2fy + /7, = 100Hz + 1/7,,. For
example, a small-signal perturbation at 1/7, = 1Hz of the
g source in the AC1 grid thus folds at 100 Hz + 1 Hz in the
frequency axis.

8For the sake of completeness, we performed PAC and VF for each power
reference step shown in Fig. @ We then drew the corresponding Nyquist plots
(not reported here for space reasons) by letting L;. = 100 mH. This was
done to verify that the point (—1,0) in the Nyquist plot is encircled (i.e.,
instability occurs) only when the reference power reaches —800 MW.
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Fig. 7. Upper panels: root locus of @ as a function of L 4. (left) and its inset
(right) (stable poles that lie further away in the left half plane are not shown).
In the inset, the *, (J, ¢, and A markers indicate the value of some poles in
the root locus when L4, is respectively equal to 50, 75,100, and 125 mH.
Lower panels: Nyquist diagram of idechpr when Ly, = 100mH (left)
and its inset (right). The + marker denotes the point (—1,0). x-axis: real
part; y-axis: imaginary part.
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Fig. 8. Simulation results of the modified DCS1 system obtained by inserting
an inductance Lg. at each pole of the DC side of MMcCI1. Upper panel:
MMC1 positive pole to ground voltage. Lower panel: MMC1 active power
exchange. In the first 150 ms of simulation the entire system undergoes a turn-
on phase. In both panels, the black, red, grey and dark grey lines correspond
to simulations with a value of Lg. respectively equal to 50, 75, 100, and
125 mH.

f[Hz]
450

100 150 200 250 300 350 400
Fig. 9. The module and phase of the Y,,f ) admittance of the power system
configuration shown in Fig. |1{e). Upper panel: module of Yp(g ) Lower panel:

phase of Yp(z ). The superscript (2) indicates frequency up-conversion at the
second harmonic.

F. Unbalanced AC grid

As already stated, versatility is one of the strongest points
of the PAC analysis. For instance, if the effect of new controls
and/or system parameters needs to be examined, simulations
can simply be rerun to derive new impedance/admittance MMC
matrices through the adoption of PAC, without the need to
perform extensive pen-and-paper calculations. The same holds
true in the case of unbalanced operating conditions. To validate
this last statement, we modified system ACl in Fig. [T{e). In
general, the AC grids in this paper are modeled based on
[27] as three-phase balanced voltage sources in series with
an impedance. In this specific case, however, the voltage
associated with phase a was slightly changed as shown by the
black line in the top panel of Fig. [I0]to generate unbalanced
operating conditions. The resulting phase currents when MMC 1
injects 400 MW in the DC grid are shown in the bottom panel
of the same figure.

Figure compares for example the Y,,S? ) admittance ob-
tained during both balanced and unbalanced operating condi-
tions. The almost indentical traces indicate that the perturba-
tion on phase a acts on the HVDC point-to-point link current
ripple in the same way, i.e., the large signal voltage unbalance
acts on the HVDC link current with a few dB difference in
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Fig. 10. Phase voltages (upper panel) and currents (lower panel) of the AC1
system in Fig. EKB) under unbalanced operating conditions. In both panels,

the black, dark gray, and light gray lines refer respectively to phases a, b and
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Fig. 11. The module and phase of the Yp(g) admittance of the power
system configuration shown in Fig. me) under balanced (black solid line)
and unbalanced (gray dashed line) operating conditions. Upper panel: module

of Yp(g ) Lower panel: phase of Yp(g ).

magnitude and almost the same phase.

VI. CONCLUSION

This paper has presented the periodic small-signal analysis
(PAC) tool to derive the transfer functions between nodes
and ports both on the AC or DC side of modular multilevel
converters (MMCs), connected, for instance, by an HVDC point-
to-point link. We have computed several transfer functions
and among these the admittance of the DC side of the PQ
MMC in the HVDC link. We have shown that in some fre-
quency intervals the MMC can have negative impedance and
be prone to instability. We have shown how the insertion of
an inductor-based FCL can trigger instability by performing a
parametric pole analysis. To efficiently do this, the numerical
transfer function computed by PAC was fitted by using the
VF technique. The obtained algebraic equivalent expression
was used in MATLAB to perform both the Nyquist stability
analysis and the root-locus analysis. The obtained results were
validated by means of accurate transient stability studies. In all
these analyses, we used detailed three-phase models of MMCs
including outer power loop and inner current loop controllers,
circulating current suppression strategies, and PLLs.

APPENDIX A
PERIODIC SMALL-SIGNAL ANALYSIS IN BRIEF

Without loss of generality, assuming that (I) reduces to a
set of ODEs, as a by-product of SHM itself, a finite set of



samples of the ®(¢,¢p) state transition matrix [55] of the
circuit, computed along its periodic solution, is available.
These samples are known at possibly not equispaced time
instants t;, (h = 0,..., H) being ¢ty = T. To evaluate y,(¢)
for t € [tg,to + T;] one can write

yn(t) = @(t,to)/ O (7, to)An(r)dr | 7

to

where n(t) =n(t+T,) = n(t + VT)ﬂ Assuming that the
monodromy matrix ¥ = ®(ty + T, ¢p) can be diagonalized
as VAV ™! (this is generally the case dealing with well posed
circuits), by resorting to the Floquet-Lyapunov factorization
[56], one can write

1

F =
T

Viog(A)V 1
t—tg ) 3)

Lr(t,to) = ®(tto)VA T V!

where F is one of the infinitely many solutions of
the equation ef” =W, Lp(t+T,tg+T) = Lr(t,to), and
LF(T—‘rt()JIo) = LF(to,ﬁo) = 1N (bemg 1N the N x N
identity matrix). The entries of Lg(t,to) are thus known at
thn =tp +nT, for h=0,....,H and n =0, ...,v — 1. Equa-
tion (7) can be rewritten as

t—T1
T (Lp(r,to)V) ™ An(r)dr .
)
The (Lp(7,t0)V)~! matrix can be expressed through the
Fourier decomposition of each one of its entries as

(10)
where C, is an N x N complex elements matrix, and E,(t)
are N x N elements diagonal matrices. As a consequence, (9)
can be finally transformed into

yﬂ(t) = LF(t,to)V/tA

2mrit
e T

2mrit

-1 .
(Lp(r,to)V) ™ = goc dlag( T

E,(t)

yn(t) = Lr(t,t0)V Y CrB.(t) (1

r=0

where B,.(t) are diagonal matrices whose (k, k)-element (k =
1,...,N)is

T 27 rit

t —
A —
By = [ 8, T e T (rhdr . (12)
to

In practice, the summations in Egs. and are truncated
to R terms and the integral in may be solved in closed-
form [57].

9 In the following, we assume v € 7 since it is more practical, but the
proposed approach can be easily generalized for v = Z—N € Q. In that case,

D
yn(t) is computed in the time interval [to, to + vpTy] = [to,to + vNT].

APPENDIX B
VECTOR FITTING

The vector fitting (VF) method allows describing a measured
or calculated frequency domain response f(s) through a ratio-
nal transfer function. This algorithm was originally adopted to
build frequency-dependent models of cables and transformers
[25]. Since then, a wide array of applications has made use
of this method. For example, the authors in [58] use VF and
measured data to derive a black-box model of a dynamic load.
In [59]], the VF method automatically identifies the electrical
components of a circuit. The algorithm was also applied in
[50] to derive a frequency-dependent lumped parameter model
of cables necessary for accurate state-space modeling of HVDC
systems. VF was also recently used to model the transfer
function of a grid-following inverter [60].

In a nutshell, VF approximates f(s) through the partial
fraction expansion

13)

where N is the order of approximation, while a,, and c,, are
respectively the poles and residues of the transfer function.
The terms d and h, corresponding to a constant gain and a
frequency-proportional term, are optional, as their presence
depends on the fitted frequency response. VF estimates the
parameters above by initially guessing the approximation order
N and sequentially solving two stages.

The first stage derives the poles a,, by adopting an iterative
procedure that relies on their initial estimate (typically loga-
rithmically spaced over the frequency range of interest) and
a scaling function. In each iteration, poles are relocated until
a convergence criterion is attained. Should this criterion not
be satisfied after a given number of iterations, the algorithm
increases the approximation order [V and repeats the first stage.
Then, the second stage solves as a least-squares problem.
Besides, since the frequency response f(s) is evaluated at
several frequency points, Eq. (I3) leads to an over-determined
system of equations, where f(s) and the poles a,, are known
parameters, whereas c,, d, and h are the unknowns.

The performance of the VF method depends on different
factors, such as the initial poles estimate and the approximation
order, as well as the adoption of a weighting function, which
can improve the fitting results in a given frequency interval or
minimize the relative fitting error rather than its absolute value.
We refer the interested reader to [24]], [25], [61] for more
information about the VF algorithm and some of its further
enhancements over time.
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