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Abstract—Artificial Intelligence (AI) has demonstrated super-
human capabilities in solving a significant number of tasks,
leading to widespread industrial adoption. For in-field network-
management application, AI-based solutions, however, have often
risen skepticism among practitioners as their internal reasoning
is not exposed and their decisions cannot be easily explained,
preventing humans from trusting and even understanding them.
To address this shortcoming, a new area in AI, called Explainable
AI (XAI), is attracting the attention of both academic and
industrial researchers. XAI is concerned with explaining and
interpreting the internal reasoning and the outcome of AI-based
models to achieve more trustable and practical deployment. In
this work, we investigate the application of XAI for automated
failure-cause identification in microwave networks. We first
show how existing supervised ML algorithms can be used to
solve the problem of failure-cause identification, achieving an
accuracy around 94%. Then, we explore the application of well-
known XAI frameworks (such as SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-agnostic Explanations
(LIME)) to address important practical questions rising during
the actual deployment of automated failure-cause identification
in microwave networks. These questions, if answered, allow for
a deeper understanding of the behavior of the ML algorithm
adopted. Precisely, we exploit XAI to understand the main
reasons leading to ML algorithm’s decisions and to explain why
the model makes identification errors over specific instances.

I. INTRODUCTION

Following the increasing availability of monitoring data
and the recent advances in computing platforms, Artificial
Intelligence (AI) and Machine Learning (ML) are becom-
ing key tools for network operators to automate network
management and address, among others, challenging failure
management problems as failure detection, failure-cause iden-
tification, failure prediction and localization. In this first wave
of deployment of ML-based failure management solution,
operators have often relied on complex ML models, used as
“black boxes”, i.e., as models that do not expose their internal
reasoning. This represents a main obstacle for successful field
deployment of ML models, as their output are not easily
interpretable and explainable and network operators may not
gain full trust of such “black box” model decision.

To address the trust issue commented above, efforts are
being made in the field of interpretable ML and eXplainable
Artificial Intelligence (XAI) to explain decisions or predictions
of a ML model with the aim of transforming the black
box into a “transparent” (or “glass”) box. By applying XAI
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frameworks, humans can have an improved understanding of a
model’s behavior and know when to trust its decisions, as XAI
frameworks allow to shed light on how model features are used
as driving factors towards decisions. In this paper, we describe
our first step in the application of XAI frameworks, for the
specific problem of automated failure-cause identification in
microwave networks.

Automated failure-cause identification allows operators to
reduce service unavailability by repairing failures much more
rapidly than when relying on time-consuming manual analysis
of failure logs. In our previous work [1], we modeled the
problem of failure-cause identification in microwave networks
as a classification problem and proposed supervised ML
algorithms that were able to discriminate with high accuracy
among different failure-causes. Based on the ML model deci-
sion, network operators can timely take the most appropriate
countermeasure to repair a failure, which may, e.g., consist of
an on-site intervention vs. a remote equipment configuration.
Considering that, often, microwave equipment is situated in
areas not easily-reachable (e.g., on top of a hill, a location that
might even require a helicopter to move the repair crew), we
emphasize here how initiating a repair action based on a wrong
failure-cause identification can lead to significant and unnec-
essary costs for the operator. For instance, consider the case
of a remotely-repairable failure that is wrongly classified as a
failure requiring on-site intervention; in this case the operator
is incurring unnecessarily in the much higher cost of on-site
intervention. Similarly, the opposite mis-classification would
lead to excessive delays for failure reparation. Therefore, ML
models are not only required to be accurate, but, for possible-
expensive decisions, they must allow the operator to scrutinize
the confidence of the decision before trusting the decision. In
other words, it is decisive to know if and when to trust model’s
decisions and when not, and to understand the driving factors
of the decisions.

In this paper, in order to understand the main driving
factors leading to ML algorithms’ decisions for failure-cause
identification, we first show three ML algorithms, namely,
Random Forest (RF), Artificial Neural Networks (ANN) and
eXtreme Gradient Boosting (XGB), for automated failure-
cause identification and compare their performance in terms of
classification accuracy. Then, we apply two XAI frameworks,
namely, SHAP [4] and LIME [3], for generating “global”
explanations of models’ behavior and for explaining reasons
behind wrongly classified instances, respectively. Such expla-
nations go beyond, for instance, a pseudo-code describing the
algorithm, as they correlate model features to decisions, al-



lowing practitioners to gain insights on driving factors behind
decisions. We believe this description of our application of
XAI in the context of microwave networks can be of help to
stimulate further investigation on the application of XAI in
network failure management.

We can summarize the contribution of this paper as follows:
1) we show that the different ML algorithms rely on different
sets of features to identify failure causes; 2) we evaluate the
relevance of the features for the different failure causes and
show how the obtained results can be used to validate the
classifier decisions and 3) by explaining wrongly classified
instances, we show how to extract insights on the reasons
underlying a wrong failure classification.

The paper is organized as follows. Sec. II provides back-
ground on XAI, in general, and on the two XAI frameworks
applied in our work, in particular. Sec. III discusses prelimi-
nary concepts for microwave networks and their most common
types of failures. In Sec. IV we qualitatively state the failure-
identification problem, and we elaborate the specific research
questions addressed in our work. Sec. V describes data and
supervised ML models used in this work. Sec. VI presents
numerical results, and shows how we address the research
questions introduced in Section IV.

II. EXPLAINABLE ARTIFICIAL INTELLIGENCE

In this section we first provide a brief overview on XAI and
then we describe the XAI frameworks applied in our work. For
further reading, we refer the reader to comprehensive surveys
on interpretable ML and XAI [5]–[7], [12].

A. Overview

When examining literature on XAI, we notice that ex-
plainability and interpretability are two terms that are used
interchangeably by researchers, although some works have
put effort to identify differences between them [8]–[10]. For
either terms, no rigorous mathematical definitions that allow
to measure them exist. Instead, measuring interpretability of
an AI model has been defined qualitatively by researchers as
the degree to which a human can understand the cause of
a decision of that model [11]. In contrast, explainability is
associated with humans’ understanding how the internal logic
of the model can be explained.

In our work, we are interested in explaining pre-trained
“black-box” models with the aim of understanding the internal
logic of a ML model. This process is performed by using
existing XAI frameworks in a post-hoc manner, i.e., after the
model has taken its decision (see Figure 1). XAI frameworks
can be either model-specific, i.e., their application is restricted
to specific ML models, or model-agnostic, i.e., they can be
applied to any ML model. Explanations are also divided into
two classes, global and local. A global explanation explains
the whole model’s behavior, while a local explanation provides
explanation to a specific observation. Depending on the aim,
both types of explanations can be necessary to explain the

Fig. 1: Post-hoc explanation.

behavior of a model. In our work, we apply two model-
agnostic methods, SHAP and LIME, in a post-hoc manner,
with the aim of explaining the behavior of ML models.

B. Applied XAI Frameworks

We now provide an overview on the two model-agnostic
XAI methods used in this paper, namely, SHAP and LIME [3].
Specifically, we first use SHAP to evaluate the contribution of
the various features to model’s decision, in order to identify
which features are most relevant to model’s decision to each
of the classes of failure. Then, we use LIME to generate
local explanations of selected wrongly-classified observations
to understand why the model misclassifies them.

1) Local Interpretable Model-agnostic Explanations
(LIME): ML models are widely applied to solve particular
tasks such as classification and regression. In most cases,
models with high predictive capacity, such as ANNs, are
preferred. However, such models are not easily interpreted by
humans. To increase interpretability of these complex models,
other simpler models, referred to as surrogate models, can
be used, which are constrained by design to be interpretable.
The role of any interpretable surrogate model is to imitate
the behavior of a more complex ML model while providing
a description of its own behavior, consequently explaining
the behavior of the complex model. For instance, to interpret
an ANN, a logistic regression model, for example, can be
used as a surrogate model, to explain decisions boundaries
and provide a description of model’s behavior. In this case,
the decision boundary of the non-linear model will coincide
with that of the linear model in a local space in proximity of
the instance whose prediction is explained, and therefore, the
behavior of the linear model can be used to explain that of
the non-linear model.

Two kinds of surrogate models exist, global and local. In
a part of our work, we rely on local surrogate models and
specifically on LIME. LIME is a model-agnostic technique
(explains any machine learning model, and hence the name
explainer) used to generate explanations of local decisions.
LIME was proposed in [3], and it explains single predictions
relying on easily interpretable models such as linear regression
or decision trees. A LIME explanation is generated as follows.

• Select an instance x of the dataset X and its predicted
target value to be explained

• Perturb dataset X (i.e., change features’ values of data
points in X) to generate a new data set Z of a larger
size with respect to original dataset X . Perturbation of
original data is performed to generate new observations
similar to original ones to be additionally considered



Fig. 2: Graphical representation of LIME algorithm.

when generating explanations, with the aim of better
describing the behavior of the black-box model.

• Using original black box model, predict target values for
all instances in Z.

• Weight elements in Z with respect to the proximity (also
referred to as neighborhood) to instance x. Note that
the neighborhood is determined by giving data points
weights according to their proximity to the instance to
be explained.

• Train a surrogate explainable model g on Z and respective
predictions.

• Return an explanation for explainable model g for in-
stance x.

Figure 2 shows a visualization of main components in the
above procedure for a binary classification problem. Instance
x to be explained is in yellow, data points in proximity to
instance x are given higher weights (represented by larger
points). Decision boundary of the original black box model
is represented by a black curve while the decision boundary
of the surrogate model is represented by a red line. The
decision boundaries of the two models coincide locally, i.e.,
in proximity to observation to be explained, however they are
significantly distant globally.

2) SHAP: SHapley Additive exPlanations: In 1952,
economist Lloyd Shapley proposed a method from coalitional
game theory to assign fair payouts to players based on their
contribution to the total payout. In this method, players co-
operate in a coalition and receive a certain profit from this
cooperation. Then, a value, referred to as Shapley value, is
computed as the average marginal contribution of a player
across all coalitions. In the context of explainability, SHAP
estimates the Shapley value (i.e., the marginal contribution or
importance value) of each input feature of an instance to the
prediction by iterating through all permutations of the input
features, where each feature is a player in a game and the
prediction is the payout to be distributed. For each classified
instance, SHAP calculates the contribution of each feature to
the classification value, i.e., to model’s decision. Following
this method, SHAP explains predictions of an observation
by computing the contributions of each feature to model’s
decision.

As we will see later, examining the Shapley values of
features (i.e., the contributions of features) to model’s out-
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Fig. 3: Basic components of a microwave link.

put allows to understand which features contribute most to
deciding in favour of a particular class of failures. In other
words, examining explanations of SHAP may allow operators
to confirm the correct behavior of the model (by confirming
that model’s decision for a specific class of failure are driven
by features relevant to that class), and even to discover whether
a feature is relevant to a particular class of failure.

III. MICROWAVE LINK FAILURES

This section describes the main building blocks of mi-
crowave links and details the various failure causes in mi-
crowave networks and discusses the typical countermeasures
adopted to contrast them.

A. Microwave Link

Figure 3 shows the basic structure of a microwave link,
which can function (transmit and receive) in a bidirectional
manner, from site A to site B and from site B to site A, given
that link transmitting and receiving equipment is present at
both sites. The link consists of three main elements, i.e., 1) the
microwave radio, 2) the transmission line and 3) the antenna.
The microwave radio can be placed at different locations,
i.e., either inside a building (full-indoor), in proximity of the
antenna (full-outdoor), or by adopting a hybrid solution, where
the electronic devices are distributed between an outdoor unit
(ODU) and indoor unit (IDU). At the transmitter side, the
microwave radio is responsible of generating the analogue sig-
nal, while, at the receiver side, it demodulates the signal. The
transmission line connects the microwave radio to the antenna.
The physical medium of the transmission line is typically a
coaxial cable. The antenna is usually parabolic-shaped and is
characterized by its, gain, size and directivity function, i.e.,
the capability of concentrating the transmitted/received power
to/from specific directions.

B. Link Performance and Unavailability

The performance of a microwave link is monitored by
evaluating the number of errored bits (referred to as errors)
in a certain time span. The number of errored bits defines
three main metrics: 1) errored block (EB): a block (i.e.,
group of consecutive bits) in which one or more bits are in
error. 2) errored Second (ES): a one-second period with one



or more errored blocks. 3) severely errored Second (SES):
a one-second period which contains 30% errored blocks.
Specifically, according to ITU-T Recommendations G.826 and
G.828 [2], when the number of consecutive SES exceeds ten
in one or in both directions of the microwave link, the link is
considered to be in a state of unavailability. The unavailability
is then measured in terms of UnAvailability Seconds (UAS),
which represent the amount of time (expressed in seconds)
when the number of errors exceeds a certain threshold. The
link is considered to be again available if, after the block
of consecutive SES, no SES are present for at least ten
consecutive one-second periods in both directions. Note that
a microwave link can experience UAS for a period of time
and then go back to normal functioning. This is because the
microwave link can be frequently affected by external factors,
such as the atmosphere, which may affect the functioning of
the link temporarily. We discuss types of failures affecting
microwave links in detail in next subsection.

C. Categories of Failure

In this work, we consider six different failure causes, that
we identify with six different classes C0-to-C5. Among them,
the first five are propagation-related failure causes, i.e., driven
by atmospheric factors or presence of temporary obstacles,
while the last one consists of hardware failure, i.e., caused by
equipment malfunctioning due to, e.g., aging, high tempera-
ture, etc.. In the following, we detail each failure type, and
highlight the typical countermeasures adopted in each case.

1) Deep Fading (C0) consists of a strong increase of
channel attenuation causing a severe drop in signal-to-noise
ratio, and can be due to many factors such as, e.g., seasonality,
geographical position or radio frequency in use. It can be
caused by the presence of new obstacles (e.g., growth of
vegetation) or adverse meteorological phenomena, such as
heavy rain, snow or fog, leading to multipath and shadowing
effects. To deal with deep fading, no on-site human interven-
tion is required. Instead, it can be automatically solved by a
temporary reduction of link’s modulation format.

2) Extra Attenuation (C1) occurs when received power
is well below (e.g., 6 or more dB lower) the minimum
power threshold, even considering the lowest-order modu-
lation format in the link. Extra attenuation can be caused,
e.g., by path obstruction (due to the presence of permanent
obstacles), antenna misalignment, mounting/screwing issues,
water infiltration into waveguide used in the transmission line
or damaged antenna/coupler. To deal with extra attenuation,
either remote or on-site human intervention is required.

3) Interference (C2) occurs when a receiving antenna
receives multiple bit streams due to overlap of other trans-
missions at its frequency, causing it to fail to distinguish
the bit stream destined to it. The multiple bit streams are
caused by, e.g., unexpected reflections from other links or
frequency misconfigurations. Typically, interference does not
change over time, and it is typically solved by turning off
the interfering link or changing its carrier frequency through
human intervention.

TABLE I: Distribution of data points over failure classes.

Failure Cause # of 45-minutes windows

C0 - Deep Fading 284
C1 - Extra Attenuation 581
C2 - Interference 49
C3 - Low Margin 190
C4 - Self-Interference 187
C5 - Hardware Failure 1222

4) Low Margin (C3) occurs when the link configuration
parameters have not been chosen adequately, i.e., they do not
correspond to the ones recommended by the manufacturer,
causing UAS events to occur. To address low margin failure
types, remote human intervention is required to correctly
configure link’s parameter.

5) Self-Interference (C4) occurs when the link is operated
in full-duplex, and the transmission line, which is shared
between the two streams and connects the antenna to two
radio components, creates local signal reflections and spurious
signals which are propagated to the receiver radio component.
Self-interference is a propagation problem that can be due
to degradation of the hardware (e.g., amplifiers and/or filters)
used to eliminate signal reflections, and it typically causes
random UAS on the link, even when the link is working at
nominal received power level and no fading event is occurring.
To eliminate self-interference, on-site human intervention is
required to substitute hardware components and re-configure
link parameters.

6) Hardware Failure (C5) refers to the cases of link
unavailability that are not directly related to propagation prob-
lems, including failures due to equipment failure. Such failures
can be either temporary or permanent, and in both cases,
they require on-site human intervention to replace hardware
equipment causing the failure.

IV. PROBLEM STATEMENT AND RESEARCH QUESTIONS

We model the problem of failure-cause identification in
microwave networks as a supervised multi-class classification
problem. As input, the supervised ML model takes a 45-
minutes window observation on a microwave link, consisting
of three 15-minutes windows in which the last window suffers
from at least one UAS event. For a given link in a given
45-minutes window, a total of 35 features, describing link’s
design parameters and performance metrics, are used to model
data points input. As output, the model provides a label corre-
sponding to one of the 6 failure causes discussed previously.
After ML classifiers have been trained in a supervised manner,
we apply XAI frameworks to explain model’s global behavior
and local decisions with the aim of addressing the following
Research Questions (RQs):

• RQ1: Are the lists of most important features the same
among the ML models? In other words, do the ML models
considered have the same list of most important features?

• RQ2: Which features are most influencing model’s de-
cision for each failure class and how? Do the features



TABLE II: Features describing a 45-minute window of the radio link. Feature names with ‘*’ are measurement features with
three different values, one for each 15-minutes slot.

Type Feature Name Description

Link Characteristics f1 LowThr Minimum received power tolerated on the link with any modulation format used (dBm)
f2 Ptx Nominal transmitted power when the minimum modulation format is used (dBm)
f3 Thr min Minimum received power threshold tolerated by the link with its current modulation format (dBm)
f4 RxNominal Nominal received power at the maximum modulation format (dBm)
f5 acmEngine A flag which indicates if the Adaptive Code Modulation (ACM) is enabled on a given microwave link

G.828 metrics f6, f7, f8 ES* Number of one-second periods with at least one ES in the 15-minutes slot
f9, f10, f11 SES* Number of one-second periods with at least one SES in the 15-minutes slot

Power values f12, f13, f14 txMaxA* Maximum power transmitted from site A in in the 15-minutes slot (dBm)
f15, f16, f17 txminA* Minimum power transmitted from site A in the 15-minutes slot (dBm)
f18, f19, f20 rxmaxA* Maximum power received at site A in the 15-minutes slot (dBm)
f21, f22, f23 rxminA* Minimum power received from site A in the 15-minutes slot (dBm)
f24, f25, f26 txMaxB* Maximum power transmitted from site B in the 15-minutes slot (dBm)
f27, f28, f29 txminB* Minimum power transmitted from site B in the 15-minutes slot (dBm)
f30, f31, f32 rxmaxB* Maximum power received at site B in the 15-minutes slot (dBm)
f33, f34, f35 rxminB* Minimum power received from site B in the 15-minutes slot (dBm)

of the 15-minutes windows preceding the window in
which failure has occurred have an influence on model’s
decisions for any of the failure classes?

• RQ3: Can we determine why the model systematically
misclassifies instances of one class as instances of an-
other particular class?

To answer RQ1 and RQ2, we specifically exploit SHAP.
Specifically, we generate SHAP summary plots to examine the
list of features (and their values) that influence most model’s
decisions for each class of failure. To address RQ3, we use
LIME to explain model’s decisions for wrongly classified
observations.

V. DATA DESCRIPTION AND ML MODELS

A. Data Description

The dataset used in this work is collected from more
than 10 thousand point-to-point links of a real microwave
network for a duration of 18 months. For each link, several
performance metrics are collected for both sites at fixed time-
steps of 15 minutes via a network management system of
SIAE Microelettronica. As a data point, we consider 45-minute
windows constituted by three consecutive slots of 15 minutes.
Each 45-minutes window in our dataset is characterized by at
least one UAS event in the last 15-minutes slot. This means
that we consider, in addition to the window suffering from
UAS, the two previous 15-minute slots. This consideration
is based on the knowledge of domain experts, who affirm
that a 45-minutes time span is deemed sufficient to capture
temporal dynamics of failure causes in microwave links. A
total of 2513 45-minutes windows have been manually labeled
by domain experts with a label representing one of the failure
causes described previously. The manual labelling of all data
points required the effort of two domain experts for two weeks.
We assume the manual labelling represents the ground truth.
For each data point, we consider 35 features. The features,
described in Tab. II include: 5 features (f1 - f5) describing
design parameters, and hence, they do not depend on the 15-
minutes slots considered in the 45-minutes window; 6 features
(f6 - f11) representing G.828 performance measures ES and

SES for the three 15-minutes slots; and 24 features (f12 - f35)
representing the minimum/maximum received and transmitted
power values for each side of the link (i.e., site A and site B)
and for each of the three 15-minutes slots. All features passed
to the ML models are normalized to make sure the model is
less sensitive to the scale of data. To normalize the features,
we calculate the mean f̄i and the standard deviation σi for
each feature, considering all data points in the dataset X , and
then, for each data point j ∈ X , we obtain the standardized
features (f ji , i = 1, 2, ..., 35) as follows:

f ji ←
f ji − f̄i
σi

(1)

Labels are distributed among the 6 classes as shown in
Tab. I. A severe unbalance between some classes can be
observed, due to the fact that some failure causes, such as, e.g.,
interference, are less frequent. This means that it is necessary
to inspect the set of most influential features per class (and
not globally by aggregating importance of all features among
all points) to better understand the behavior of the model.

B. Supervised ML Models

We consider three different ML algorithms, namely, Artifi-
cial Neural Network (ANN), Random Forest (RF) and Extreme
Gradient Boosting (XGB) for failure-cause identification. In
particular, ANN and RF were adopted in our previous work
[1], where details on hyperparameter selection can be found.
Similarly, also for XGB algorithm we tested different combi-
nations of hyperparameters and used the classifier with highest
classification accuracy. We vary eta parameter (learning rate)
and subsample between 0.1 and 1 with a step of 0.1, and vary
max depth between 1 and 10 with a step of 1. For XGB, the
hyperparameters selected are eta = 0.3, max depth = 7 and
subsample = 0.9.

VI. RESULTS AND DISCUSSION

In this section we first perform numerical evaluations of
the supervised failure-cause identification and then discuss
findings of applying XAI frameworks to our case study with
the aim of addressing the RQs presented in Sec. IV.



TABLE III: Performance metrics of each of the three models considered in our study.

Model Accuracy Precision Recall F1-Score F1-score per class
C0 C1 C2 C3 C4 C5

RF 0.93 0.94 0.93 0.93 0.85 0.91 0.88 0.76 0.97 0.97
ANN 0.88 0.84 0.84 0.82 0.69 0.90 0.89 0.73 0.97 0.94
XGB 0.93 0.93 0.93 0.93 0.85 0.92 0.88 0.76 0.98 0.98

TABLE IV: Confusion matrix and per-class F1-score obtained
with XGB classifier.

Predicted Label

C0 C1 C2 C3 C4 C5

C0 50 1 0 4 0 2
C1 5 105 0 5 0 1

True C2 0 0 8 0 1 1
Label C3 5 2 0 30 0 1

C4 0 0 0 0 37 0
C5 0 3 0 1 0 241

F1-score 0.85 0.92 0.88 0.76 0.98 0.98

A. Comparing Supervised ML Algorithms

The supervised ML algorithms used to perform failure-
cause identification are compared in Tab. III, where different
classification metrics are shown showing in particular F1-
score per class. Results show that, in general, the three algo-
rithms have a comparable performance with a slight advantage
for XGB. Specifically, XGB has the best accuracy (93.6%)
outperforming RF and ANN that have 93.04% and 88.66%,
respectively. In terms of Precision, Recall and F1-Score, the
XGB and RF algorithms show a similar performance (see Tab.
III) outperforming the ANN which shows a performance 10%
lower for all metrics. In terms of F1-Score for the various
failure classes, XGB and RF show similar F1-score values
ranging between 73% and 98%. ANN, on the contrary, suffers
from a relatively low F1-score for class c0 (69%) and class
c3 (73%). We also show in Tab. IV the confusion matrix of
the best performing classifier (XGB) for one case when used
on a test set of 20% of the dataset. We can see that in some
cases the model predicts a class of failure that requires human
intervention (classes C2, C4 and C5), while in fact the true
label corresponds to a class of failure that does not (classes
C0, C1 and C3). Such misclassifications can result costly if
the operator takes actions accordingly. Leveraging on local
explanations of misclassified points, we examine the reasons
why the model misclassifies these points, with the aim of
deriving guidelines that can help the operator to know when
not to trust model’s decision.

B. XAI-Assisted Failure-Cause Identification

We now address the RQs formulated in Sec. IV.
RQ1: Are the lists of most important features the same

among the ML models?
To address RQ1, we show in Tab. V the 10 most important

features for each ML algorithm obtained with SHAP by
considering all data points in dataset. Overall, results show
that the models share 5 features among the 10 most important

ones. More specifically, XGB shares 8 features among the
most important 10 with RF, with slight differences in the
order of features in terms of importance. For instance, the
first 3 most important features are identical in both cases.
This can be explained by the fact that both XGB and RF are
decision-tree algorithms, hence, similar behavior is expected.
As for XGB and ANN, they share 6 features among the list,
however with notable differences in their order of importance
(only one feature is common among the first 6 most important
features). Moreover, with ANN, Thrmin is the second most
important feature while it is not present in the list of XGB.
Similarly, with XGB, rxminBN is the most important feature,
while with ANN it is the tenth. The case for RF and ANN is
similar to that of XGB and ANN, confirming that similarities,
in terms of most important features and their order, are more
evident between decision-tree-based algorithms. A main point
to highlight is the importance of link characteristic features for
each of the models. With XGB, lowThr and RxNominal have
high importance. With RF, two link characteristics features
are present among the 12 most important features, lowThr and
acmEngine. For ANN, on the contrary, three link characteristic
features are among the 12 most important features, Thrmin

(second most important feature), RxNominal and lowThr.
While this confirms the importance of link characteristics
features, it also shows that each model considers a slightly
different set of those features among the most impacting
features. This type of insight can be leveraged by the network
operator to a-posteriori verify if the ML models rely on the
same set of features that would be used by experts on the
problem at hand, thus contributing to the selection of the most
suitable and trustable ML model.

RQ2: Which features are most influencing model’s decision
for each failure class and how? Do features of 15-minutes
windows preceding the window in which failure has occurred
have an influence on model’s decisions for any of the failure
classes?

While field experts know, at a global level, that performance
metrics corresponding to windows prior to failure occur-
rence are necessary for failure-cause identification, discovering
which performance metrics (features) are linked to specific
failures is decisive for implementing AI-driven solutions for
predictive maintenance, for instance. To address RQ2, we
consider the case of XGB and we use SHAP to show a
summary plot for each class of failure in Figure 4 (features
with names ending with -1 and -2 correspond to the first
and second window preceding that suffering from UAS). A
summary plot combines feature importance with feature effects
to explain model’s behavior. The y-axis lists features according
to their importance, and each point of the summary plot is a



TABLE V: Ordered list of 10 most important features according to SHAP for XGB, RF and ANN. Features with names ending
(N-1) and (N-2) correspond to first and second window preceding the failure). Features with names in bold correspond to
important features present in the lists of all three models.

Feature Rank 1 2 3 4 5 6 7 8 9 10

Model
XGB rxminBN rxminAN esN lowthr rxmaxBN-2 rxmaxBN RxNominal rxmaxAN-2 rxmaxAN rxminBN-1
RF rxminAN rxminBN esN rxmaxBN-2 rxmaxAN-2 rxmaxAN-1 rxmaxAN rxmaxBN-1 lowthr acmEngine
ANN rxminAN Thr min rxminAN-2 rxmaxAN rxminAN-1 rxmaxAN-1 RxNominal rxmaxBN-2 lowthr rxminBN

(a) (b) (c)

(d) (e) (f)

Fig. 4: Summary plot of SHAP values for (a) Deep Fading, (b) Extra Attenuation, (c) Interference, (d) Low Margin, (e)
Self-Interference and (f ) Hardware Failure, showing the 12 most important features per class (features with names ending
(N-1) and (N-2) correspond to first and second window preceding the failure).

Shapley value for a given feature and a given data point (a
45-minutes window for a given link, in our case), positioned
based on its Shapley value. Each point has also a color which
qualitatively represents the feature value in a low-to-high
scale. The overlapping points in vertical direction reflect the
distribution of Shapley values for each feature. By examining
summary plots of each class of failure, we understand the
relationship between value of a feature and the impact on the
prediction towards each class of failure. This knowledge can be
leveraged to have a global understanding of model’s behavior,
and, when analyzed per failure class, allows to extract local
insights on the behavior.

Results show that Self-Interference, Deep Fading and Inter-
ference rely with a limited degree on such features, as only
three of them are present among the 12 most important features
in each of the classes, and they have relatively low SHAP
values. On the contrary, Hardware Failure, Extra Attenuation
and Low Margin, significantly rely on such features as several

of them are present among the 12 most important features.
This information can be exploited by domain experts to affirm
or reject model’s behavior, and thus know whether to trust
model’s decisions. In addition, the summary plots can also be
exploited to examine feature correlation with model’s decision.
For instance, in Deep Fading, low values of rxminAN and
rxminBN (blue dots for first two features on y-axis) are
correlated with a positive contribution while medium and high
values of these features (purple and red dots) are correlated
with a negative contribution (against the decision) towards
Deep Fading. Such analysis, when performed over all features,
can be used to analyze which features (and feature-values)
are most influencing model’s decision for each failure class,
which further contributes to gain trust in the model before its
application.

RQ3: Can we determine why the model systematically
misclassifies instances of one class as instances of another
particular class?



(a)

(b)

Fig. 5: LIME explanations for a wrongly classified observation

We address RQ3 by analyzing and comparing contributions
of features towards 1) the true label and 2) the predicted wrong
label using LIME1. In particular, we consider an observation
with Low Margin as true label that was classified as Deep
Fading, shown in Figure 5(a) and 5(b), respectively. This
analysis can be leveraged by domain experts to gain insights
on the problem at hand, allowing to know when the model
might misclassify one class of failure to another, and therefore
derive additional guidelines that would allow to avoid taking
costly wrong countermeasures in future occurrences. The
explanation figure is read as follows. The y-axis lists a set
features in descending order of importance (influence) on the
decision and the x-axis shows the LIME coefficient (feature
importance). Each of the features either has a positive (green)
or a negative (red) value. A positive value indicates that the
feature has supported the decision towards its predicted target
class while a negative value indicates otherwise. Inspecting
the explanations of the sample observation when explained
towards either of the failure classes, we see that the sets of
most influential features (the lists of features on y-axis) are
the same and that the features have the same contribution
towards both classes (if a feature is contributing positively
towards Deep Fading it contributes positively towards Low
Margin and vice versa). Feature sesN and RxNominal are
two examples of such features, which are among the most
influential features and which contribute positively to both
classes of failure. Through this analysis, we can explain why
the model miclassifies instances of Low Margin with Deep

1An explanation of an instance can be generated towards a particular class,
i.e., finding contributions of features towards a class

Fading, which is returned to the fact of having a set of features
with specific values that supports the decision of the model
towards both classes. Relating this with SHAP summary plots
in Figure 4, we see that sesN, although very influential in the
observations explained in Figure 5, it is not among the most
influential features for Deep Fading (Figure 4(a)). Similarly,
RxNominal is not among the most influential features for Low
Margin (Figure 4(d)). This means that observations similar
to those in Figure 5 are not abundant among either of the
classes, explaining why influential features locally are not
present among the most influential features at a class level.
This also shows that local explanations can be decisive to
understand better the behavior of the model and to further
increase trust in its decisions.

VII. CONCLUSION

In this work, we investigate the use of eXplainable Artificial
Intelligence (XAI) for automated failure-cause identification in
microwave networks. After applying existing supervised ML
algorithms providing 94% classification accuracy, we explore
the use of SHapley Additive exPlanations (SHAP) and Local
Interpretable Model-agnostic Explanations (LIME) to address
important practical questions with the aim of achieving a
trustable deployment of automated failure-cause identification
in microwave networks. We answer these questions showing
how to achieve a deeper understanding of the behavior of the
ML algorithm adopted and we further exploit XAI frameworks
to extract insights of the problem.
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